Springe zum Hauptinhalt
Universitätsbibliothek
Universitätsbibliographie
Universitätsbibliothek 

Eintrag in der Universitätsbibliographie der TU Chemnitz

Volltext zugänglich unter
URN: urn:nbn:de:bsz:ch1-qucosa2-902784


Saleh, Shadi
Hardt, Wolfram (Prof. Dr. Dr. h. c.) ; Wannous, Hazem (Prof. Dr. h.)

Monocular Depth Estimation with Edge-Based Constraints using Active Learning Optimization


Kurzfassung in englisch

Depth sensing is pivotal in robotics; however, monocular depth estimation encounters significant challenges. Existing algorithms relying on large-scale labeled data and large Deep Convolutional Neural Networks (DCNNs) hinder real-world applications. We propose two lightweight architectures that achieve commendable accuracy rates of 91.2% and 90.1%, simultaneously reducing the Root Mean Square Error (RMSE) of depth to 4.815 and 5.036. Our lightweight depth model operates at 29-44 FPS on the Jetson Nano GPU, showcasing efficient performance with minimal power consumption.
Moreover, we introduce a mask network designed to visualize and analyze the compact depth network, aiding in discerning informative samples for the active learning approach. This contributes to increased model accuracy and enhanced generalization capabilities.
Furthermore, our methodology encompasses the introduction of an active learning framework strategically designed to enhance model performance and accuracy by efficiently utilizing limited labeled training data. This novel framework outperforms previous studies by achieving commendable results with only 18.3% utilization of the KITTI Odometry dataset. This performance reflects a skillful balance between computational efficiency and accuracy, tailored for low-cost devices while reducing data training requirements.

Universität: Technische Universität Chemnitz
Institut: Professur Technische Informatik
Fakultät: Fakultät für Informatik
Dokumentart: Dissertation
Betreuer: Hardt, Wolfram (Prof. Dr. Dr. h. c.) ; Wannous, Hazem (Prof. Dr. h.)
ISBN/ISSN: 978-3-96100-211-5
DOI: doi:10.51382/978-3-96100-211-5
URL/URN: https://nbn-resolving.org/urn:nbn:de:bsz:ch1-qucosa2-902784
Quelle: Chemnitz : Universitätsverlag Chemnitz, 2024. - xviii, 281 S. - Wissenschaftliche Schriftenreihe EINGEBETTETE, SELBSTORGANISIERENDE SYSTEME ; Band 19
SWD-Schlagwörter: Monokular , Tiefenerkennung , Aktives maschinelles Lernen
Freie Schlagwörter (Englisch): Monocular Depth Estimation , DCNN , Active Learning
DDC-Sachgruppe: Informatik, Informationswissenschaft, allgemeine Werke
Sprache: deutsch
Tag der mündlichen Prüfung 29.02.2024
OA-Lizenz CC BY 4.0

 

  • Ein Mann und zwei Frauen stehen nebeneinander. IN den Händen halten sie einen kleinen hölzernen Pokal und einen Blumenstrauß.

    Open Science Awards 2025 wurden feierlich vergeben

    Unter 19 Bewerbungen, die eine große Vielfalt an Open-Science-Aktivitäten der TU Chemnitz aufzeigen, wurden die drei besten am 23. Oktober 2025 ausgezeichnet …

  • Zeichnung zeigt Kinder und Tiere, die einem vorlesenden Mann, zuhören.

    TAUCHT EIN - PONO?TE SE!

    Viele literarische Begegnungen für Jung und Alt verspricht der Deutsch-Tschechische Geschichtentag (?esko-n?mecký den p?íb?h?) am 14. November 2025 in der Universitätsbibliothek …

  • Fünf Bücher stehen nebeneinander auf einer Bühne.

    Vereint in der Liebe zur Literatur, unvereint im Diskurs

    Sonderveranstaltung des Literarischen Quintetts flankiert am 28. Oktober 2025 die Ausstellung „unvereint / vereint“ in der Universitätsbibliothek der TU Chemnitz …

  • Drei Personen schauen sich Ausstellungstafeln an.

    Stadtgeschichte(n) in Bewegung

    Neue Perspektiven auf Migration: Ausstellung in der Universitätsbibliothek der TU Chemnitz zeigt vom 20. Oktober bis 28. November 2025 Gemeinsamkeiten und Unterschiede der Städte Chemnitz und Bremerhaven …

Soziale Medien

Verbinde dich mit uns: