Springe zum Hauptinhalt
Universitätsbibliothek
Universitätsbibliographie
Universitätsbibliothek 

Eintrag in der Universitätsbibliographie der TU Chemnitz

Volltext zugänglich unter
URN: urn:nbn:de:bsz:ch1-qucosa2-235462


Schmidt, Hansjörg
Tobiska, Lutz ; Apel, Thomas (Gutachter)

Anisotropic Viscoelasticity at Large Strain Deformations


Kurzfassung in englisch

The aim of this thesis is the fast and exact simulation of modern materials like fibre reinforced thermoplastics and fibre reinforced elastomers. These simulations are in the scope of large strain deformations and contain anisotropic and viscoelastic behaviour. The chapter Differential geometry outlines the necessary tensor analysis and differential geometry. We present the weak formulation in the undeformed domain and use Newton’s method to approximate the solution of this formulation, cf. Section 3.1 and Chapter 4, respectively. For the viscoelasticity we use a special ansatz for the internal variable. Next, we compute all necessary derivations for the Newton system, cf. Sections 4.2 and 4.3. We also investigate the symmetry of the material tensors in Section 4.4. Further, we present three methods to improve the convergence of Newton’s method, cf. Section 4.5. With these three methods we are able to consider more problems, compute them faster and in a more robust way. In Chapter 5 we concisely discuss the FEM and show the appearing matrices in detail. The aim of Chapter 6 is the application of the a posteriori error estimator to this complex material behaviour. We present some numerical examples in Chapter 7. In Chapter 8 the problems that arise in the simulation of fibre-reinforced elastomers are analysed and tackled with help of mixed formulations. We derive a symmetric mixed formulation from a reduced form of the energy density. Also, we reformulate the mixed variable for inextensibility to avoid the numerical cancellation in Section 8.3. The Section 8.4 is about a joined mixed formulation to solve problems with inextensible fibres in an incompressible matrix, like fibre-reinforced rubber. The succeeding section Section 8.5 deals with the arising indefinite block matrix system.

Universität: Technische Universität Chemnitz
Institut: Professur Numerische Mathematik
Fakultät: Fakultät für Mathematik
Dokumentart: Dissertation
Betreuer: Meyer, Arnd (Prof. Dr. rer. nat. habil.)
URL/URN: http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa2-235462
SWD-Schlagwörter: Finite-Elemente-Methode , Funktionalanalysis , Kontinuumsmechanik
Freie Schlagwörter (Englisch): finite element method , newtons method , continuum mechanics , mixed formulation , viscoelasticity , anisotropy
DDC-Sachgruppe: Mathematik, Ingenieurwissenschaften
Tag der mündlichen Prüfung 19.06.2018

 

  • Zwei Frauen halten vor einer Ausstellungstafel eine Urkunde in den Händen.

    Facettenreiche Perspektiven auf die Diversität

    Preisträgerinnen und Preisträger des Fotowettbewerbs „Gelebte Vielfalt sichtbar machen“ stehen fest – 14 Wettbewerbsbeiträge sind bis 30. Juni 2025 in einer Ausstellung in der Universitätsbibliothek zu sehen …

  • Blick auf ein historisches Gebäude, das an eine Straße grenzt.

    Neue Ausgabe von „TUCreport” erschienen

    TU Chemnitz informiert Mitglieder und Angehörige der Universität sowie die breite Öffentlichkleit über Höhepunkte und Schlaglichter aus dem vergangenen Jahr …

  • Mehrere Personen stehen an Tischen, auf denen Informationsmaterialien liegen.

    Diversität in vielen Facetten

    Weltoffenheit, Vielfalt und Toleranz – die TU Chemnitz präsentierte zum dritten Diversity Day am 20. Mai 2025, wie sie sich mit diesen Themen auseinandersetzt …

  • Icon einer Fotokamera vor einem Bild mit bunten Regenschirmen.

    Kreative Blicke auf das Thema Diversität

    Ausstellung zum Fotowettbewerb „Gelebte Vielfalt sichtbar machen“ wird am 27. Mai 2025 um 18:00 Uhr in der Universitätsbibliothek eröffnet …

Soziale Medien

Verbinde dich mit uns: