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Abstract.: Recent advancement in machine learning and deep learning requires cen-
tralized data for training. Federated Learning (FL) is a machine learning approach
that deals with collaboratively training a model while keeping the training data de-
centralized. The introduction of FL reduces the privacy risk (data sharing) and the
cost of memory usage from the traditional centralized approach. We developed a scal-
able baseline FL framework based on PyTorch, incorporated in a docker container.
We distributed our training data equally to our client servers and deployed the docker
container to train our models. This research paper focuses on creating a baseline FL
workflow for OCT biomarkers classification to lower the risk inherent to centralized
medical data. The best prediction accuracy (macro average F1-score) obtained from the
FL approach (72.5%) is closer when compared to our centralized approach (73.6%).
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1 Introduction

Federated Learning (FL) is an emerging technology for decentralized learning of ma-
chine learning models in a network of remote devices. In Germany for instance, “it is not
possible to pool routine data from different hospitals for research purposes without the
consent of the patients” [LB20].
Federated Learning (FL)- FL learns a lot from raw data instead of proxy data. The prin-
ciple of FL incorporates minimizing data collection, reducing privacy risks, e.g. when
handling medical data, and reducing the cost when compared with traditional centralized
machine learning which requires data centers to store the dataset [KMA+19]. In this arti-
cle, we design a workflow of a scalable baseline FL framework to train a medical image
image-based classifier for ophthalmic biomarkers using decentralized data to reduce pa-
tient privacy risk.
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Dataset- The dataset used in this research is high-resolution images of the central retina
from Optical Coherence Tomography (OCT) [PKL+22]. OCT helps in diagnosing and
monitoring Age-related Macular Degeneration (AMD), Diabetic Macular Edema (DME)
and Retinal Vein Occlusion (RVO) [NSSK16], [SOS+19]. The 16 OCT biomarkers used
in this classification process are listed in Table 1. The detailed description of data prepro-
cessing is discussed in section 3.2.

No. Abbreviation Full Biomarker Name
1 FAVF Fully Attached Vitreous Face
2 IRHRF IntraRetinal Hyperreflective Foci
3 IRF IntraRetinal Fluid
4 DRT/ME Diffuse Retinal Thickening or Macular Edema
5 PAVF Partially Attached Vitreous Face
6 VB Vitreous Debris
7 PTH Preretinal Tissue Hemorrhage
8 EZ Ellipsoid Zone
9 IRH Intra Retinal Hemorrhages

10 SRF SubRetinal Fluid
11 ATRL Atrophy Thinning of Retinal Layers
12 SHRM Subretinal HyperReflective Material
13 DRIL Disruption of the Retinal Inner Layers
14 VMT Vitreo Mascular Traction
15 RPE Retinal Pigment Epithelium
16 PED Pigment Epithelial Detachment

Table 1: List of OCT biomarkers and abbreviations used in this study

Privacy- Compared to centralized data, training in FL has a distinct privacy advantage.
Even holding medical data without the patient’s information can still put the patient’s
privacy at risk. The information transmitted from FL clients to the FL server holds very
minimal information updates such as weights of the trained model, train log files, hyper-
parameter settings, etc. when compared to raw data available in centralized data centers.
The updates from FL client systems are encrypted using cryptography and can be trans-
mitted to the FL servers in a secured environment [EL01]. The detailed description of
the cryptography method used in designing the scalable FL framework is discussed in
section 3.3.

Some general notation and definitions are defined in this research paper:

– FL - Federated Learning
– OCT - Optical Coherence Tomography
– CUDA - Computer Unified Device Architecture
– cuDNN - NVIDIA CUDA Deep Neural Network
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– AMD - Age-related Macular Degeneration
– DME - Diabetic Macular Degeneration
– RVO - Retinal Vein Occulsion
– ELM - External Limiting Membrane
– PC-1 - Client system-1
– PC-2 - Client system-2
– PC-3 - Server system
– AES - Advanced Encryption Standards
– DES - Data Encryption Standards
– 3DES - Triple Data Encryption Standards
– HMAC - Keyed-Hashing for Message Authentication
– SHA-256 - Secure Hashing Algorithm, 256-Bits
– HDD - Hard Disk Drive

2 Related Work

The number of research and development in federated learning has increased rapidly dur-
ing the past few years [GDG+17]. The goal of research communities is to develop, an-
alyze, and learn from distributed data without exploiting user data privacy. Researchers
from Google have performed a federated learning approach on Gboard (Google Key-
board) to predict emoji’s [RMRB19], actions to be made by the users [YAE+18] and dis-
covering of new words [CMOB19] on mobile applications. Apple researchers enhance
their Siri recognition by training different copies of a speaker recognition model across
all its user’s devices, using only the audio data available locally. It then sends just the up-
dated models back to a central server to be combined into a master model. In this way, raw
audio of users’ Siri requests never leaves their iPhones and iPads, but the assistant con-
tinuously gets better at identifying the right speaker [GSvD+20]. Large-scale machine
learning, particularly from data centers, has motivated the development of distributed
optimization methods, namely Federated Learning(FL) [HYF+18]. Federated learning
works without the need to store massive datasets in a centralized cloud, hence reducing
data privacy and storage costs [SFM+16]. FL was designed to enhance the intelligence
of user interaction on mobile devices by providing a decentralized computing strategy to
train a neural network model [MMRyA16]. Mobile devices have referred a client, which
generates large volumes of raw user data, were trained locally and shared the updated
model to the server, group of these weighted models was aggregated to create a global
model. Hence, the created global model can be used as pre-trained weights to train on
other client mobile devices [SS15]. The models from the client devices don’t share meta
information, hence avoiding data privacy. Cryptography techniques were introduced to
have secure communication between the client and the server [AS00], [VYJ08].
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3 Proposed Method

The proposed method comprises 5 subsections starting with the experimental setup fol-
lowed by data preprocessing, model architecture, symmetric cryptography, and imple-
mentation.

3.1 Experimental Setup

This section describes the hardware and software configurations. The FL setup comprises
3 different local clients and servers, namely PC-1, PC-2, and PC-3, along with the local
cloud setup to share the trained model and the corresponding files as presented in Figure
2. Table 2 describes the hardware setup.

PC-1 PC-2 PC-3
CPU i9-9900K@ 3.60GHz i9-9900K @ 3.60GHz i7-7700 @ 3.60GHz
RAM 126 GB 126 GB 32 GB
GPU Titan RTX (24GB) Geforce RTX 3060 (12GB) Geforce GTX 1050Ti (4GB)

Hard-disk type SSD SSD HDD
Operating System Ubuntu 20.04 LTS Ubuntu 20.04 LTS Ubuntu 20.04 LTS

No of cores 16 16 8
Location

Table 2: Hardware configurations for the FL setup

The local cloud setup was accomplished by connecting our HDD to Nextcloud which acts
as our local cloud to communicate and transmit data between our local clients and server.
All the data are encrypted symmetrically. A detailed description of cryptography-based
symmetric encryption is discussed in section 3.3.

The Software configuration is listed below:-

1. Programming Language:
– Python 3.8

2. Libraries:
– CUDA 11.3 tool kit for GPU acceleration
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– Cudnn 7.5.4
– Pytorch-1.7.0
– Torchvision-0.7.0
– Docker

3. Dependencies:
– numpy 1.14.2
– scipy 1.0.0
– python-openCV
– matplotlib 2.2.0
– libblas-dev liblapack-dev
– cmake 3.5.1
– cython 0.29

3.2 Dataset Preprocessing

Table 3 presents a detailed description of the dataset. There are 6424 OCT slices where
16 OCT biomarkers (classes) are documented [MKY+22]. Since different OCT slices
possess different image resolutions, the OCT slices were scaled to a size of 224 × 224
pixels. Figure 1 represents biomarkers on the OCT slice.

Fig. 1: Subfoveal elevation and attenuation of EZ (black arrows), subretinal (green ar-
rows), clinical pigmentary changes (red arrow), ELM (yellow arrow)

3.3 Symmetric Cryptography

Cryptography is the art of transforming readable text into unreadable text (cipher text) to
ensure data privacy. There are two types of cryptography, symmetric key cryptography
(secret key) and asymmetric key cryptography (public key). This research paper deals
with the symmetric cryptography method, where a common key (secret key) was shared
between the participants for both encryption and decryption purposes. There are several
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OCT biomarkers No of Images Split 1 Split 2
FAVF 951 476 475

IRHRF 937 468 469
IRF 904 452 452

DRT/ME 843 422 421
PAVF 658 329 329
VB 657 328 329
PTH 502 251 251
EZ 338 169 169

IRH 242 121 121
SRF 152 76 76

ATRL 119 59 60
SHRM 65 33 32
DRIL 26 13 13
VMT 10 5 5
RPE 10 5 5
PED 10 5 5

Table 3: Ophthalmic dataset overview of 16 OCT biomarkers. The blue color indicates
the dataset split used for PC-1, and the brown color indicates the dataset split
used for PC-2

algorithms for symmetric key cryptography namely AES, DES, 3DES, etc. A Python-
based library named Fernet was used which incorporates the AES algorithm [CBPA14].
Fernet guarantees that a message encrypted using the technique cannot be manipulated
or read without the secret key.

Important features of the Fernet module are:

– secured mechanism for generating keys
– secured encryption algorithm - AES with CBS mode and PKCS7 padding
– randomly allocating secured salt values
– signing a message using HMAC and SHA256 to detect any attempts to change it

3.4 Model Architecture

The model architecture used here were EfficientNet-B0, EfficientNet-B4, EfficientNet-
B5, EfficientNet-v2s, Tf-Mixnet-s [TL19b], and Seresnext50_32x4d [HSS17]. The Effi-
cientNet model architectures are described in Table 4. The EfficientNet network is based
on the inverted bottleneck residual blocks of MobileNetV2, and Seresnext50_32x4d is
similar to Resnet50, where each present block is replaced by Seresnext block, which
consists of a Fully Connected layer (FC) as discussed in Tables 4 and 6, in addition to
squeeze-and-excitation blocks. [TL19a].
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Stage (i) Operator (Fi) Resolution (Hi × Wi) Channels (Ci) No of layers (Li)
1 Conv, k 3× 3 224× 224 32 1
2 Conv, k 3× 3 112× 112 16 1
3 Conv, k 3× 3 112× 112 24 2
4 Conv, k 5× 5 56× 56 40 2
5 Conv, k 3× 3 28× 28 80 3
6 Conv, k 5× 5 14× 14 112 3
7 Conv, k 5× 5 14× 14 192 4
8 Conv, k 3× 3 7× 7 320 1
9 Conv 1× 1 ,Pooling, FC 7× 7 1280 1

Table 4: EfficientNet-B0 network, other EfficientNet-B4 & B5 varies with resolution
(Hi × Wi ) [TL19a]. Conv indicates convolutional layer, FC denotes Fully Con-
nected, and k denotes kernel.

Blocks Operator Kernel Channels
Conv 1× 1 64

SEBlock-1 Conv 3× 3 64
Conv 1× 1 256
FC 1× 1 [16,256]

Conv 1× 1 128
SEBlock-2 Conv 3× 3 128

Conv 1× 1 512
FC 1× 1 [32,512]

Conv 1× 1 256
SEBlock-3 Conv 3× 3 256

Conv 1× 1 1024
FC 1× 1 [64,1024]

Conv 1× 1 512
SEBlock-4 Conv 3× 3 512

Conv 1× 1 2048
FC 1× 1 [128,2048]

Table 5: The SEBlocks of Seresnext50_32x4d are illustrated, where Conv represents the
convolutional layer, and FC represents Fully Connected layers.
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Stage (i) Operator (Fi) Kernel (K × K) Channels (Ci) No of layers (Li)
1 Conv 7× 7 64 1
2 Max Pooling 3× 3 64 1
3 SEBlock-1 - [16,256] 3
4 SEBlock-2 - [32,512] 4
5 SEBlock-3 - [64,1024] 6
6 SEBlock-4 - [128,2048] 3
7 Global average pooling 1× 1 - 1
8 Dense - 1000 1
9 Dense - 16 1

Table 6: Configuration of the Seresnext50_32x4d architecture, the SEBlock is discussed
in Table 5. Conv stands for convolutional layer.

3.5 Implementation

Figure 2 represents the structure of the scalable FL framework. Table 7 represents the
experimental setup.

The server PC-3 orchestrates the training process, and the steps are discussed in detail.

1. Client and Server: The client systems are PC-1 and PC-2, the server system is PC-3,
and the docker container was created and deployed to install the software dependen-
cies on the client and server systems [Sam22].

2. Broadcast: The client systems-1 & 2 downloads the model weights and training
scripts from the Nextcloud, which was synced to the server system.

3. Experiments: Table 7 describes the experimental design for the FL approach. The
model architecture is discussed in section 3.4. The client systems 1 & 2 were trained
for 20 epochs with a learning rate 0.0001 and cosine-annealing as the learning rate
scheduler.

4. Schedule: The experiments were automated with the help of Slack API. A Slack FL-
Bot was created to interact with the client and server systems as presented in Figure
3. In Exp-1 and Exp-2 from Table 7, the client systems (PC-1 & PC-2) and server
system (PC-3) were connected to Slack, the PC-1 starts training, PC-2 waits for the
message (training has been completed, hence saves the model in Nextcloud) from
Slack to start it’s training and vice-versa. In Exp-3, the server system (PC-3) waits for
the message from Slack for the training to complete and performs model averaging.

5. Model Averaging: The server system collects the updated models from Nextcloud.
Model averaging is a technique where multiple individually trained models are com-
bined. Each individual model has its own strengths and weaknesses hence, the final
model is compiled with the strengths of the individual models. The weighted averag-



Interdisciplinary Workshop on Media and Computer Science 2022 9

ing technique was applied, this technique calculates the contribution of each trained
model and is weighted proportionally to its capability or skill.

6. Model update: The server system updates the averaged model computed from the
client systems.

Fig. 2: Illustration of our proposed FL process, the client systems denoted PC-1 & PC-2
are from the same location and server system-3 is from a different location

Experimental ID Description
Exp-1 Trained model from PC-1 was used as a pretrained model to train the model in PC-2
Exp-2 Trained model from PC-2 was used as a pretrained model to train the model in PC-1
Exp-3 Trained models from PC-1 and PC-2 were sent to the server to perform the model averaging

Table 7: FL experimental design

Figure 4 describes the graphical user interface (GUI), which was designed using HTML,
CSS, and Javascript and comprises 3 modules. The first column comprises the model con-
figuration where the hyperparameters are set, the hyperparameter values are predefined,
but the users can modify the them also manually. The second column is framework selec-
tion, which comprises 3 dropdown menus, namely machine learning framework (Pytorch,
Tensorflow, Sklearn), fusion method (weighted average, simple average), and dataset (oct
images, fundus images, text mining). In the dataset dropdown menu, fundus images and
text mining are just placeholders for other models that might require FL in the future of
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Fig. 3: Slack FL-Bot interaction

Fig. 4: The UI interface with a docker pull pop-up after completing the framework selec-
tion column
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our ophthalmic research. The selection of respective dropdown menus leads to a popup
message for docker pull, as displayed in Figure 4. The final column comprises log details
from the user system.

4 Results

Table 8 summarizes the results. Mixnet has 5 million parameters, a less deep model
architecture compared to other architectures containing more than 11 million parameters.
The less deep mixnet model with our FL experimental setup from Table 7 achieves an F1
score using the EXP-1 setup closer to the centralized approach results.

Architectures Centralized slice-wise F1-score FL slice-wise F1-score
EXP-1 EXP-2 EXP-3

EfficientNet-B0 59.4± 1.1 58.6 57.2 58.1
EfficientNet-B4 60.9± 1.1 60.8 60.1 59.2
EfficientNet-B5 58.6± 0.5 58.4 57.4 58.0
EfficientNet-v2s 60.3± 0.4 59.7 59.0 58.7

Seresnext50_32x4d 65.0± 1.0 64.9 62.3 62.4
Tf_Mixnet_s 73.6± 0.9 72.5 71.8 70.2

Table 8: Comparison of F1-scores from centralized data training vs. FL-based results
(EXP-1, EXP-2 and EXP-3, as documented in Table 7, respectively) based on 6
different architectures.

5 Conclusion and future work

In this paper, a federated learning framework was proposed to classify 16 different OCT
biomarkers from a scientific community dataset. The best prediction results obtained
from the FL approach with a macro average F1-score of 72.5% are close to our cen-
tralized data processing approach with 73.6%. The obtained model weights and other
respective files from client systems are encrypted before transmitting them to the server
system to perform model averaging. FL plays a crucial role in reducing data privacy risks
when handling medical data allowing to train AI system without data having to leave
the clinical site. Automated biomarker classification is supposed to assist doctors in an-
alyzing patient OCT data. However, what classification accuracy is necessary in clinical
routine and whether a higher accuracy will lead to more acceptance on the physician side
for the use of AI is the subject of future research.
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This first successful feasibility study encourages us to extend our current approach to
OCTs at different clinical sites in the future to study the image classification capability
and text mining with daily routine data. Blockchain could be implemented to commu-
nicate with the client and server systems to ensure better encryption of data and hence
create the most secure communication. However, the FL method and technology must
also lead to acceptance by data privacy officers and ethics committees when it comes to
data protection, data security and legal certainty.
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