Eintrag in der Universitätsbibliographie der TU Chemnitz
Volltext zugänglich unter
URN: urn:nbn:de:bsz:ch1-qucosa2-956525
Leusmann, Yvonne
Richter, Markus ; Stanwix, Paul (Gutachter)
Dew Points for Binary Hydrogen Mixtures and Development of a New Measurement Technique for Mixture Vapor-Liquid Equilibria Based on Microwave Resonators
Kurzfassung in englisch
The ongoing energy transition to address climate change requires low-carbon technologies and the replacement of fossil-fuel-based natural gas with gas from renewable sources. In this context, the application of hydrogen and hydrogen-rich mixtures has grown in importance in recent years. The ability to accurately predict the thermophysical behavior of fluid mixtures is, therefore, crucial for scientific and industrial applications. However, the performance of available thermodynamic models is largely limited by the poor availability and quality of experimental data, leading to significant uncertainties. Microwave-based technology enables accurate and fast investigation of the complete phase behavior of binary fluid mixtures, thereby providing the potential of advancing the state of the art in thermophysical property research. In this context, detailed investigations on thermophysical properties within the vapor-liquid equilibrium (VLE) were conducted using a microwave re-entrant cavity resonator. The focus lies on (1) obtaining low uncertainty experimental dew-point data for industrially relevant mixtures containing hydrogen and (2) developing an advanced measurement technique for investigating the heterogeneous two-phase region of binary mixtures. To further enhance low uncertainty VLE measurements, new cavity designs were developed to fit the specific measuring goals defined for (1) and (2). In this context, a new mechanical in situ mixture agitation system was developed to improve sample mixing.
Universität: | Technische Universität Chemnitz | |
Institut: | Professur Strömungsmechanik | |
Fakultät: | Fakultät für Maschinenbau | |
Dokumentart: | Dissertation | |
Betreuer: | Richter, Markus ; Stanwix, Paul | |
DOI: | doi:10.60687/2025-0030 | |
SWD-Schlagwörter: | Mikrowellenmesstechnik , Phasengleichgewicht , Taupunkt , Wasserstoff | |
Freie Schlagwörter (Deutsch): | Mixture Dew-point Measurements , Hydrogen , Liquid Volume Fraction Measurements , Microwave Re-entrant Cavity Resonator , Vapor–Liquid Equilibrium | |
DDC-Sachgruppe: | 621.4021 | |
Sprache: | englisch | |
Tag der mündlichen Prüfung | 06.12.2024 | |
OA-Lizenz | CC BY 4.0 |