An Energy-aware Ad-hoc Routing Strategy for Queriable Wireless Sensor Networks

Authors

  • René Bergelt Chemnitz University of Technology

DOI:

https://doi.org/10.14464/ess.v9i2.525

Abstract

The data volume handled by wireless sensor networks (WSN) is ever growing due to increasing node counts and node complexity – be it in traditional WSN applications or for Car2X or Internet-of-Things. Queriable WSN are a concept to handle the large data volumes in such networks by abstracting the network as a virtual database table to which users can pose queries. This declarative approach enables networks which can flexibly adapt to changing application requirements. In addition they possess a flat learning curve since users do not need to have a high technological understanding of the sensor node firmware. Upon executing a query it is first propagated through the network and once it has reached the desired nodes, results are collected and send back through the query-posing node (usually the sink). The routing which is used for the data aggregation step plays a major role in the energy efficiency in networks with increasing node and sensor value counts as represented by Car2X networks for instance. In this paper, an ad-hoc routing strategy for queriable WSN is proposed which is both energy-aware and application-specific. It will be shown that this routing can contribute greatly towards decreasing the energy consumption needed for data aggregation and thus helps increasing the network’s lifespan.

Steiner tree

Downloads

Published

2022-11-14