Springe zum Hauptinhalt
Universitätsbibliothek
Universitätsbibliographie

Eintrag in der Universitätsbibliographie der TU Chemnitz

Volltext zugänglich unter
URN: urn:nbn:de:bsz:ch1-qucosa2-798214


Hu, Zheng
Kanoun, Olfa (Prof. Dr.) ; Arpaia, Pasquale (Prof. Dr.) (Gutachter)

Simultaneous Multiplexer-Free AC-Measurement for Two-Dimensional Impedimetric Sensor Matrices

Gleichzeitige Multiplexer-freie AC-Messung fur zweidimensionale impedimetrische Sensormatrizen


Kurzfassung in deutsch

Widerstände in zweidimensionalen Matrizen können gemessen werden, indem einzelne Sensoren mit zwei Multiplexern angesprochen werden. Dabei wird davon ausgegangen, dass der eingespeiste Messstrom nur durch den Zielsensor fließt. Ohne besondere Vorkehrungen kann jedoch ein Teil des eingespeisten Stroms durch andere Sensoren fließen, was die Messgenauigkeit erheblich beeinträchtigen kann. Dieser so genannte Übersprechungseffekt ist daher für die Messung von zweidimensionalen Sensormatrizen von entscheidender Bedeutung.
Eine mögliche Lösung zur Überwindung dieses Problems ist die Kurzschlussmethode, bei der auf beiden Seiten der nicht zu messenden Sensoren die gleichen Potenziale angelegt werden und dadurch die Übersprechungsströme vermieden werden, was zu einer Verbesserung der Messgenauigkeit führt. Die Kurzschlussmethode ist weit verbreitet, da sie keine weiteren Komponenten, z.B. Dioden oder MOSFETS, in der Matrix erfordert. Heutzutage sind die meisten Kurzschlussverfahren für die Messung von rein resistiven (z.B. die Nullpotenzialschaltung, die durch Gleichstromsignale angetrieben wird) oder kapazitiven Sensormatrizen ausgelegt. Dabei sind kapazitive Matrixmessverfahren hauptsächlich auf eine hohe Messgeschwindigkeit ausgelegt und konzentrieren sich nicht auf die Reduzierung von Messabweichungen, da sie eher für Touchscreens konzipiert sind.
In dieser Dissertation ist die Entwicklung präziser Messmethoden das Ziel, um die Übersprechungseffekte in zweidimensionalen impedimetrischen Sensormatrizen zu reduzieren, bei denen sowohl der Realteil als auch der Imaginärteil der Impedanz genau gemessen werden müssen. Es wird eine mehrreihige Erregungsstrategie unter Verwendung von Wechselstromsignalen mit unterschiedlichen Frequenzen vorgeschlagen, um Gleichstromabweichungen aufgrund des nicht idealen Verhaltens elektronischer Komponenten zu vermeiden und die gleichzeitige Impedanzmessung aller Sensoren zu ermöglichen.
Zunächst wird eine neue Methode vorgeschlagen, die eine multiplexerfreie gleichzeitige Messung von Widerstandssensoren in einer zweidimensionalen Matrix ermöglicht. Diese Methode wird als AC-Nullpotenzialschaltung (AC-ZPC Typ 0) bezeichnet und für die Messung von impedimetrischen Sensoren erweitert. Anschließend werden auf der Grundlage analytischer Untersuchungen zwei fortschrittliche Methoden vorgeschlagen, um eine höhere Messgenauigkeit zu erzielen. Die erste fortschrittliche Methode (AC-ZPC Typ 1) korrigiert die durch die Impedanz der Reihenschnittstelle verursachten Abweichungen durch die Einführung einer Spalte mit Referenzelementen und verzichtet auf die Messung der reihenseitigen Anregungssignale. Die zweite fortgeschrittene Methode (AC-ZPC Typ 2) erweitert die grundlegende AC-ZPC Methode weiter. Sie verwendet einen Spannungsfolger auf der Reiheneingangsseite, um die Reihenschnittstellenimpedanz zu verringern, und führt eine Reihe und eine Spalte mit Referenzelementen ein. Diese Methode reduziert die Abweichungen, die mit den nicht idealen Eigenschaften der spaltenseitigen Verstärkerschaltungen zusammenhängen, einschließlich ihrer Eingangs-/Ausgangsimpedanz, des Open-Loop-Verstärkungsfaktors, des Leckstroms und der Lastimpedanz.
Die Bewertung der drei vorgeschlagenen Methoden erfolgt zunächst durch Simulationen und dann auf einer speziell entwickelten Versuchsplattform. In den Simulationen liegen die mit den vorgeschlagenen Methoden erzielten Messabweichungen bei weniger als 0,005% für die aus parallelen RC-Paaren bestehenden impedimetrischen Ziele im Bereich von 2 k?||362 pF bis 100 k? ||$ 7 pF. Die Durchführbarkeit der vorgeschlagenen Methoden wurde durch die experimentellen Untersuchungen bestätigt. Dabei hat die AC-ZPC Typ 2 Methode eine bessere Genauigkeit als die AC-ZPC Typ 1 Methode gezeigt. Für rein resistive Ziele im Bereich von 2 k? bis 100 k? wird mit der AC-ZPC Typ 2-Methode eine gemittelte absolute Abweichung von 0.087% erreicht, was 20% weniger ist als bei den DC-ZPC-Methoden.

Kurzfassung in englisch

Resistances in two-dimensional matrices can be measured by addressing individual sensors one by one using two multiplexers. Thereby, it is assumed that the injected measurement current flows only through the target sensor. Nevertheless, if no special precautions are taken, a part of the injected current may flow through other sensors and this can significantly affect the measurement accuracy. This so-called cross-talk effect is therefore crucial for the measurement of two-dimensional sensor matrices.
One possible solution to overcome this problem is to use the short-circuiting method, which sets the same potentials on both sides of the non-target sensors and avoids thereby the cross-talk currents leading to an improvement of measurement accuracy. The short-circuiting method is widely used because it requires no addition of further components, like diodes or MOSFETS, into the matrix. Nowadays, most of the short-circuiting methods are designed for the measurement of purely resistive (e.g., the zero potential circuit driving by DC signals) or capacitive sensor matrices. Thereby, capacitive matrix measurement methods are mainly designed to realize a high scanning speed and do not focus on reducing measurement deviations as they are more conceived for touch screens.
In this thesis, the development of accurate measurement methods is focused, to reduce the cross-talk effects in two-dimensional impedimetric sensor matrices, where both the real part and imaginary part of the impedance need to be accurately measured. A multi-row excitation strategy using AC signals having different frequencies is proposed to avoid DC deviations due to the non-ideal behavior of electronic components and to enable simultaneous impedance measurement of all sensors.
First, a novel method is proposed, to enable a multiplexer-free simultaneous measurement of resistive sensors in the two-dimensional matrix. This method is named the AC - Zero Potential Circuit (AC-ZPC Type 0), and it is extended for the measurement of impedimetric sensors. Then, based on analytical investigations, two advanced methods are proposed to realize higher measurement accuracy. The first advanced method (AC-ZPC Type 1) corrects the deviations caused by the row interface impedance by introducing a column with reference elements and dispenses with the measurement of the row side excitation signals. The second advanced method (AC-ZPC Type 2) extends the basic AC-ZPC method further. It uses a voltage follower on the row input side to reduce the row interface impedance and introduces a row and a column with reference elements. This method reduces the deviations related to the non-ideal features of the column side amplifier circuits, including their input/output impedance, open-loop gain factor, leakage current, and load impedance.
The evaluation of the three proposed methods is carried out first by simulations and then on a specially developed experimental platform. In the simulations, the measurement deviations achieved by the proposed methods are less than 0.005% for the impedimetric targets composed of parallel RC pairs in the range from 2 k?||362 pF to 100 k? ||$ 7 pF. The feasibility of these proposed methods has been validated by the experimental investigations. Thereby, the AC-ZPC Type 2 method has shown better accuracy than the AC-ZPC Type 1 method. For purely resistive targets in the range from 2 k? to 100 k?, the averaged absolute deviation of 0.087% is achieved by the AC-ZPC Type 2 method, which is 20% less than the DC-ZPC methods.

Universität: Technische Universität Chemnitz
Institut: Professur Mess- und Sensortechnik
Fakultät: Fakultät für Elektrotechnik und Informationstechnik
Dokumentart: Dissertation
Betreuer: Kanoun, Olfa (Prof. Dr.) ; Arpaia, Pasquale (Prof. Dr.) ; Jose da Silva, Marco (Dr.) ; Fouratil, Najla (Dr.)
ISBN/ISSN: 978-3-96100-171-2 ; ISSN 2509-5102 (print), ISSN 2509-5110 (online)
URL/URN: https://nbn-resolving.org/urn:nbn:de:bsz:ch1-qucosa2-798214
Quelle: Chemnitz : Universitätsverlag Chemnitz, 2022. - xxii, 148 S. - Scientific Reports on Measurement and Sensor Technology ; 22
SWD-Schlagwörter: Sensor-Array , Impedanzmessung , Nebensprechen
Freie Schlagwörter (Deutsch): Impedimetrische Sensoren , zweidimensionale Matrizen , Übersprechungseffekt , Nullpotenzialschaltung
Freie Schlagwörter (Englisch): Impedimetric sensors , two-dimensional matrices , cross-talk effect , zero potential circuit
DDC-Sachgruppe: Technik, Medizin, angewandte Wissenschaften
Sprache: englisch
Tag der mündlichen Prüfung 14.06.2022
OA-Lizenz CC BY 4.0

 

Soziale Medien

Verbinde dich mit uns: