Springe zum Hauptinhalt
Universitätsbibliothek
Universitätsbibliographie
Universitätsbibliothek 

Eintrag in der Universitätsbibliographie der TU Chemnitz

Volltext zugänglich unter
URN: urn:nbn:de:bsz:ch1-qucosa2-922082


Bombach, Clemens
Stollmann, Peter (Prof. Dr. rer. nat. habil.) ; Veselić, Ivan (Prof. Dr. rer. nat. habil.) ; Waurick, Marcus (Prof. Dr. rer. nat. habil.) (Gutachter)

Observability inequalities for infinite-dimensional systems in Banach spaces and unique determination of a singular potential from boundary data


Kurzfassung in englisch

In this thesis, we prove observability inequalities for systems of differential equations in Banach spaces. In particular, we consider non-autonomous systems and systems of elliptic PDE with infinite-dimensional state space. We employ methods from harmonic analysis. This includes a vector-valued version of the Logvinenko-Sereda theorem, generalizing previous work by O. Kovrijkine. Our results are applied to establish null-controllability of control systems in Banach spaces together with precise estimates on the control cost. Furthermore, we consider an inverse problem for the stationary Schrödinger equation in three dimensions. In this setting, we prove that a Kato-class potential is uniquely determined by it's associated Dirichlet-to-Neumann operator. This complements a result by B. Haberman on the Calderón problem for conductivities with unbounded gradient.

Universität: Technische Universität Chemnitz
Institut: Professur Analysis
Fakultät: Fakultät für Mathematik
Dokumentart: Dissertation
Betreuer: Stollmann, Peter (Prof. Dr. rer. nat. habil.)
URL/URN: https://nbn-resolving.org/urn:nbn:de:bsz:ch1-qucosa2-922082
SWD-Schlagwörter: Kontrolltheorie , Harmonische Analyse , Inverses Problem
Freie Schlagwörter (Englisch): observability estimates , control theory , harmonic analysis , inverse problems
DDC-Sachgruppe: Mathematik, Analysis, Wahrscheinlichkeiten, angewandte Mathematik
Sprache: englisch
Tag der mündlichen Prüfung 22.04.2024

 

Soziale Medien

Verbinde dich mit uns: