Springe zum Hauptinhalt
Universitätsbibliothek
Universitätsbibliographie
Universitätsbibliothek 

Eintrag in der Universitätsbibliographie der TU Chemnitz

Volltext zugänglich unter
URN: urn:nbn:de:bsz:ch1-200800626


Winkler, Gunter (Dipl.-math. oec.)
Apel, Thomas (Prof. Dr. rer. nat. habil.) ; Heinrich, Bernd (Prof. Dr. rer. nat. habil.) ; Großmann, Christian (Prof. Dr. rer. nat. habil.) (Gutachter)

Control constrained optimal control problems in non-convex three dimensional polyhedral domains


Kurzfassung in englisch

The work selects a specific issue from the numerical analysis of optimal control problems. We investigate a linear-quadratic optimal control problem based on a partial differential equation on 3-dimensional non-convex domains. Based on efficient solution methods for the partial differential equation an algorithm known from control theory is applied. Now the main objectives are to prove that there is no degradation in efficiency and to verify the result by numerical experiments.
We describe a solution method which has second order convergence, although the intermediate control approximations are piecewise constant functions. This superconvergence property is gained from a special projection operator which generates a piecewise constant approximation that has a supercloseness property, from a sufficiently graded mesh which compensates the singularities introduced by the non-convex domain, and from a discretization condition which eliminates some pathological cases.
Both isotropic and anisotropic discretizations are investigated and similar superconvergence properties are proven.
A model problem is presented and important results from the regularity theory of solutions to partial differential equation in non-convex domains have been collected in the first chapters. Then a collection of statements from the finite element analysis and corresponding numerical solution strategies is given. Here we show newly developed tools regarding error estimates and projections into finite element spaces. These tools are necessary to achieve the main results. Known fundamental statements from control theory are applied to the given model problems and certain conditions on the discretization are defined. Then we describe the implementation used to solve the model problems and present all computed results.

Universität: TU Chemnitz
Institut: Zentrale Fakultätseinrichtungen Mathematik
Fakultät: Fakultät für Mathematik
Dokumentart: Dissertation
Betreuer: Apel, Thomas (Prof. Dr. rer. nat. habil.)
URL/URN: http://archiv.tu-chemnitz.de/pub/2008/0062
SWD-Schlagwörter: Anisotropes Gitter , Elliptische Differentialgleichung , Finite-Elemente-Methode , Optimale Kontrolle
Freie Schlagwörter (Englisch): anisotropic finite elements , linear-quadratic optimal control problem , non-convex domain , superconvergence
DDC-Sachgruppe: Mathematik
Tag der mündlichen Prüfung 20.03.2008

 

  • Porträts von drei Frauen und einem Mann.

    Stadtgeschichte(n) in Bewegung

    Neue Perspektiven auf Migration: Ausstellung in der Universitätsbibliothek der TU Chemnitz zeigt vom 20. Oktober bis 28. November 2025 Gemeinsamkeiten und Unterschiede der Städte Chemnitz und Bremerhaven …

  • Ein hölzerner Pokal steht auf einem Tisch in einer Bilbliothek.

    Wem gehört unser Wissen?

    Universitätsbibliothek lädt zur Open Access Week 2025 ein – Höhepunkt ist die Verleihung der Open Science Awards am 23. Oktober 2025 …

  • Frau steht vor einer Gruppe

    Finissage lädt zur Begegnung mit den „Gesichtern der Wismut“

    Ausstellung „Gesichter der Wismut“ begeistert seit Anfang September 2025 zahlreiche Besucherinnen und Besucher in der Universitätsbibliothek Chemnitz, vielfältiges Programm lädt am 17. Oktober 2025 zum Finale der Schau ein …

  • Fünf Bücher stehen auf einer Mauer vor einem Gebäude.

    25. Literarisches Quintett mit und in den Kunstsammlungen Chemnitz

    Sonderveranstaltung des Literarischen Quintetts im Chemnitzer Kulturhauptstadtjahr verspricht am 22. Oktober 2025 bereichernde Analysen, Bücher-Tipps und gute Unterhaltung an einem besonderen Ort …

Soziale Medien

Verbinde dich mit uns: