Springe zum Hauptinhalt
Universitätsbibliothek
Universitätsbibliographie
Universitätsbibliothek 

Eintrag in der Universitätsbibliographie der TU Chemnitz

Volltext zugänglich unter
URN: urn:nbn:de:bsz:ch1-qucosa2-888875


Laue, Robert
Awiszus, Birgit (Prof. Dr.-Ing. habil. Dipl.-Math.) ; Homberg, Werner (Prof. Dr.-Ing.) (Gutachter)

Entwicklung des selbstregelnden Drückwalzens

Development of self-controlled flow-forming


Kurzfassung in deutsch

Die Verbesserung der Energie- und Ressourceneffizienz stellt eine zentrale Aufgabe für die Produktionstechnik dar. Inkrementelle Verfahren wie das Drückwalzen weisen bereits aufgrund ihres Prozessprinzips ein hohes Potenzial zur Ressourceneffizienz auf. Allerdings besitzen diese Verfahren eine Vielzahl von Einflussfaktoren auf das Prozessergebnis, die zudem in Wechselwirkung zueinander stehen. Die Folge schwankender Prozesseinflussgrößen (z. B. Chargenschwankungen oder variierende Halbzeuggeometrie) ist häufig Bauteilausschuss, der sich aufgrund der meist kleinen bis mittleren Losgrößen stärker auf die Produktivität auswirkt.
Die Weiterentwicklung von gesteuerten zu selbstgeregelten Umformprozessen mit Prozessrückkopplung bietet ein großes Potential zur Verbesserung der Ressourceneffizienz. Im Rahmen dieser Arbeit werden die Grundlagen und Vorgehensweise zur Realisierung des selbstregelnden Drückwalzens erarbeitet. Nach der Analyse und Bewertung von Störungen auf die Prozesseinflussgrößen erfolgt die Definition eines Referenzzustandes und von Störszenarien. Auf Basis experimenteller Untersuchungen wird der Referenzzustand analysiert und ein digitaler Zwilling des Drückwalzprozesses entwickelt. Mit dessen Hilfe erfolgt die Bewertung der Störszenarien. Anschließend wird ein methodisches Vorgehen vorgestellt, mit dem das selbstregelnde Drückwalzen beliebiger Zielgrößen entwickelt werden kann. Im digitalen Zwilling werden zusätzlich ein virtueller Sensor, der Regelalgorithmus und die Aktordynamik integriert und damit die Selbstregelung für eine Prozessgröße und ein Prozessergebnis ausgelegt und untersucht. Mit den gewonnenen Erkenntnissen wurde das selbstregelnde Drückwalzen erstmals erfolgreich experimentell umgesetzt. Die in der Arbeit vorgestellten Ergebnisse zeigen eine signifikante Reduzierung des Einflusses von Prozessstörungen auf das Prozessergebnis durch die Selbstregelung.

Kurzfassung in englisch

Improving energy and resource efficiency is also a key challenge for production technology. Incremental processes such as flow-forming already have a high potential for resource efficiency due to their process principle. Flow-forming has a large number of influencing process parameters that also interact with each other. Fluctuating process parameters (e.g. batch fluctuations or varying semi-finished product geometry) can result in component scrap, which has a major influence on productivity due to the mostly small to medium batch sizes. The further development of controlled to self-controlled forming processes with process feed-back offers great potential for improving resource efficiency. In this thesis, the basics and the procedure for the realization of self-controlled flow-forming are developed. After the analysis and evaluation of disturbances on the process influencing variables, a reference state and disturbance scenarios are defined. The reference state is analyzed on the basis of experimental investigations and a digital twin of the flow-forming process is developed. This is used to evaluate the disturbance scenarios. Subsequently, a methodical procedure is presented to develop self-controlled flow-forming of any process parameter or process result. A virtual sensor, the control algorithm and the actuator dynamics are also integrated into the digital twin to design and investigate the self-control for a process parameter and a process result. Based on the knowledge gained, self-controlled flow-forming was successfully implemented experimentally for the first time. The results show a significant reduction of the influence of process disturbances on the process results.

Universität: Technische Universität Chemnitz
Institut: Professur Virtuelle Fertigungstechnik
Fakultät: Fakultät für Maschinenbau
Dokumentart: Dissertation
Betreuer: Awiszus, Birgit (Prof. Dr.-Ing. habil. Dipl.-Math.)
URL/URN: https://nbn-resolving.org/urn:nbn:de:bsz:ch1-qucosa2-888875
Quelle: Berichte aus der Virtuellen Fertigungstechnik ; 19
SWD-Schlagwörter: Drückwalzen , Finite-Elemente-Methode , Prozesssimulation , Ressourceneffizienz , digitaler Zwilling
Freie Schlagwörter (Deutsch): Inkrementelle Umformung , Drückwalzen , Selbstregelung , Finite-Elemente-Methode , Prozesssimulation , Incremental Forming , Flow-Forming , Self-controlled Forming , Finite Element Method , Process Simulation
DDC-Sachgruppe: Ingenieurwissenschaften
Sprache: deutsch
Tag der mündlichen Prüfung 02.08.2023

 

Soziale Medien

Verbinde dich mit uns: