Springe zum Hauptinhalt
Universitätsbibliothek
Universitätsbibliographie
Universitätsbibliothek 

Eintrag in der Universitätsbibliographie der TU Chemnitz

Volltext zugänglich unter
URN: urn:nbn:de:bsz:ch1-qucosa-200829


Roder, Kristina
Wielage, Bernhard (Univ.-Prof. Dr.-Ing. habil.) ; Lang, Heinrich (Univ.-Prof. Dr. rer. nat. habil.) (Gutachter)

Matrix- und Interfacedesign bei faserverstärkter Keramik auf Basis des Flüssigsilicierverfahrens

Matrix and interface design of fiber reinforced ceramics based on the liquid silicon infiltration process


Kurzfassung in deutsch

Das dreistufige Flüssigsilicierverfahren (LSI) stellt eine Methode dar, siliciumcarbidbasierte faserverstärkte Keramiken herzustellen. Ausgangspunkt ist ein faserverstärkter Kunststoff, der über Pyrolyse (Konvertierung des Matrixpolymers in Kohlenstoff) und Silicierung (Siliciuminfiltration und Reaktion zu Siliciumcarbid) keramisiert wird. In der vorliegenden Arbeit werden die Matrix mittels der verwendeten Matrixpolymere (Matrixdesign) und das Faser/Matrix-Interface durch das Aufbringen von Faserbeschichtungen (Interfacedesign) definiert gestaltet. Die in der Arbeit eingesetzten Matrixpolymere beeinflussen durch eine unterschiedliche Poren- und Rissbildung in der Kohlenstoffmatrix die Siliciuminfiltration und die damit verbundene Siliciumcarbidbildung. Die Matrixpolymere erzeugen einerseits eine C-SiC-Dualphasenmatrix, wie diese bei den C/C-SiC-Verbunden angestrebt wird. Andererseits kann eine weitestgehend einphasige SiC-Matrix eingestellt werden, welche für die Herstellung von SiC/SiC-Verbunden interessant ist. Bei diesen Verbundwerkstoffen ist eine zusätzliche Faserbeschichtung entscheidend, um die Faser/Matrix-Bindung zu reduzieren und die Fasern vor dem Siliciumangriff während der Herstellung zu schützen. Als Faserbeschichtung werden eine BNx-Schicht und eine SiNx-Schicht entwickelt, die in einer BNx/SiNx-Doppelschicht kombiniert werden. Die Schichtherstellung erfolgt mittels chemischer Gasphasenabscheidung (CVD) auf einem kommerziellen SiC-Fasergarn (Tyranno SA3). Die amorphe BNx-Schicht ist innerhalb des Fasergarnes sehr homogen. Dahingegen besitzt die amorphe SiNx-Schicht einen Gradient in der Schichtdicke sowie in der chemischen Zusammensetzung. Bei der thermischen Auslagerung bleibt die BNx-Schicht stabil. Die SiNx-Schicht kristallisiert und es bilden sich Poren und Siliciumausscheidungen innerhalb der Schicht. Zudem entstehen teilweise Risse und Schichtabplatzungen. Weitere alternative Schichtkonzepte werden vorgeschlagen.

Kurzfassung in englisch

The liquid silicon infiltration (LSI) process is used to produce silicon carbide (SiC) based fiber reinforced ceramics and consists of three stages. Starting point is a fiber reinforced plastic, which is ceramized by means of pyrolysis (conversion of the matrix polymer to carbon) and siliconization (silicon infiltration and reaction to form silicon carbide). In the present work, the matrix and the fiber/matrix interface are designed by utilizing special matrix polymers and fiber coatings, respectively. The used matrix polymers lead to different pore and crack formation in the carbon matrix affecting the liquid silicon infiltration and the silicon carbide formation. The polymers not only create a dual phase C-SiC matrix, which is aspired for the production of C/C-SiC composites, but also form a single phase SiC matrix favorable for the SiC/SiC composite production. An additional coating of the fibers for these composite materials is crucial to reduce the fiber/matrix bonding and to protect the fibers from corrosive silicon attack. Separate BNx and SiNx single coatings are developed, which are combined to a double coating. The coating process is realized by chemical vapor deposition (CVD) on a commercial SiC fiber yarn (Tyranno SA3). The amorphous BNx coating is very uniform within the yarn, whereas the amorphous SiNx coating is characterized by a gradient regarding the layer thickness as well as the chemical composition. During the high temperature heat treatment the BNx coating remains stable. The SiNx coating crystallizes and pores as well as silicon precipitations are formed. Moreover, the coating partially ruptures. In this work, some additional alternative coating concepts are also proposed.

Universität: Technische Universität Chemnitz
Institut: Professur Verbundwerkstoffe und Werkstoffverbunde
Fakultät: Fakultät für Maschinenbau
Dokumentart: Dissertation
Betreuer: Wielage, Bernhard (Univ.-Prof. Dr.-Ing. habil.)
URL/URN: http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-200829
SWD-Schlagwörter: Verbundwerkstoff , Siliciumcarbid , Faser , CVD-Verfahren
Freie Schlagwörter (Deutsch): CMC , C/C-SiC , SiC/SiC , LSI , Cyanatesterharz , Phenolharz , Faser/Matrix-Interface , Tyranno SA3 , CVD , BN , Si3N4
Freie Schlagwörter (Englisch): CMC , C/C-SiC , SiC/SiC , LSI , cyanate ester resin , phenolic resin , fiber/matrix interface , Tyranno SA3 , CVD , BN , Si3N4
DDC-Sachgruppe: Ingenieurwissenschaften
Tag der mündlichen Prüfung 29.01.2016

 

  • Zwei Frauen halten vor einer Ausstellungstafel eine Urkunde in den Händen.

    Facettenreiche Perspektiven auf die Diversität

    Preisträgerinnen und Preisträger des Fotowettbewerbs „Gelebte Vielfalt sichtbar machen“ stehen fest – 14 Wettbewerbsbeiträge sind bis 30. Juni 2025 in einer Ausstellung in der Universitätsbibliothek zu sehen …

  • Blick auf ein historisches Gebäude, das an eine Straße grenzt.

    Neue Ausgabe von „TUCreport” erschienen

    TU Chemnitz informiert Mitglieder und Angehörige der Universität sowie die breite Öffentlichkleit über Höhepunkte und Schlaglichter aus dem vergangenen Jahr …

  • Mehrere Personen stehen an Tischen, auf denen Informationsmaterialien liegen.

    Diversität in vielen Facetten

    Weltoffenheit, Vielfalt und Toleranz – die TU Chemnitz präsentierte zum dritten Diversity Day am 20. Mai 2025, wie sie sich mit diesen Themen auseinandersetzt …

  • Icon einer Fotokamera vor einem Bild mit bunten Regenschirmen.

    Kreative Blicke auf das Thema Diversität

    Ausstellung zum Fotowettbewerb „Gelebte Vielfalt sichtbar machen“ wird am 27. Mai 2025 um 18:00 Uhr in der Universitätsbibliothek eröffnet …

Soziale Medien

Verbinde dich mit uns: