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Abstract—Lung cancer is among the leading causes of 

mortality worldwide, and early detection is critical to improving 

patient survival. Recent advances in artificial intelligence 

particularly deep learning-based image analysis have opened 

new opportunities for earlier diagnosis. This study aims to 

develop a deep learning model to classify four categories of lung 

computed tomography (CT) images (malignant and benign) and 

to implement it in a mobile application. We developed a hybrid 

convolutional architecture combining MobileNetV2 and 

ResNet50 and trained it on the open-access “Lung Cancer 4 

Types” dataset from Kaggle. Model performance was evaluated 

using standard metrics, including overall accuracy, precision, 

recall, and F1-score. The proposed model achieved an overall 

accuracy of 85.4%, with per-class F1-scores ranging from 

80.0% to 94.0%, indicating effective discrimination among lung 

cancer categories. Finally, the trained model was converted to 

TensorFlow Lite and integrated into an Android application, 

thereby bringing deep learning solutions closer to clinical 

practice. 

Keywords— CT images, Image Processing, Convolutional 

Neural Network (CNN), MobileNetV2, ResNet50, Mobile 

Application 

I. INTRODUCTION 

Cancer is a leading cause of death worldwide, accounting 
for nearly 10 million deaths in 2020, or almost one in six 
deaths. One in five people dying from cancer is due to lung 
cancer [1]. The lungs are a pair of primary respiration organs 
located in the thoracic cavity on either side of the mediastinum 
[2]. Lung cancer is a type of cancer that starts when abnormal 
cells grow in an uncontrolled way in the lungs [3]. Lung 
cancer is characterized by highly aggressive, rapidly 
metastasizing cells that are often resistant to pharmacologic 
therapies. In its early stages, it is frequently 
paucisymptomatic, rendering it a “silent” disease [4]. 
According to the World Health Organization, in 2022, lung 
cancer had the second-highest global incidence, with 
approximately 2.21 million cases, and was the leading cause 
of cancer mortality, accounting for 1.8 million deaths [1]. 
Approximately 80–90% of cases are associated with tobacco 
smoking. Lung cancer disproportionately affects men and 
shows the highest prevalence in Central and Eastern Europe 

and in East Asia [4]. It is broadly classified into two types: 
small cell lung cancer (SCLC) and non-small cell lung cancer 
(NSCLC) [3].  
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Fig. 1.  Types of Lung Cancer [3] 

Late-stage diagnosis and treatment delays not only incur 
substantial costs but also pose a significant risk to life [4]. 

Computed tomography (CT) scan is a key modality for 
early detection of lung cancer, using X-rays from multiple 
angles to generate detailed diagnostic images [6]. Recent 
advances in artificial intelligence (AI) have enabled earlier 
disease diagnosis by leveraging machine learning and deep 
learning techniques applied to large datasets collected from 
hospitals and healthcare institutions [7,8]. Recent studies have 
employed convolutional neural network (CNN) architectures 
to analyze lung CT images [9]. CNNs are particularly 
effective for deep learning tasks involving image processing 
and feature extraction, and are widely used to identify 
characteristics of lung disease [10]. This study aims to develop 
a mobile application for processing and classifying lung CT 
images to distinguish between malignant and benign 
conditions using deep learning methods. The dataset used in 
this study was obtained from Kaggle under the title “Lung 
Cancer 4 Types Images Dataset” [11]. It consists of CT scan 
images in .png and .jpg formats, categorized into four classes: 
Adenocarcinoma (AC), Large Cell Carcinoma (LCC), 
Squamous Cell Carcinoma (SCC), and Normal (benign) cells.  

In contrast to previous studies that employed 
MobileNetV2 or ResNet50 as standalone backbones, the 
present work introduces the first hybrid MobileNetV2 + 
ResNet50 architecture trained exclusively on the Lung Cancer 
4 Types dataset. The use of the hybrid architecture enabled the 
extraction of higher quality features from lung cancer CT 
images, thereby enhancing the model’s overall performance 
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and improving its robustness. Moreover, the hybrid model is 
optimized for on device inference through TensorFlow Lite 
conversion, thereby providing a distinctive contribution for 
deployment in resource constrained clinical diagnostic 
environments. Model performance was evaluated using 
standard metrics, including accuracy, recall, precision, and 
F1-score.  

II. RELATED WORK 

In recent years, numerous studies in healthcare have 
applied image processing and machine learning (ML) and 
deep learning (DL) techniques. Year by year, methodologies 
have improved, datasets have grown, and accuracy has 
increased. This trend indicates that research and development 
in this area will continue to expand [8].  

The rapid advancement of ML and DL technologies has 
revolutionized medical imaging, particularly in cancer 
detection. Among various cancer types, lung cancer has seen 
significant progress due to the integration of CNNs [13]. 
Different methods are used for the prediction of lung cancer. 
In the detection process, X-rays, CT, and MRI & PET scans 
are most used. Currently, a CT scan is the way of detecting 
early-stage lung cancer [14]. A CT scan uses many sequential 
X-ray images taken from various angles around your body and 
processes them to create detailed cross-sectional images 
(slices) of the body part [15]. 

TABLE I.  RESEARCH STUDIES HAVE BEEN CONDUCTED IN THE LAST 

10 YEARS. 

№ Reference Architecture Dataset 
Accuracy 

(%) 

1 [16] 
MobileNetV2 
InceptionResNetV2, 
Xception 

CT 
(LIDC-IDRI, 
IQ-
OTH/NCCD) 

99.54 

2 [17] 

ResNet50 
VGG, Inception, 
Xception, 
BoF+Random Forest 

CT 
(LIDC-IDRI) 

95.34 

3 [18] 
ResNet50, VGG16 
XGBoost/SVM 

CT 
(834 CT 
imaging data 
from 396 
patients) 

94.3 

4 [19] 
ResNet50 
3D-ResU-Net (seg) 

CT 
(LIDC-IDRI) 

87.3 

5 [20] 
ResNet50 
ResNet-101, 
EfficientNet-B3 

CT 
(LIDC-IDRI) 

~94 

6 [21] 
MobileNetV2 (+U-
Net) 

CT 
(Medical 
Segmentation 
Decathlon 
(MSD)) 

87.93 

7 [22] 
MobileNetV3 Small 
and ResNet50 
(Hybrid) 

CT 
(LIDC-IDRI, 
IQ-
OTH/NCCD) 

99.38 

As shown in Table I, the LIDC–IDRI dataset has been 
among the most widely used resources. Researchers continue 
to improve results by integrating additional models and 
refining pipelines, thereby achieving incremental performance 
gains. The Lung Image Database Consortium image collection 
(LIDC–IDRI) is an open-access repository available from the 
National Cancer Institute website [23]. It comprises thoracic 
CT scans acquired for diagnostic assessment and lung cancer 
screening, and includes annotated pulmonary nodules. In this 

study, we employ the open-access “LungCancer4Types” 
dataset available on Kaggle. This dataset supports four class 
classification of lung images. Previous studies that employed 
this dataset are summarized in Table II. 

TABLE II.  STUDIES USING THE “LUNG CANCER 4 TYPES” DATASET. 

Reference Architecture Accuracy (%) 
Santanu Roy, Shweta 

Singh, etc (2025) 
“MSAD-Net: 

Multiscale and 

Spatial Attention-
based Dense 

Network for Lung 

Cancer 
Classification” 
(+ “IQ-OTH/NCCD 
lung cancer dataset) 
[24] 

DenseNet-121 

InceptionV3 
MobileNetV2 

ResNet50 

ResNet-152 
Xception 

DenseNet-121 – 84.1; 

InceptionV3 – 94.4; 
MobileNetV2 – 85.4; 

ResNet50 – 80.6; 

ResNet-152 – 94.4; 
Xception – 93.8 

Mohammad Q. 
Shatnawi, Qusai 

Abuein, Romesaa Al-

Quraan (2024) 
“Deep learning-based 

approach to diagnose 

lung cancer using 
CT-scan images” 

(+ Chest CT-Scan 

Images Dataset) [25] 

Enhanced CNN 

ConvNeXtSmall 
VGG16 

ResNet50 

InceptionV3 
EfficientNetB0 

Enhanced CNN - 100; 

VGG16 - 99; 
EfficientNetB0 - 97.9; 

ResNet50 - 94.5; 

ConvNeXtSmall - 87; 
InceptionV3 - 76.9 

As shown in the Table II, previous studies trained various 
individual architectures on the “Lung Cancer 4 Types” dataset 
and reported their respective performance outcomes. In 
contrast, our study employs a hybrid training architecture on 
the same dataset, which has not yet been explored in prior 
work and therefore represents a notable novelty of this 
research. 

III. MATERIALS AND METHODS 

A concise overview of the study’s dataset and the applied 
deep learning methods is included. 

A. Dataset 

The dataset used in this study was obtained from Kaggle 
under the title “Lung Cancer 4 Types Images Dataset” [23]. 
This dataset provides a balanced framework for developing 
and evaluating machine learning and deep learning models, 
offering visual examples that highlight the differences 
between malignant lung cancer types and normal lung tissue.  
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Fig. 2. CT Images of the lung disease categories analyzed in this study [23]. 

As such, it is widely used as a benchmark resource for 
studies in computer aided diagnosis (CAD), deep learning, 
and medical imaging applications.  

It consists of CT scan images in .png and .jpg formats, 
categorized into four classes: Adenocarcinoma (AC), Large 
Cell Carcinoma (LCC), Squamous Cell Carcinoma (SCC), 
and Normal (benign) cells. These images are split into 613 
number of training, 72 validation and 315 testing samples. The 
number of training images in the AC, LCC, normal, and SCC 
classes are 195, 115, 148, and 155 respectively [23]. Hence, 
there is slight class imbalance problem, additionally, the 
number of total training images are too less, that is 613 
images.  

The “Lung Cancer 4 Types” dataset exhibits class 
imbalance, which increases the risk of overfitting. 
Consequently, previous studies that utilized this dataset often 
incorporated additional datasets to compensate for the 
imbalance and improve overall performance. In contrast, our 
work does not rely on supplementary datasets; instead, we 
employ a hybrid architecture. A hybrid architecture integrates 
the complementary strengths of two or more CNN backbones, 
enabling it to partially mitigate the limitations caused by class 
imbalance. 

B. MobileNetV2 

 MobileNetV2 is a state of the art CNN architecture 
designed specifically for mobile and resource constrained 
environments. This architecture is particularly efficient due to 
its innovative use of depthwise separable convolutions and 
inverted residuals with linear bottlenecks, which significantly 
reduce the number of parameters and computational cost 
while maintaining high accuracy. This makes it particularly 
suitable for applications in medical imaging, where 
computational efficiency is critical.  

Key components of MobileNetV2: 

 Despite being primarily designed for lightweight image 
classification, MobileNetV2’s efficient architecture and 
reliance on generalizable visual features make it particularly 
suited for histopathological image analysis. This approach 
enhances the model’s capability to capture subtle inter class 
variations, which are often difficult to discern in medical 
images. MobileNetV2 introduces several key architectural 
innovations: 

1) Depthwise Separable Convolutions 
 This operation splits the standard convolution into two 
layers: a depth wise convolution that filters input channels 
independently, and a pointwise convolution that combines 
these filtered outputs to create new features. The depth wise 
separable convolution can be expressed as: 

𝑦𝑖,𝑗,𝑘 = ∑ ∑𝑥𝑖+𝑚−1,𝑗+𝑛−1,𝑘

𝑁

𝑛=1

∙

𝑀

𝑚=1

𝜔𝑚,𝑛,𝑘 () 

where 𝑦
𝑖,𝑗,𝑘

is the output feature map, 𝑥𝑖,𝑗,𝑘  is the input 

feature map, 𝜔𝑚,𝑛,𝑘 represents the depthwise convolution 

kernel, and 𝑀 and 𝑁 are the kernel dimensions.  

Following this, the pointwise convolution is applied as: 

𝑧𝑖,𝑗 =∑𝑦𝑖,𝑗,𝑘 ∙ 𝑝𝑘

𝐾

𝑘=1

 () 

 where 𝑧𝑖,𝑗 represents the final output after pointwise 

convolution, and 𝑝𝑘  are the weights applied during this 
operation. 

TABLE III.  MOBILENETV2-BASED MODEL ARCHITECTURE 

Layer Type Output shape 

1 Input Layer  (224, 224, 3) 

2 MobileNetV2 (Base Model) (7, 7, 1280) 

3 GlobalAveragePooling2D (1280) 

4 Batch Normalization (1280) 

5 Dense (ReLU) (256) 

6 Dropout (0.45) (256) 

7 Dense (Softmax, classes=4) (4) 

2) Inverted Residuals and Linear Bottlenecks 
 MobileNetV2 utilizes inverted residuals where the input 
and output are thin bottleneck layers, and intermediate layers 
are expanded. The linear bottlenecks prevent the loss of 
information that could occur due to non-linearities like ReLU. 
The operation can be described as: 

𝑦 = max⁡(0,𝑊𝑒𝑥𝑝 ∙ 𝑥) ∙ 𝑊𝑝𝑟𝑜𝑗 () 

 Here, 𝑊𝑒𝑥𝑝 represents the expansion matrix, 𝑥 is the input 

tensor, and 𝑊𝑝𝑟𝑜𝑗 is the projection matrix. This formulation 

ensures that the linear bottleneck minimizes the loss of 
information while maintaining computational efficiency. 

3) ReLU6 Activation Function 
 To prevent information loss in low precision computation, 
MobileNetV2 employs the ReLU6 activation function, 
defined as: 

𝑅𝑒𝐿𝑈6(𝑥) = min⁡(max(0, 𝑥) , 6) () 

 This bounded activation helps to reduce quantization error 
during low bit precision computation, making MobileNetV2 
more suitable for mobile and embedded systems [14,26,27]. 

C. ResNet50 

In 2015, Microsoft Research introduced the Residual 
Neural Network (ResNet) architecture to solve the issue of 
disappearing gradients in deep neural networks. ResNet50 is 
a specific variation of the ResNet architecture that uses 
shortcut connections called residual connections. The model 
uses identity mappings to add shortcut connections between 
layers, facilitating efficient backpropagation and improving 
model convergence. Therefore, a ResNet model with 50 layers 
is referred to as ResNet50 [24,25]. 

TABLE IV.  RESNET50-BASED MODEL ARCHITECTURE 

Layer Type Output shape 

1 Input Layer  (224, 224, 3) 

2 ResNet50 (Base Model) (7, 7, 2048) 

3 GlobalAveragePooling2D (2048) 

4 Batch Normalization (2048) 

5 Dense (ReLU) (256) 

6 Dropout (0.45) (256) 

7 Dense (Softmax, classes=4) (4) 
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D. Data Preprocessing and Augmentation 

Before model training, the following preprocessing steps 

were performed: 

• Data Cleaning: Corrupted and duplicate images were 

removed. 

• Data Transformation: Image formats were standardized, 

and color channels were unified. 

• Data Splitting: The dataset was partitioned into training, 

validation, and test subsets. 

• Data Augmentation: Given the limited size of the Lung 

Cancer 4 Types dataset (613 training images) and the 

inherent challenges such as low luminance LCC samples 

and high inter class similarity between AC and SCC, data 

augmentation was employed to enrich the visual diversity 

of the training set and reduce overfitting. 

 
During the preprocessing stage, the following 

augmentation strategies were applied: 

✓ Resizing: Images were resized to a fixed dimension of 

224×224 pixels to enhance computational efficiency. 

✓ Rotation: Images were rotated 180°, enabling the model 

to classify correctly even when images are inverted. 

✓ Zoom: Images were zoomed in by 15%, allowing the 

model to better recognize lesions of varying scales. 

✓ Horizontal Flip: Images were flipped horizontally to 

improve the model’s ability to detect lesions appearing 

in different orientations. 

✓ Vertical Flip: Images were flipped vertically to enhance 

the model’s capability to reliably identify lung diseases. 

✓ Rescale: Pixel values were normalized to the range of 

0–1, enabling the model to learn stable features and 

reducing the risk of overfitting. 

✓ Gaussian noise (μ = 0, σ² = 0.05): Effectively increased 

the variability of the limited dataset, helping to mitigate 

overfitting while improving the model’s robustness and 

generalization, particularly for low luminance LCC  

 

 

 

 

images and the high visual similarity between AC and 

SCC. 

By employing all of the aforementioned data augmentation 

techniques, the model was exposed to a broader range of 

imaging variations, thereby becoming more robust to noise 

and appearance changes and achieving more stable 

generalization to unseen CT scans. 

E. Proposed Methodology  

In this study, we propose a hybrid deep learning approach 
combining MobileNetV2 and ResNet50 for lung cancer 
classification from CT scan images. The block diagram of the 
workflow is shown in Figure 3.  

The proposed workflow employs a hybrid feature 
extraction scheme combining MobileNetV2 + ResNet50 to 
enhance the representation quality of lung cancer CT images. 

MobileNetV2 provides lightweight, fine grained features, 
while ResNet50 contributes deeper semantic representations. 
By processing the input CT images in parallel and applying 
Global Average Pooling to each branch, their outputs 1280-
dimensional (MobileNetV2) and 2048-dimensional 
(ResNet50) vectors are concatenated into a unified 3328-
dimensional feature representation. 

This fused representation is processed by three fully 
connected layers (512, 256, and 64 units) incorporating ReLU 
activation, L2 regularization, Batch Normalization, and a 0.2 
dropout rate, followed by a four class softmax classifier for 
AC, LCC, SCC, and Normal categories.  

To address the limited dataset size, low luminance LCC 
images, and the high structural similarity between AC and 
SCC, a comprehensive data augmentation pipeline rotation, 
zooming, flipping, rescaling, and Gaussian noise (μ = 0, σ² = 
0.05) was applied to improve robustness and reduce 
overfitting.  

The model was trained using the Adam optimizer (learning 
rate 1×10⁻⁴), a batch size of 16, and categorical cross entropy 

Fig. 3. Block diagram of the proposed model 

 

Preprocessing

112*112 56*56 7*7112*112224*224

3*3 Conv, ReLu6 Bottleneck Bootleneck

MobileNetV2

n=16 n=24 n=1280n=32n=3

Preprocessing

56*56 56*56 7*7112*112224*224

7*7 Conv, ReLu MaxPool3*3 Residualblock

ResNet50

n=64 n=256 n=2048n=64n=3

Average 

Pooling 

2D

Average 

Pooling 

2D

Features

Concatenation 

(axis = -1)

1280-D + 2048-D 

= 3328-D

Accuracy

Performation metrics

Precision

Recall

F1-Score

Client (Kotlin)

Mobile Application 

Development

MySQL

Redis

Flash server

AI Models

Rest A PI

Rest A PI

CT IMAGES

AC, LCC, SCC, Normal

Data Preprocessing

-Data Cleaning

-Data Transformation

-Data Reduction, Data Splitting

-Data Augmentation

-Resize all images to 224*224*3

Train set

Validation set

Testing set

Dense Layer 1

Units: 512

Activation: ReLU

L2 Regularization

Batch Normalization

Dropout - 0.2

Dense Layer 2

Units: 256

Activation: ReLU

Batch Normalization

Dropout - 0.2

Output classes: 4

AC, LCC, SCC, Normal

Classification Dense Layers

Dense Layer 3

Units: 64

Activation: ReLU

Batch Normalization

Dropout - 0.2

Output Layer

Units: 4

Activation: Softmax

Batch Normalization

Dropout - 0.2

Loss function: 

Categorical Cross-

Entropy



Daariimaa Chuluunbaatar et. al.  ESS (Vol. 12. No. 14. 2025) (pp.14-20) 

 

 

18 

 

loss, yielding more stable convergence and improved 
generalization to unseen CT scans. 

F. Model Evaluation 

The performance of the proposed hybrid model was 
assessed using standard evaluation metrics, including 
accuracy, recall, precision, and F1-score. These metrics are 
defined as follows [28]: 

• Accuracy: measures the proportion of correctly classified 
instances. 

• Recall: indicates the proportion of true positive predictions 
among actual positive cases. 

• Precision: represents the proportion of true positive 
predictions among all positive prediction. 

• F1-Score: is the harmonic mean of precision and recall, 
providing a balanced assessment. 

F1-Score= (2 * Precision * Recall / (Precision + Recall))  (8) 

TP (true positives), TN (true negatives), 

FP (false positives), FN (false negatives) 

 
In addition, confusion matrix was computed for each class 

to assess discriminative capability. 

G. Mobile application development 

The trained model was converted to the TFLite format, 
yielding a .tflite model artifact suitable for mobile application 
development. In addition to the hybrid deep learning model, 
the system incorporates a lightweight backend architecture 
designed to support real time mobile inference. The mobile 
application, implemented using Kotlin (using Android Studio 
25.1.3), communicates with a Flask based REST API server, 
which manages image requests and handles the end to end 
inference workflow.  

Upon receiving a CT image from the client, the Flask 
server preprocesses the input and forwards it to the deployed 
AI model for classification. To ensure efficient request 
handling and low latency communication, Redis is used as an 
in memory message broker and caching layer, enabling 
optimized model loading and faster prediction responses. The 
prediction results including the probabilities for AC, LCC, 
SCC, and Normal classes are then returned to the mobile client 
through the REST API.  

All application data and user interaction logs are stored in 
a MySQL database, completing the backend service pipeline. 
This architecture ensures scalable, reliable, and responsive 
deployment of the proposed hybrid model on mobile 
platforms 

IV. RESULTS AND DISCUSSION 

A. Model Training Results 

The experiments were conducted on a computer equipped 
with an Intel Core i5 (11th generation) processor, NVIDIA 
GeForce MX450 GPU, and 16 GB of RAM, within the 

Google Colab Pro environment using Python 3 on the Google 
Compute Engine backend with a T4 GPU (16 GB RAM). 

The proposed hybrid MobileNetV2 + ResNet50 model 
achieved an overall training accuracy of 85.4% for the four 
class lung cancer classification task.  

TABLE V.  BASELINE COMPARISON TABLE 

Model 
Accuracy 

(%) 

Parameters 

(M) 

Inference time 

(ms/image) 

MobileNetV2 73.9% 3.4 14 

ResNet50 80.1% 25.6 40 

Hybrid 

(MobileNetV2 + 

ResNet50) 

85.4% 29.0 36 

 
As shown in Table V, MobileNetV2 achieved an accuracy 

of 73.9% with 3.4M parameters and the fastest inference time 
of 14 ms per image, whereas ResNet50 reached 80.1% 
accuracy with a substantially larger parameter count of 25.6M 
and an inference time of 40 ms. The proposed Hybrid 
(MobileNetV2 + ResNet50) model outperformed both 
baselines, attaining an accuracy of 85.4%, representing an 
improvement of 11.5 percentage points over MobileNetV2 
and 5.3 percentage points over ResNet50. Despite integrating 
both backbones, the hybrid model required only 29.0M 
parameters and maintained a faster inference speed (36 ms) 
compared to ResNet50. These results demonstrate that the 
hybrid architecture provides a favorable balance between 
computational cost and predictive performance, offering 
measurable advantages over the individual backbone 
networks. 

Fig. 4. Confusion matrix of CT image classification using the hybrid model 

The confusion matrix in Figure 4 provides a detailed 
visualization of class wise prediction behavior. The model 
demonstrated strong performance in identifying Normal 
samples, achieving the highest recall of 96.5%, which 
indicates reliable discrimination of benign CT images. 

Squamous Cell Carcinoma was also classified with high 
precision (93.8%) and competitive recall (83.3%), reflecting 
effective recognition of its characteristic radiological patterns. 

Accuracy = (TP + TN) / (TP + TN + FP + FN) (5) 

Recall = TP/(TP + FN) (6) 

Precision = TP / (TP + FP) (7) 
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TABLE VI.  PERFORMANCE EVALUATION MEASURES 

Class Precision (%) Recall (%) F1-score (%) 

Adenocarcinoma 84.8 79.2 81.9 

Large Cell 
Carcinoma 

71.4 90.9 80.0 

Normal 91.7 96.5 94.0 

Squamous Cell 

Carcinoma 
93.8 83.3 88.2 

Adenocarcinoma and Large Cell Carcinoma exhibited 
comparatively higher misclassification rates, consistent with 
their known visual similarity in CT imaging and the moderate 
class imbalance within the dataset. Adenocarcinoma achieved 
a precision of 84.8% and a recall of 79.2%, while Large Cell 
Carcinoma obtained the lowest precision (71.4%) but a 
relatively high recall (90.9%), indicating that although the 
model frequently detects LCC cases, it tends to confuse them 
with other malignant subtypes. 

F1-scores ranged from 80.0% to 94.0% across the four 
classes, demonstrating balanced predictive performance. 
Normal images achieved the highest F1-score (94.0%), 
followed by Squamous Cell Carcinoma (88.2%), 
Adenocarcinoma (81.9%), and Large Cell Carcinoma 
(80.0%).  

Overall, the results indicate that the hybrid feature 
extraction strategy yields robust and generalizable 
performance, particularly in distinguishing benign from 
malignant tissue, while certain morphological similarities 
among malignant subtypes remain challenging. 

B. Mobile Application Development 

The Android based mobile application was developed to 
classify lung CT images into three lung cancer subtypes and 
one normal lung category. 

Fig. 5.  User interface of the lung disease classification application 

The proposed hybrid MobileNetV2 + ResNet50 model 
was deployed on a Samsung Galaxy S23 device to evaluate its 
real world on device performance.  

The TensorFlow Lite version of the model has a size of 27 
MB, making it suitable for mobile deployment without 
excessive memory usage. On device inference benchmarking 
yielded an average latency of 36 ms per image, corresponding 
to approximately 27-28 FPS, which is sufficient for near real 
time CT scan analysis. 

This integrated architecture ensures efficient end-to-end 
operation, enabling accurate, responsive, and mobile-friendly 
lung cancer classification in real clinical environments. 

Key advantages and features: 

• Capable of distinguishing four lung cancer 
categories (Adenocarcinoma, Large Cell Carcinoma, 
Squamous Cell Carcinoma, and Normal). 

• The trained model is integrated with a database to 
structure and manage data. 

• The application allows users to select an image from 
device storage and proceed through the analysis 
workflow. 

• The input image is fed to the trained model, which 
predicts the corresponding lung disease class. 

• The predicted class label of one of the four categories 
is displayed on the application interface. 

V. CONCLUSION AND FUTURE SCOPE 

This study presented a hybrid deep learning approach 
integrating MobileNetV2 and ResNet50 to classify four lung 
CT image categories from the “Lung Cancer 4 Types” dataset. 
The proposed architecture demonstrated improved 
discriminative performance compared with standalone 
backbone models, achieving an overall accuracy of 85.4% and 
balanced per class F1-scores ranging from 80.0% to 94.0%. 

Moreover, the conversion of the trained model to 
TensorFlow Lite and its deployment on a Samsung Galaxy 
S23 device (average latency: 36 ms; model size: 27 MB) 
confirmed its suitability for mobile based clinical decision 
support. These findings highlight the potential of lightweight 
hybrid architectures for real time, resource constrained 
diagnostic environments. Despite these encouraging results, 
several opportunities remain for advancing clinical 
applicability.  

Future work should prioritize expanding the dataset, 
particularly for underrepresented malignant subtypes, through 
multi center data collection or external public repositories to 
reduce class imbalance and improve generalization.  

To enhance interpretability, future extensions could 
integrate explainable AI methods such as Grad-CAM directly 
within the mobile application to support radiologists in 
understanding disease focused activation regions. Finally, 
alternative hybridization strategies, attention mechanisms, 
and transformer based encoders may further boost accuracy 
while maintaining computational efficiency. 
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