Springe zum Hauptinhalt
Universitätsbibliothek
Universitätsbibliographie

Eintrag in der Universitätsbibliographie der TU Chemnitz

Volltext zugänglich unter
URN: urn:nbn:de:bsz:ch1-qucosa-228120


Lu, Xueyi
Schmidt, Oliver G. (Prof. Dr. Prof. h.c.) ; Yan, Chenglin (Prof. Dr.) (Gutachter)

Architectural Nanomembranes as Cathode Materials for Li-O2 Batteries


Kurzfassung in englisch

Li-O2 batteries have attracted world-wide research interest as an appealing candidate for future energy supplies because they possess the highest energy density of any battery technology. However, such system still face some challenges for the practical application. One of the key issues is exploring highly efficient cathode materials for Li-O2 batteries.
Here, a rolled-up technology associated with other physical or chemical methods are applied to prepare architectural nanomembranes for the cathode materials in Li-O2 batteries. The strain-release technology has recently proven to be an efficient approach on the micro/nanoscale to fabricate composite nanomembranes with controlled thickness, versatile chemical composition and stacking sequence.
This dissertation first focuses on the synthesis of trilayered Pd/MnOx/Pd nanomembranes. The incorporation of active Pd layers on both sides of the poor conductive MnOx layer commonly used in energy storage systems greatly enhances the conductivity and catalytic activity. Encouraged by this design, Pd nanoparticles functionalized MnOx-GeOy nanomembranes are also fabricated, which not only improve the conductivity but also facilitate the transport of Li+ and oxygen-containing species, thus greatly enhancing the performance of Li-O2 batteries. Similarly, Au and Pd arrays decorated MnOx nanomembranes act as bifunctional catalysts for both oxygen reduction reaction and oxygen evolution reaction in Li-O2 batteries. Moreover, by introducing hierarchical pores on the nanomembranes, the performance of Li-O2 batteries is further promoted by porous Pd/NiO nanomembranes. The macropores created by standard photolithography facilitate the rolling process and the nanopores in the nanomembranes induced by a novel template-free method supply fast channels for the reactants diffusion. In addition, a facile thermal treatment method is developed to fabricate Ag/NiO-Fe2O3/Ag hybrid nanomembranes as carbon-free cathode materials in Li-O2 batteries. A competing scheme between the intrinsic strain built in the oxide nanomembranes and an external driving force provided by the metal nanoparticles is introduced to tune the morphology of the 3D tubular architectures which greatly improve the performance by providing continuous tunnels for O2 and electrolyte diffusion and mitigating the side reactions produced by carbonaceous materials.

Universität: Technische Universität Chemnitz
Institut: Professur Materialsysteme der Nanoelektronik
Fakultät: Fakultät für Naturwissenschaften
Dokumentart: Dissertation
Betreuer: Schmidt, Oliver G. (Prof. Dr. Prof. h.c.)
URL/URN: http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-228120
SWD-Schlagwörter: Energiespeicher , Batterie , Membran , Kathode , Material
Freie Schlagwörter (Deutsch): Nanomembranen , Kathode , Materialien , Li-O2 Batterien , Energiespeicher
Freie Schlagwörter (Englisch): nanomembranes , cathode , materials , Li-O2 batteries , energy storage
DDC-Sachgruppe: Chemie
Tag der mündlichen Prüfung 17.08.2017

 

Soziale Medien

Verbinde dich mit uns: