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Abstract—Lung cancer is among the leading causes of
mortality worldwide, and early detection is critical to improving
patient survival. Recent advances in artificial intelligence
particularly deep learning-based image analysis have opened
new opportunities for earlier diagnosis. This study aims to
develop a deep learning model to classify four categories of lung
computed tomography (CT) images (malignant and benign) and
to implement it in a mobile application. We developed a hybrid
convolutional architecture combining MobileNetV2 and
ResNet50 and trained it on the open-access “Lung Cancer 4
Types” dataset from Kaggle. Model performance was evaluated
using standard metrics, including overall accuracy, precision,
recall, and F1-score. The proposed model achieved an overall
accuracy of 85.4%, with per-class Fl-scores ranging from
80.0% to 94.0%, indicating effective discrimination among lung
cancer categories. Finally, the trained model was converted to
TensorFlow Lite and integrated into an Android application,
thereby bringing deep learning solutions closer to clinical
practice.

Keywords— CT images, Image Processing, Convolutional
Neural Network (CNN), MobileNetV2, ResNet50, Mobile
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L INTRODUCTION

Cancer is a leading cause of death worldwide, accounting
for nearly 10 million deaths in 2020, or almost one in six
deaths. One in five people dying from cancer is due to lung
cancer [1]. The lungs are a pair of primary respiration organs
located in the thoracic cavity on either side of the mediastinum
[2]. Lung cancer is a type of cancer that starts when abnormal
cells grow in an uncontrolled way in the lungs [3]. Lung
cancer is characterized by highly aggressive, rapidly
metastasizing cells that are often resistant to pharmacologic
therapies. In its early stages, it is frequently
paucisymptomatic, rendering it a “silent” disease [4].
According to the World Health Organization, in 2022, lung
cancer had the second-highest global incidence, with
approximately 2.21 million cases, and was the leading cause
of cancer mortality, accounting for 1.8 million deaths [1].
Approximately 80-90% of cases are associated with tobacco
smoking. Lung cancer disproportionately affects men and
shows the highest prevalence in Central and Eastern Europe
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and in East Asia [4]. It is broadly classified into two types:
small cell lung cancer (SCLC) and non-small cell lung cancer
(NSCLC) [3].
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Fig. 1. Types of Lung Cancer [3]

Late-stage diagnosis and treatment delays not only incur
substantial costs but also pose a significant risk to life [4].

Computed tomography (CT) scan is a key modality for
early detection of lung cancer, using X-rays from multiple
angles to generate detailed diagnostic images [6]. Recent
advances in artificial intelligence (Al) have enabled earlier
disease diagnosis by leveraging machine learning and deep
learning techniques applied to large datasets collected from
hospitals and healthcare institutions [7,8]. Recent studies have
employed convolutional neural network (CNN) architectures
to analyze lung CT images [9]. CNNs are particularly
effective for deep learning tasks involving image processing
and feature extraction, and are widely used to identify
characteristics of lung disease [10]. This study aims to develop
a mobile application for processing and classifying lung CT
images to distinguish between malignant and benign
conditions using deep learning methods. The dataset used in
this study was obtained from Kaggle under the title “Lung
Cancer 4 Types Images Dataset” [11]. It consists of CT scan
images in .png and .jpg formats, categorized into four classes:
Adenocarcinoma (AC), Large Cell Carcinoma (LCC),
Squamous Cell Carcinoma (SCC), and Normal (benign) cells.

In contrast to previous studies that employed
MobileNetV2 or ResNet50 as standalone backbones, the
present work introduces the first hybrid MobileNetV2 +
ResNet50 architecture trained exclusively on the Lung Cancer
4 Types dataset. The use of the hybrid architecture enabled the
extraction of higher quality features from lung cancer CT
images, thereby enhancing the model’s overall performance
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and improving its robustness. Moreover, the hybrid model is
optimized for on device inference through TensorFlow Lite
conversion, thereby providing a distinctive contribution for
deployment in resource constrained clinical diagnostic
environments. Model performance was evaluated using
standard metrics, including accuracy, recall, precision, and
F1-score.

IL.

In recent years, numerous studies in healthcare have
applied image processing and machine learning (ML) and
deep learning (DL) techniques. Year by year, methodologies
have improved, datasets have grown, and accuracy has
increased. This trend indicates that research and development
in this area will continue to expand [8].

RELATED WORK

The rapid advancement of ML and DL technologies has
revolutionized medical imaging, particularly in cancer
detection. Among various cancer types, lung cancer has seen
significant progress due to the integration of CNNs [13].
Different methods are used for the prediction of lung cancer.
In the detection process, X-rays, CT, and MRI & PET scans
are most used. Currently, a CT scan is the way of detecting
early-stage lung cancer [14]. A CT scan uses many sequential
X-ray images taken from various angles around your body and
processes them to create detailed cross-sectional images
(slices) of the body part [15].

TABLE L. RESEARCH STUDIES HAVE BEEN CONDUCTED IN THE LAST
10 YEARS.
Ne | Reference Architecture Dataset Acr;z' )a <y
. CT
MobileNetV2
| [16] | InceptionResNetV2, %I_DC'IDRI’ 99.54
Xception OTH/NCCD)
ResNet50
VGG, Inception, CT
2 [17] Xception, (LIDC-IDRI) 93.34
BoF+Random Forest
CT
834 CT
ResNets0, VGGl6 | (834
3 [18] XGBoost/SVM imaging data 94.3
from 396
patients)
ResNet50 CT
4 191 | 3p-ResU-Net (seg) | (LIDC-IDRD) | 573
ResNet50 CT
5 [20] ResNet-101, ~94
EfficientNet-B3 (LIDC-IDR)
CT
. . (Medical
6 [21] %\\I/l;l)alleNetV2 U Segmentation 87.93
Decathlon
(MSD))
MobileNetV3 Small CL1;D C-IDRI
7 [22] | and ResNet50 (LIDC-IDRL | g9 3¢
(Hybrid) 1Q-
OTH/NCCD)

As shown in Table I, the LIDC-IDRI dataset has been
among the most widely used resources. Researchers continue
to improve results by integrating additional models and
refining pipelines, thereby achieving incremental performance
gains. The Lung Image Database Consortium image collection
(LIDC-IDRI) is an open-access repository available from the
National Cancer Institute website [23]. It comprises thoracic
CT scans acquired for diagnostic assessment and lung cancer
screening, and includes annotated pulmonary nodules. In this
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study, we employ the open-access “LungCancer4Types”
dataset available on Kaggle. This dataset supports four class
classification of lung images. Previous studies that employed
this dataset are summarized in Table II.

TABLE II. STUDIES USING THE “LUNG CANCER 4 TYPES” DATASET.

Reference Architecture Accuracy (%)
Santanu Roy, Shweta

Singh, etc (2025)

“MSAD-Net:

Multiscale and DenseNet-121 DenseNet-121 — 84.1;
Spatial Attention- InceptionV3 InceptionV3 — 94.4;
based Dense MobileNetV2 MobileNetV2 — 85.4;
Network for Lung ResNet50 ResNet50 — 80.6;
Cancer ResNet-152 ResNet-152 — 94.4;
Classification” Xception Xception — 93.8

(+ “IQ-OTH/NCCD

lung cancer dataset)

[24]

Mohammad Q.

Shatnawi, Qusai

Abuein, Romesaa Al- | Enhanced CNN Enhanced CNN - 100;
Quraan (2024) ConvNeXtSmall VGG16 - 99;

“Deep learning-based | VGG16 EfficientNetBO - 97.9;
approach to diagnose | ResNet50 ResNet50 - 94.5;
lung cancer using InceptionV3 ConvNeXtSmall - 87;
CT-scan images” EfficientNetB0 InceptionV3 - 76.9

(+ Chest CT-Scan

Images Dataset) [25]

As shown in the Table II, previous studies trained various
individual architectures on the “Lung Cancer 4 Types” dataset
and reported their respective performance outcomes. In
contrast, our study employs a hybrid training architecture on
the same dataset, which has not yet been explored in prior
work and therefore represents a notable novelty of this
research.

I1I.

A concise overview of the study’s dataset and the applied
deep learning methods is included.

MATERIALS AND METHODS

A. Dataset

The dataset used in this study was obtained from Kaggle
under the title “Lung Cancer 4 Types Images Dataset” [23].
This dataset provides a balanced framework for developing
and evaluating machine learning and deep learning models,
offering visual examples that highlight the differences
between malignant lung cancer types and normal lung tissue.

(C) Squamous Cell
Carcinoma

(D) Normal
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Fig. 2. CT Images of the lung disease categories analyzed in this study [23].

As such, it is widely used as a benchmark resource for
studies in computer aided diagnosis (CAD), deep learning,
and medical imaging applications.

It consists of CT scan images in .png and .jpg formats,
categorized into four classes: Adenocarcinoma (AC), Large
Cell Carcinoma (LCC), Squamous Cell Carcinoma (SCC),
and Normal (benign) cells. These images are split into 613
number of training, 72 validation and 315 testing samples. The
number of training images in the AC, LCC, normal, and SCC
classes are 195, 115, 148, and 155 respectively [23]. Hence,
there is slight class imbalance problem, additionally, the
number of total training images are too less, that is 613
images.

The “Lung Cancer 4 Types” dataset exhibits class
imbalance, which increases the risk of overfitting.
Consequently, previous studies that utilized this dataset often
incorporated additional datasets to compensate for the
imbalance and improve overall performance. In contrast, our
work does not rely on supplementary datasets; instead, we
employ a hybrid architecture. A hybrid architecture integrates
the complementary strengths of two or more CNN backbones,
enabling it to partially mitigate the limitations caused by class
imbalance.

B. MobileNetV2

MobileNetV2 is a state of the art CNN architecture
designed specifically for mobile and resource constrained
environments. This architecture is particularly efficient due to
its innovative use of depthwise separable convolutions and
inverted residuals with linear bottlenecks, which significantly
reduce the number of parameters and computational cost
while maintaining high accuracy. This makes it particularly
suitable for applications in medical imaging, where
computational efficiency is critical.

Key components of MobileNetV2:

Despite being primarily designed for lightweight image
classification, MobileNetV2’s efficient architecture and
reliance on generalizable visual features make it particularly
suited for histopathological image analysis. This approach
enhances the model’s capability to capture subtle inter class
variations, which are often difficult to discern in medical
images. MobileNetV2 introduces several key architectural
innovations:

1)  Depthwise Separable Convolutions

This operation splits the standard convolution into two
layers: a depth wise convolution that filters input channels
independently, and a pointwise convolution that combines
these filtered outputs to create new features. The depth wise
separable convolution can be expressed as:

M N
Vijk = Z Z Xi+m—-1,j+n-1k " Pmnk

m=1n=1

)

where yl.jkis the output feature map, x;;; is the input

feature map, w,,, , represents the depthwise convolution
kernel, and M and N are the kernel dimensions.

Following this, the pointwise convolution is applied as:
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K
Zij = Z Yijk " Pk )
k=1
where z;; represents the final output after pointwise
convolution, and p, are the weights applied during this
operation.

TABLE IIL. MOBILENETV2-BASED MODEL ARCHITECTURE
Layer Type Output shape

1 Input Layer (224, 224,3)

2 MobileNetV2 (Base Model) (7,7, 1280)

3 GlobalAveragePooling2D (1280)

4 Batch Normalization (1280)

5 Dense (ReLU) (256)

6 Dropout (0.45) (256)

7 Dense (Softmax, classes=4) “4)

2)  Inverted Residuals and Linear Bottlenecks

MobileNetV2 utilizes inverted residuals where the input
and output are thin bottleneck layers, and intermediate layers
are expanded. The linear bottlenecks prevent the loss of
information that could occur due to non-linearities like ReLU.
The operation can be described as:

y =max (0, W,y - X) * Wy (3)

Here, We,p, represents the expansion matrix, x is the input
tensor, and Wp,..,; is the projection matrix. This formulation
ensures that the linear bottleneck minimizes the loss of
information while maintaining computational efficiency.

3)  ReLU6 Activation Function

To prevent information loss in low precision computation,
MobileNetV2 employs the ReLU6 activation function,
defined as:

ReLU6(x) = min (max(0,x), 6) (4)

This bounded activation helps to reduce quantization error
during low bit precision computation, making MobileNetV2
more suitable for mobile and embedded systems [14,26,27].

C. ResNet50

In 2015, Microsoft Research introduced the Residual
Neural Network (ResNet) architecture to solve the issue of
disappearing gradients in deep neural networks. ResNet50 is
a specific variation of the ResNet architecture that uses
shortcut connections called residual connections. The model
uses identity mappings to add shortcut connections between
layers, facilitating efficient backpropagation and improving
model convergence. Therefore, a ResNet model with 50 layers
is referred to as ResNet50 [24,25].

TABLE IV. RESNET50-BASED MODEL ARCHITECTURE
Layer Type Output shape

1 Input Layer (224,224, 3)
2 ResNet50 (Base Model) (7,7,2048)
3 GlobalAveragePooling2D (2048)
4 Batch Normalization (2048)
5 Dense (ReLU) (256)
6 Dropout (0.45) (256)
7 Dense (Softmax, classes=4) “)
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Fig. 3. Block diagram of the proposed model

D. Data Preprocessing and Augmentation

Before model training, the following preprocessing steps
were performed:

o Data Cleaning: Corrupted and duplicate images were
removed.

e Data Transformation: Image formats were standardized,
and color channels were unified.

o Data Splitting: The dataset was partitioned into training,
validation, and test subsets.

o Data Augmentation: Given the limited size of the Lung
Cancer 4 Types dataset (613 training images) and the
inherent challenges such as low luminance LCC samples
and high inter class similarity between AC and SCC, data
augmentation was employed to enrich the visual diversity
of the training set and reduce overfitting.
During the preprocessing stage, the

augmentation strategies were applied:

v

following

Resizing: Images were resized to a fixed dimension of
224x%224 pixels to enhance computational efficiency.
Rotation: Images were rotated 180°, enabling the model
to classify correctly even when images are inverted.
Zoom: Images were zoomed in by 15%, allowing the
model to better recognize lesions of varying scales.
Horizontal Flip: Images were flipped horizontally to
improve the model’s ability to detect lesions appearing
in different orientations.

Vertical Flip: Images were flipped vertically to enhance
the model’s capability to reliably identify lung diseases.
Rescale: Pixel values were normalized to the range of
0-1, enabling the model to learn stable features and
reducing the risk of overfitting.

Gaussian noise (u = 0, 0> = 0.05): Effectively increased
the variability of the limited dataset, helping to mitigate
overfitting while improving the model’s robustness and
generalization, particularly for low luminance LCC

v
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images and the high visual similarity between AC and
SCC.
By employing all of the aforementioned data augmentation
techniques, the model was exposed to a broader range of
imaging variations, thereby becoming more robust to noise
and appearance changes and achieving more stable
generalization to unseen CT scans.

E. Proposed Methodology

In this study, we propose a hybrid deep learning approach
combining MobileNetV2 and ResNet50 for lung cancer
classification from CT scan images. The block diagram of the
workflow is shown in Figure 3.

The proposed workflow employs a hybrid feature
extraction scheme combining MobileNetV2 + ResNet50 to
enhance the representation quality of lung cancer CT images.

MobileNetV2 provides lightweight, fine grained features,
while ResNet50 contributes deeper semantic representations.
By processing the input CT images in parallel and applying
Global Average Pooling to each branch, their outputs 1280-
dimensional ~ (MobileNetV2) and  2048-dimensional
(ResNet50) vectors are concatenated into a unified 3328-
dimensional feature representation.

This fused representation is processed by three fully
connected layers (512, 256, and 64 units) incorporating ReLU
activation, L2 regularization, Batch Normalization, and a 0.2
dropout rate, followed by a four class softmax classifier for
AC, LCC, SCC, and Normal categories.

To address the limited dataset size, low luminance LCC
images, and the high structural similarity between AC and
SCC, a comprehensive data augmentation pipeline rotation,
zooming, flipping, rescaling, and Gaussian noise (u = 0, 6> =
0.05) was applied to improve robustness and reduce
overfitting.

The model was trained using the Adam optimizer (learning
rate 1x107%), a batch size of 16, and categorical cross entropy
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loss, yielding more stable convergence and improved
generalization to unseen CT scans.

F. Model Evaluation

The performance of the proposed hybrid model was
assessed using standard evaluation metrics, including
accuracy, recall, precision, and F1-score. These metrics are
defined as follows [28]:

e Accuracy: measures the proportion of correctly classified
instances.

Accuracy = (TP + TN) /(TP + TN + FP + FN) &)

e Recall: indicates the proportion of true positive predictions
among actual positive cases.

Recall = TP/(TP + FN) (6)

e Precision: represents the proportion of true positive
predictions among all positive prediction.

Precision = TP /(TP + FP) @)

e Fl1-Score: is the harmonic mean of precision and recall,
providing a balanced assessment.

F1-Score= (2 * Precision * Recall / (Precision + Recall))  (8)

TP (true positives), TN (true negatives),
FP (false positives), FN (false negatives)

In addition, confusion matrix was computed for each class
to assess discriminative capability.

G. Mobile application development

The trained model was converted to the TFLite format,
yielding a .tflite model artifact suitable for mobile application
development. In addition to the hybrid deep learning model,
the system incorporates a lightweight backend architecture
designed to support real time mobile inference. The mobile
application, implemented using Kotlin (using Android Studio
25.1.3), communicates with a Flask based REST API server,
which manages image requests and handles the end to end
inference workflow.

Upon receiving a CT image from the client, the Flask
server preprocesses the input and forwards it to the deployed
Al model for classification. To ensure efficient request
handling and low latency communication, Redis is used as an
in memory message broker and caching layer, enabling
optimized model loading and faster prediction responses. The
prediction results including the probabilities for AC, LCC,
SCC, and Normal classes are then returned to the mobile client
through the REST API.

All application data and user interaction logs are stored in
a MySQL database, completing the backend service pipeline.
This architecture ensures scalable, reliable, and responsive
deployment of the proposed hybrid model on mobile
platforms

IV. RESULTS AND DISCUSSION

A. Model Training Results

The experiments were conducted on a computer equipped
with an Intel Core i5 (11" generation) processor, NVIDIA
GeForce MX450 GPU, and 16 GB of RAM, within the
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Google Colab Pro environment using Python 3 on the Google
Compute Engine backend with a T4 GPU (16 GB RAM).

The proposed hybrid MobileNetV2 + ResNet50 model
achieved an overall training accuracy of 85.4% for the four
class lung cancer classification task.

TABLE V. BASELINE COMPARISON TABLE
Accuracy Parameters Inference time
Model (%) ™) (ms/image)

MobileNetV2 73.9% 34 14
ResNet50 80.1% 25.6 40
Hybrid

(MobileNetV2 + 85.4% 29.0 36
ResNet50)

As shown in Table V, MobileNetV2 achieved an accuracy
of 73.9% with 3.4M parameters and the fastest inference time
of 14 ms per image, whereas ResNet50 reached 80.1%
accuracy with a substantially larger parameter count of 25.6M
and an inference time of 40 ms. The proposed Hybrid
(MobileNetV2 + ResNet50) model outperformed both
baselines, attaining an accuracy of 85.4%, representing an
improvement of 11.5 percentage points over MobileNetV2
and 5.3 percentage points over ResNet50. Despite integrating
both backbones, the hybrid model required only 29.0M
parameters and maintained a faster inference speed (36 ms)
compared to ResNet50. These results demonstrate that the
hybrid architecture provides a favorable balance between
computational cost and predictive performance, offering

measurable advantages over the individual backbone
networks.
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Fig. 4. Confusion matrix of CT image classification using the hybrid model

The confusion matrix in Figure 4 provides a detailed
visualization of class wise prediction behavior. The model
demonstrated strong performance in identifying Normal
samples, achieving the highest recall of 96.5%, which
indicates reliable discrimination of benign CT images.

Squamous Cell Carcinoma was also classified with high
precision (93.8%) and competitive recall (83.3%), reflecting
effective recognition of its characteristic radiological patterns.
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TABLE VI. PERFORMANCE EVALUATION MEASURES
Class Precision (%) Recall (%) F1-score (%)

Adenocarcinoma 84.8 79.2 81.9
Large Cell 71.4 90.9 80.0
Carcinoma

Normal 91.7 96.5 94.0
Squamous Cell 93.8 83.3 88.2
Carcinoma

Adenocarcinoma and Large Cell Carcinoma exhibited
comparatively higher misclassification rates, consistent with
their known visual similarity in CT imaging and the moderate
class imbalance within the dataset. Adenocarcinoma achieved
a precision of 84.8% and a recall of 79.2%, while Large Cell
Carcinoma obtained the lowest precision (71.4%) but a
relatively high recall (90.9%), indicating that although the
model frequently detects LCC cases, it tends to confuse them
with other malignant subtypes.

F1-scores ranged from 80.0% to 94.0% across the four
classes, demonstrating balanced predictive performance.
Normal images achieved the highest Fl-score (94.0%),
followed by Squamous Cell Carcinoma (88.2%),
Adenocarcinoma (81.9%), and Large Cell Carcinoma
(80.0%).

Overall, the results indicate that the hybrid feature
extraction strategy yields robust and generalizable
performance, particularly in distinguishing benign from
malignant tissue, while certain morphological similarities
among malignant subtypes remain challenging.

B. Mobile Application Development

The Android based mobile application was developed to
classify lung CT images into three lung cancer subtypes and
one normal lung category.

This app can classify four types
of lung cancer.

Lung cancer classification:
Adenocarcinema

Lung cancer classification:
Large cell carcinoma

Lung cancer classification:
Squamous.cell.carcinoma

Fig. 5. User interface of the lung disease classification application
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The proposed hybrid MobileNetV2 + ResNet50 model
was deployed on a Samsung Galaxy S23 device to evaluate its
real world on device performance.

The TensorFlow Lite version of the model has a size of 27
MB, making it suitable for mobile deployment without
excessive memory usage. On device inference benchmarking
yielded an average latency of 36 ms per image, corresponding
to approximately 27-28 FPS, which is sufficient for near real
time CT scan analysis.

This integrated architecture ensures efficient end-to-end
operation, enabling accurate, responsive, and mobile-friendly
lung cancer classification in real clinical environments.

Key advantages and features:

e Capable of distinguishing four lung cancer
categories (Adenocarcinoma, Large Cell Carcinoma,
Squamous Cell Carcinoma, and Normal).

e The trained model is integrated with a database to
structure and manage data.

e The application allows users to select an image from
device storage and proceed through the analysis
workflow.

e The input image is fed to the trained model, which
predicts the corresponding lung disease class.

e  The predicted class label of one of the four categories
is displayed on the application interface.

V.

This study presented a hybrid deep learning approach
integrating MobileNetV2 and ResNet50 to classify four lung
CT image categories from the “Lung Cancer 4 Types” dataset.
The proposed architecture demonstrated improved
discriminative performance compared with standalone
backbone models, achieving an overall accuracy of 85.4% and
balanced per class F1-scores ranging from 80.0% to 94.0%.

CONCLUSION AND FUTURE SCOPE

Moreover, the conversion of the trained model to
TensorFlow Lite and its deployment on a Samsung Galaxy
S23 device (average latency: 36 ms; model size: 27 MB)
confirmed its suitability for mobile based clinical decision
support. These findings highlight the potential of lightweight
hybrid architectures for real time, resource constrained
diagnostic environments. Despite these encouraging results,
several opportunities remain for advancing clinical
applicability.

Future work should prioritize expanding the dataset,
particularly for underrepresented malignant subtypes, through
multi center data collection or external public repositories to
reduce class imbalance and improve generalization.

To enhance interpretability, future extensions could
integrate explainable Al methods such as Grad-CAM directly
within the mobile application to support radiologists in
understanding disease focused activation regions. Finally,
alternative hybridization strategies, attention mechanisms,
and transformer based encoders may further boost accuracy
while maintaining computational efficiency.
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