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Abstract — This paper investigates the application of
machine learning (ML) methods for predicting the compressive
strength of Mongolian fly ash concrete. Four predictive models—
Multiple Linear Regression (MLR), Ridge Regression, Lasso
Regression, and Decision Tree Regression—were developed and
compared using both experimental data and a benchmark
dataset from the UCI repository. The Decision Tree model
demonstrated the highest predictive accuracy (R*> = 0.95, RMSE
= 3.71 N/mm?, MAPE = 8.00%), outperforming all linear
regression-based approaches (R* = 0.57). The novelty of this work
lies in its focus on Mongolian high-calcium (Class C) fly ash,
whose elevated CaO content and distinct hydration kinetics differ
from globally studied Class F fly ashes. These variations in
chemical composition and mineral structure result in distinct
patterns of strength development, highlighting the importance of
developing region-specific prediction models to ensure structural
safety, cost efficiency, and sustainability in Mongolian
construction practices. The study further provides a foundation
for integrating ML-based predictive tools into local engineering
practice and design standards.

Keywords—Concrete, Fly Ash, Compressive Strength, Machine
Learning, Decision Tree

I. INTRODUCTION

Concrete plays a central role in modern civil engineering,
providing the backbone for infrastructure such as bridges,
highways, buildings, and power facilities. Its compressive
strength is the most critical parameter determining safety,
durability, and long-term serviceability of structures [1]. With
rapid urbanization and industrial development, demand for
concrete has surged globally, and especially in emerging
economies such as Mongolia. Mongolia is undergoing a
construction boom driven by housing projects, infrastructure
expansion, and policy reforms. This rapid growth intensifies
the need for efficient quality control systems that can reliably
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predict the mechanical properties of concrete before structural
application [2].

Fly ash, a by-product of coal-fired power plants, has
become a widely recognized supplementary cementitious
material (SCM). Globally, fly ash is known to enhance
workability, durability, and sustainability of concrete by
reducing cement consumption and associated CO. emissions
[3]. In Mongolia, where approximately 93% of electricity is
generated from coal, fly ash is produced in large quantities,
predominantly of the high-calcium (Class C) type [2]. The
chemical composition of Mongolian fly ash, particularly its
elevated CaO content, distinguishes it from the low-calcium
(Class F) fly ashes commonly reported in international
literature [1]. This compositional difference results in distinct
hydration kinetics and strength development behaviors,
necessitating region-specific research.

Traditional prediction methods for compressive strength—
such as empirical equations and regression-based models—
have long been employed in construction practice [4]. While
these approaches offer interpretability and simplicity, they
struggle with non-linear material interactions, multicollinearity,
and variability in local raw materials [2]. As a result, inaccurate
predictions may occur: overestimating strength in the early
stages can lead to premature demolding and structural failures,
while underestimation in later stages may cause conservative
mix designs, inflating costs and resource consumption [1]. This
distinction provides the main novelty of the study, as it applies
machine learning methods to a uniquely Mongolian material
system that has not been quantitatively analyzed in prior
international research.

Recent advancements in Artificial Intelligence (Al) and
machine learning (ML) have revolutionized predictive
modeling across various engineering domains. In the field of
concrete technology, methods such as Artificial Neural
Networks (ANN), Support Vector Machines (SVM), and
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Decision Trees have demonstrated superior accuracy compared MNG3 47.5 13.0 108 174 23 28 62 238 22298  0.80
to linear models [3]. These approaches are capable of capturing MNG4 494 13.0 11.0 164 1.6 19 67 236 20242 050
complex, non-linear interactions among multiple nput —p 3505 71 50 05 08 111 226 15058 5.0

parameters—including cement content, fly ash replacement
ratio, water-to-binder ratio, curing conditions, and testing
age—without  requiring  explicit physical equations.
Importantly, ML can adapt to local datasets, making it a
promising tool for addressing Mongolia’s unique fly ash
properties.

Despite these promising advances, challenges remain. The
performance of ML models heavily depends on the availability
and quality of training data. In Mongolia, datasets are often
limited, fragmented, or inconsistent due to a lack of systematic
experimental programs [2]. Moreover, while black-box models
like ANN can achieve high accuracy, their interpretability is
limited, creating difficulties in practical engineering decision-
making. This study therefore aims not only to apply machine
learning but also to critically compare different models—
Multiple Linear Regression (MLR), Ridge Regression, Lasso
Regression, and Decision Tree Regression—for their accuracy,
robustness, and applicability in predicting the compressive
strength of Mongolian fly ash concrete.

In particular, the study introduces machine learning as a
novel approach for predicting the strength of Mongolian fly ash
concrete, combining experimental data with data-driven
modeling for the first time in this regional context. This paper
makes three major contributions. First, it presents a
comparative analysis of four predictive models applied to both
experimental Mongolian data and benchmark international
datasets. Second, it evaluates their predictive performance
across multiple statistical indicators, highlighting the
importance of model selection in engineering practice. Third, it
demonstrates that Mongolian fly ash concretes exhibit unique
strength development trends, underscoring the necessity of
region-specific predictive tools. By addressing these points, the
study aims to advance data-driven concrete design methods in
Mongolia while contributing to the broader discourse on
sustainable and intelligent construction.

II.  METHODOLOGY

Five fly ash types were considered: four Mongolian high-
calcium fly ashes (MNGI-MNG4) and one low-calcium
Japanese reference sample [1]. Portland cements from
Mongolia and China were used, with natural sand and crushed
gravel as aggregates. Concrete mixes were designed with 10—
40% fly ash replacement and water-to-binder ratios of 0.39—
0.50. Compressive strength was tested at 3, 7, 28, and 91 days
following JIS A 1108 [4].

A. Materials

TABLE 1. CHEMICAL AND PHYSICAL PROPERTIES OF FLY ASH

Type Chemical composition [wt. %] Specific Surface Loss of
of fly “Si0, ALO; Fe,0; CaO SO; MgO Others 2raVity [+ area  —ignition
ash ] [em*/cm’]

MNGI 434 124 7.1 238 42 46 45 246 15,409  0.80

MNG2 472 142 120 186 12 22 46 249 26,09 1.45

Commercially available Portland cement was used in all mix
designs. A total of six different cement types were
employed—two sourced from Mongolia and four from China.
Although all are classified as Portland cement, their
mechanical performance may vary due to differences in
chemical composition and the nature of binders originally
incorporated by the manufacturers.

Fine aggregate was sourced from natural sand that passed
through a 5 mm sieve, whereas crushed gravel with a
maximum particle size of 20 mm was utilized as the coarse
aggregate. To maintain uniform workability across all test
cases, a high-performance water-reducing admixture based on
polycarboxylate ether was added to the mixtures.

B. Mix proportions

The concrete mixtures were prepared with the primary
goal of evaluating both the influence of fly ash chemical
composition and the effect of varying replacement rates on
compressive strength. The water-binder ratio was controlled
within the range of 39 to 50% to assure the flowability as well
as avoiding the segregation.

Cement replacement ratios by the fly ash ranged from 10%
to a maximum of 40% by mass of total binder. Two water-to-
binder (W/B) ratios were employed for each fly ash type,
tailored to their specific characteristics. To ensure uniform
workability across all mixes, the dosage of the superplasticizer
was adjusted accordingly. A target slump of 200 + 20 mm was
achieved for all batches, thereby allowing the preparation of
comparably compacted and workable concrete specimens.Al
systems in medicine require a higher level of computation
within the hospital and therefore higher costs for the stronger
computers that are used.

C. Specimen preparation and testing

Concrete mixing was conducted using a horizontal one-
axis mixer. Cylindrical specimens with a diameter of 100 mm
and a height of 200 mm were cast in steel molds. After
casting, the specimens were demolded 48 hours later and then
water-cured at a controlled temperature of 20 + 2°C.

Compressive strength tests were performed at 3, 7, 28, and
91 days following the guidelines of JIS A 1108: Method of
Test for Compressive Strength of Concrete [4].

III. STRENGTH PREDICTION BASED ON MACHINE LEARNING
TECHNOLOGY

In this study, a variety of machine learning
methodologies were explored to predict the compressive
strength of concrete, leveraging both experimental data and a
publicly available dataset. As a baseline, multiple linear
regression (MLR) analysis was first applied due to its
interpretability and simplicity. Subsequently, more advanced
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models, including decision tree regression, Ridge regression,
and Lasso regression, were implemented to evaluate their
predictive performance and generalization capabilities.

Along with the experimental findings presented in the
previous section, this study also utilizes a benchmark dataset
from the University of California, Irvine (UCI) Machine
Learning Repository. Originally compiled by Yeh [3], this
dataset consists of 1,030 samples and includes the following
nine input features relevant to concrete mix design: cement
content, blast furnace slag content, fly ash content, water con-
tent, superplasticizer content, coarse aggregate content, fine
aggregate content, and the age of testing. These features are
used to predict the compressive strength of concrete.

The integration of machine learning into concrete strength
prediction provides a data-driven alternative to empirical or
theoretical approaches, potentially enabling more accurate and
scalable predictions across varied mix designs and material
properties.

A. Multi Linear Regression Analysis

Multiple linear regression (MLR) serves as the initial and most
intuitive technique applied in this study. The model was
implemented using the built-in regression tool in Microsoft
Excel, which provides an accessible platform for non-
specialists and practitioners working in industrial settings.
MLR models the relationship between a dependent variable
(compressive strength) and multiple independent variables by
fitting a linear equation to the data. The regression equation is
generally represented as:

f(x):ﬂ0+ﬂ1xl +ﬁ2x2 +”.+ﬂn'xn (1)
where f{x) is the predicted compressive strength, xi, x2, ..., X»

are the input variables, and f, i, ..., f» are the regression
coefficients.

B. Strength prediction based on decision tree method

Decision tree regression is a non-parametric supervised
learning method used for continuous output prediction. It
constructs a tree-like model of decisions by recursively
partitioning the input space based on feature values that
minimize prediction error (typically measured by mean
squared error in regression).
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Figure 1: Accuracy of prediction based on decision tree (tree nodes:
198).

C. Strength prediction based on Ridge regression approach
Ridge regression, also known as L2-regularized linear
regression, mitigates multicollinearity by adding a penalty
term to the loss function, which reduces the magnitude of
coefficient values towards zero. The modified loss function is
expressed as:

2
Loss = Z(y, —f(xi)) + izﬂf @)
where A is a regularization parameter controlling the degree of
penalty.

TABLEIl. OBTAINED PARAMETERS BY RIDGE REGRESSION METHOD

Variables Parameters  Symbol Coefficient
- Intersect Po 36.1

X1 Cement J2) 10.7

X2 Fly Ash Ji) 4.25

X3 Slag 5 7.55

X4 Water Pa -5.68

X5 Sand o3 0.939

X6 Gravel s 0.163

X7 Age Voi 7.71

D. Strength prediction based on Lasso regression method

Lasso regression (Least Absolute Shrinkage and Selection
Operator) employs L1 regularization to not only shrink
coefficient values but also perform variable selection by
driving some coefficients to zero. The loss function includes
an L1 penalty term:

Loss:Z(yi—f(xi))z+ZZ|,B]| 3)

TABLE III. OBTAINED PARAMETERS BY LASSO REGRESSION METHOD

Variables Parameters Symbol Coefficient

- Intersect o 36.1

X1 Cement B 12.0

X2 Fly Ash B 5.51

X3 Slag B 8.95
X4 Water B -4.75
X5 Sand Bs 2.80
X6 Gravel Ps 1.22
X7 Age B 7.85

IV. RESULTS AND CONCLUSION

This research explored the use of different machine learning
methods to predict the compressive strength of concrete,
particularly focusing on mixtures containing locally sourced
Mongolian materials. By integrating new experimental data
with established predictive frameworks, the study addressed
both the regional specificity of material properties and the
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broader potential of machine learning in practical mix design
optimization.

Table IV presents a quantitative evaluation of the predictive
performance of multiple regression-based and machine
learning models in estimating the compressive strength of
concrete, both with and without fly ash incorporation. Among
the evaluated approaches, the decision tree model clearly
outperforms all others, achieving an R? value of 0.950, a root
means square error (RMSE) of 3.71 N/mm? and a mean
absolute percentage error (MAPE) of 8.00%. This high level
of precision underscores the decision tree’s capability to
effectively accommodate non-linear relationships and capture
the underlying variability in concrete strength—especially in
datasets characterized by material heterogeneity and multi-
source inputs.

In contrast, traditional linear modeling techniques such as
multiple linear regression (MLR), ridge regression, and lasso
regression yield comparable but significantly less accurate
results, with R? values around 0.574, RMSE near 10.8 N/mm?,
and MAPE exceeding 31%. This performance plateau can be
attributed to the inherent limitations of linear models, which,
while interpretable, struggle to encapsulate the complex
interactions between constituent materials—particularly when
such interactions deviate from linear behavior.

TABLE IV. PERFORMANCE EVALUATION OF PREDICTION METHODS

Method R? RMSE MAPE MAE
[N/mm?] [%] [N/mm?]
MLR 0.574 10.8 31.5 8.57
Decision 0.950 3.71 8.00 2.53
tree
Ridge 0.573 10.8 31.8 8.61
Lasso 0.574 10.8 31.5 8.57

A deeper interpretation of the results, supported by
comparative plots in Fig 1 reveals a systematic trend: the
group of red markers representing concrete made with
Mongolian local materials exhibits a markedly different slope
compared to data derived from earlier studies or international
sources. This suggests a material-specific divergence in
strength development behavior, potentially due to variations in
cement fineness, fly ash reactivity, or aggregate mineralogy.
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As a consequence, linear models trained predominantly on
global or legacy datasets tend to overestimate compressive
strength in the low-strength region, while underestimating it
for higher-strength concretes. This bi-directional deviation not
only threatens structural safety particularly during critical
early-age decisions such as demolding, but can also lead to
overconservative mix designs, increasing material usage and
compromising economic efficiency.

Therefore, to realize the full potential of data-driven mix
design, there is a compelling need to expand the regional
database of compressive strength tests, especially those using
locally sourced Mongolian materials. To strengthen the
practical impact, future research should include comparative
analyses with other regional fly ashes, validation under
different curing conditions, and collaboration with code
development bodies to translate these models into engineering
practice.
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