Springe zum Hauptinhalt
Universitätsbibliothek
Universitätsbibliographie
Universitätsbibliothek 

Eintrag in der Universitätsbibliographie der TU Chemnitz

Volltext zugänglich unter
URN: urn:nbn:de:bsz:ch1-qucosa2-973044


Fedorov, Pavel
Schmidt, Oliver G. ; Fomin, Vladimir M. (Gutachter)

Current-induced domain wall motion in self-assembly of Co/Pt stripes: Towards 3D racetrack devices


Kurzfassung in englisch

This thesis offers an in-depth exploration into the design, fabrication, and performance evaluation of three-dimensional racetrack memory, a promising candidate for the next-generation spintronic device. We explore the novel approach to create a 3D magnetic memory device by combining the well-known techniques: (i) current-induced domain wall motion in stripes with perpendicular magnetic anisotropy and (ii) shapeable polymeric platform. We successfully achieved current-induced domain-wall motion in a heavy metal/ferromagnetic 3D racetrack. Additionally, we investigated the processes of writing and detecting the domain wall within this context. The second objective of this research is to analyse the influence of shape- and strain-induced effects on the behaviour of spintronic systems. By meticulously examining the spin-current generation efficiency and domain wall velocity in 2D and 3D states, we show the profound impact of geometry-induced strain, even at levels as low as 1.3%, on these crucial parameters. Additionally, we conducted a comparative analysis between glass and polymeric substrates, particularly addressing the influence of heat during the electric current pulse sequences. We show that temperature generation has a critical impact on the DW velocity, especially for narrow racetracks. In the final part of this thesis, we delve into the fabrication and characterization of antiferromagnetic/ferromagnetic heterostructures, which can enable a field-free magnetisation switching of magnetic stripes and islands. Overall, this thesis contributes to the ongoing evolution of racetrack memory technology by advancing the state-of-the-art in 3D racetrack design, fabrication, and performance optimisation.

Universität: Technische Universität Chemnitz
Institut: MAIN-Forschung Professur Materialsysteme der Nanoelektronik (Prof. Schmidt)
Fakultät: Fakultät für Elektrotechnik und Informationstechnik
Dokumentart: Dissertation
Betreuer: Schmidt, Oliver G.
DOI: doi:10.60687/2025-0092
SWD-Schlagwörter: Anisotropie , Magnetismus , Rundstrecke
Freie Schlagwörter (Englisch): self-assembly rolling , 3D racetrack , spin-orbit torque , strain-induced anisotropy , Dzyaloshinskii–Moriya interaction
DDC-Sachgruppe: Magnetismus
Sprache: englisch
Tag der mündlichen Prüfung 28.05.2025
OA-Lizenz CC BY 4.0

 

Soziale Medien

Verbinde dich mit uns: