Springe zum Hauptinhalt
Universitätsbibliothek
Universitätsbibliographie
Universitätsbibliothek 

Eintrag in der Universitätsbibliographie der TU Chemnitz

Volltext zugänglich unter
URN: urn:nbn:de:bsz:ch1-qucosa2-948583


Al-Khatib, Abdullah
Mößner, Klaus (Prof. Dr.) ; Timinger, Holger (Prof. Dr.) (Gutachter)

Resource Reservation for Time-Sensitive Vehicular Applications


Kurzfassung in englisch

This thesis investigates cost-effective and reliable resource reservation strategies for time-sensitive and safety-critical vehicular (TSSCV) applications, such as autonomous and remote driving. These applications require deterministic and guaranteed access to mobile edge computing (MEC) resources, which is typically achieved through individual reservations. Vehicles submit reservation requests to mobile network operator (MNOs), which allocate computation and communication resources based on these requests. Therefore, optimizing the timing and method for vehicles to place reservation requests in both single and multiple MNO scenarios is crucial, especially in dynamic vehicular environments with fluctuating network conditions and limited resources. Efficient reservation requests are essential as vehicles lack complete information about future resource availability and costs. Additionally, real-world uncertainties, such as unpredictable mobility, which influences future reservation times and costs, complicate the design of an optimal reservation strategy. Furthermore, dynamic pricing models employed by MNOs introduce another layer of complexity to the decision-making process for reservation requests, updates, and exchanges due to their impact on market conditions like resource supply and demand. To address the challenges of resource reservation in single MNO scenarios, this thesis proposes an advanced reservation strategy leveraging a batched long short-term memory (LSTM) model. This approach optimizes the timing of reservations, leading to significant cost savings for vehicles. To further minimize update costs, one-shot and multi-shot reservation update strategies are introduced, complemented by the heuristic greedy reservation updates (HGRU) algorithm. For multiple MNO environments, the thesis addresses cost-effective resource selection by comparing prices and network conditions across MNOs. An adaptive Markov decision process (MDP) framework is proposed, incorporating a deep reinforcement learning (DRL) algorithm, specifically dueling deep Q-learning. To enhance learning efficiency, a novel area-wise approach and adaptive MDP closely resembling real-world conditions are introduced. Furthermore, the temporal fusion transformer (TFT) is employed to effectively handle time-dependent data during model training. The multi-phase training approach, involving both synthetic and real-world data, enables the DRL agent to learn from historical data and adapt to real-time observations. Additionally, a multi-objective approach using a double deep Q-learning algorithm is proposed to minimize the cost of reservation updates while ensuring an optimal strategy and reliable provisioning. Finally, this thesis explores the use of blockchain smart contracts to establish a secure, efficient, and transparent resource trading system for vehicular networks. This blockchain-based architecture optimizes reservation costs and addresses trust issues by enabling decentralized, secure, and cost-effective resource trading among vehicles. By leveraging smart contracts, the system ensures transparency and immutability in transactions, fostering trust among participating vehicles. Simulation results demonstrate that the proposed resource reservation algorithms in single MNO environments outperform benchmark reservation schemes, including immediate reservation schemes, in terms of cost minimization and resource utilization efficiency, which also pose challenges for resource guarantee. In multiple MNO environments, the algorithms effectively manage uncertainties and promote competition between MNOs than single MNO scenario potentially impacting guaranteed resource provisioning. Additionally, while the exchange reservation strategies enhance security, the absence of robust security mechanisms could result in unreliable resource requests from providers, posing challenges to guaranteed resource provisioning.

Universität: Technische Universität Chemnitz
Institut: Professur Nachrichtentechnik
Fakultät: Fakultät für Elektrotechnik und Informationstechnik
Dokumentart: Dissertation
Betreuer: Mößner, Klaus (Prof. Dr.)
URL/URN: https://nbn-resolving.org/urn:nbn:de:bsz:ch1-qucosa2-948583
SWD-Schlagwörter: Fahrzeug , Berechnung , Kommunikation
Freie Schlagwörter (Englisch): Connected vehicular , TSSCV applications , communication and computation resources , reservation request , reservation update strategy
DDC-Sachgruppe: Technik, Medizin, angewandte Wissenschaften
Sprache: englisch
Tag der mündlichen Prüfung 12.12.2024
OA-Lizenz CC BY 4.0

 

  • Verschiedene Exponate stehen in einem Ausstellungsraum.

    Wie Städte und ihre Menschen sich neu erfinden

    Sonderausstellung „Tales of Transformation“ im Industriemuseum Chemnitz zeigt den Wandel in der Stadt im Vergleich zu fünf anderen industriellen Hotspots in Europa und streift dabei auch die TU Chemnitz …

  • Mehrere Personen schauen sich Ausstellungsgegenstände an, darunter Gemälde.

    Rektorengemälde im „Museumcircle“

    Besondere Leihgabe für die Kulturhauptstadt: Universitätsarchiv der TU Chemnitz steuerte zwei Porträtgemälde ehemaliger Rektoren für außergewöhnliche Ausstellung in der Rasmussen-Halle des Industriemuseums Chemnitz bei …

  • Personen laufen vor einem orangenfarbenen Gebäude.

    Am „TUCtag“ der TU Chemnitz gibt es viel zu entdecken

    Ein Höhepunkt im Kulturhauptstadtjahr: Vom „Tag der offenen Tür“ über die Kinder-Uni und die „Lange Nacht der Wissenschaften“ bis hin zum Internationalen Alumni-Treffen – am 10. Mai 2025 zeigt sich die TU Chemnitz von ihrer besten Seite …

  • Ein aufgeschlagenes Buch zeigt eine Buchansicht.

    Ein besonderer Ritt durch Chemnitzer Sammlungen

    Universitätsarchiv der TU Chemnitz beteiligte sich am Buchprojekt „Die Schiene liegt nicht weit vom Pferd“ – Entstanden ist ein unterhaltsamer Stadtführer von Chemnitz, der auch Schätze der Universität zeigt …

Soziale Medien

Verbinde dich mit uns: