Springe zum Hauptinhalt
Universitätsbibliothek
Universitätsbibliographie
Universitätsbibliothek 

Eintrag in der Universitätsbibliographie der TU Chemnitz

Volltext zugänglich unter
URN: urn:nbn:de:bsz:ch1-qucosa2-968072


Benndorf, Maik
Gaedke, Martin (Prof. Dr.); Haenselmann, Thomas (Prof. Dr. rer. nat. habil.)

Towards Vibration-based Structural Health Monitoring using Mobile Android Devices


Kurzfassung in englisch

Bridges are vital components for the transportation infrastructure,however, constantly face degradation due to ageing, traffic load, and environmental factors. Currently, over 27 % of Germany?s federal road and highway bridges are, at best, in adequate condition (Federal Highway Research Institute, 2024). To identify safety risks early and schedule maintenance efficiently, reliable condition monitoring is essential. However, Structural Health Monitoring (SHM), although valuable, is often hindered by technical complexities and high costs, particularly in rural areas. This thesis explores the potential of ubiquitous Mobile Android Devices (MADEs) for SHM by addressing three primary challenges: (i) Insufficient quality of data collected by MADEs: proposing methods for determining and reducing jitter, and synchronising clocks using acoustics. (ii) Non-compliant sensor hardware: investigating whether the sensors of MADEs can be used despite failing to meet the hardware specifications for professional sensors. (iii) Lack of structural information: developing methods to identify bridge types and materials, and determining spatial dimensions to gather information necessary for modelling a bridge. Finally, a conceptual model illustrates how these methods can interact to contribute to SHM. The insights gained in this thesis aim to advance the use of ubiquitous MADEs for continuous SHM, thereby enabling more widespread and cost-effective SHM solutions.

Universität: Technische Universität Chemnitz
Institut: Professur Verteilte und selbstorganisierende Rechnersysteme
Fakultät: Fakultät für Informatik
Dokumentart: Dissertation
Betreuer: Gaedke, Martin (Prof. Dr.); Haenselmann, Thomas (Prof. Dr. rer. nat. habil.)
ISBN/ISSN: 978-3-96100-261-0
DOI: https://doi.org/10.51382/978-3-96100-262-7
URL/URN: https://nbn-resolving.org/urn:nbn:de:bsz:ch1-qucosa2-968072
Quelle: Chemnitz : Universitätsverlag Chemnitz, 2025. - 390 S. - Doctoral Dissertations in Web Engineering and Web Science ; Volume 8
SWD-Schlagwörter: Structural Health Monitoring, Signalverarbeitung, Sensor
Freie Schlagwörter (Englisch): structural health monitoring, signal processing, sensor, mobile device, machine learning
DDC-Sachgruppe: Informatik, Informationswissenschaft, allgemeine Werke, Computerprogrammierung, Programme, Daten
Sprache: englisch
Tag der mündlichen Prüfung 15.04.2025
OA-Lizenz CC BY 4.0

 

Soziale Medien

Verbinde dich mit uns: