Springe zum Hauptinhalt
Universitätsbibliothek
Universitätsbibliographie
Universitätsbibliothek 

Eintrag in der Universitätsbibliographie der TU Chemnitz

Volltext zugänglich unter
URN: urn:nbn:de:bsz:ch1-qucosa2-894594


Ben Atitallah, Bilel
Kanoun, Olfa (Prof. Dr.-Ing.) ; Derbel, Nabil (Prof. Dr.-Ing.)

Hybrid Hand Sign Recognition for Real-Time Wearable Systems with Ambiguity Reduction


Kurzfassung in englisch

Hand sign recognition (HSR) has emerged as a significant field of research and development in the context of wearable systems and human machine interaction. The aim of this research is to investigate the potential of forearm-attached sensors to recognize hand signs and to propose a novel measurement approach for real-time HSR with reduced ambiguities. Three measurement methods are deeply investigated: Force Myography (FMG), Electrical Impedance Tomography (EIT), and surface Electromyography (EMG). The potential of these methods is evaluated in the context of American Sign Language (ASL). For a comprehensive comparative study, it is important to realize same conditions in the data collection. Therefore, a parallel data acquisition interface has been designed for simultaneous data collection. To assess the methods' capacity to distinguish between different hand signs independent of the classification algorithms, we propose a novel method for evaluating the ambiguities between different hand signs directly from the collected data. The application of this method to the collected data for all subjects shows, that EIT and FMG can better differentiate hand signs. Therefore, an FMG-EIT hybrid HSR method is proposed fusing the classification results of both methods based on their complementarity in solving ambiguous cases. The proposed method is able to achieve an average of real time accuracy of 94.16%, 82.5%, and 71.36% for the proposed fusion method, FMG and EIT respectively.

Universität: Technische Universität Chemnitz
Institut: Professur Mess- und Sensortechnik
Fakultät: Fakultät für Elektrotechnik und Informationstechnik
Dokumentart: Dissertation
Betreuer: Kanoun, Olfa (Prof. Dr.-Ing.) ; Derbel, Nabil (Prof. Dr.-Ing.)
ISBN/ISSN: 978-3-96100-206-1
DOI: doi:10.51382/978-3-96100-206-1
URL/URN: https://nbn-resolving.org/urn:nbn:de:bsz:ch1-qucosa2-894594
Quelle: Chemnitz : Universitätsverlag Chemnitz, 2024. - xv, 174 S. - Scientific Reports on Measurement and Sensor Technology ; Volume 24
SWD-Schlagwörter: Gestik , Signalverarbeitung , Klassifikation
Freie Schlagwörter (Englisch): Hand signs , Ambiguity , real-time
DDC-Sachgruppe: Ingenieurwissenschaften
Sprache: deutsch
Tag der mündlichen Prüfung 18.12.2023
OA-Lizenz CC BY 4.0

 

Soziale Medien

Verbinde dich mit uns: