
Embedded Self Organizing Systems (Vol 12. No 14. 2025) (pp.10-13) 

~ 10 ~ 

 

 

Issue Topic: “Artificial Intelligence Based Applications in Engineering Science” 

 

Analysis of Strength Prediction Models using 

Machine Learning for Mongolian Fly Ash Concrete  

Bulgan Daalkhai  

Mongolian University of Science and Technology    

E-mail: Bulgan.dkh@gmail.com   

Uranchimeg Tudevdagva1,2 

1Mongolian University of Science and Technology 
2Citi University 

E-mail: uranchimeg@must.edu.mn  
 

 
Abstract — This paper investigates the application of 

machine learning (ML) methods for predicting the compressive 

strength of Mongolian fly ash concrete. Four predictive models—

Multiple Linear Regression (MLR), Ridge Regression, Lasso 

Regression, and Decision Tree Regression—were developed and 

compared using both experimental data and a benchmark 

dataset from the UCI repository. The Decision Tree model 

demonstrated the highest predictive accuracy (R² = 0.95, RMSE 

= 3.71 N/mm², MAPE = 8.00%), outperforming all linear 

regression-based approaches (R² ≈ 0.57). The novelty of this work 

lies in its focus on Mongolian high-calcium (Class C) fly ash, 

whose elevated CaO content and distinct hydration kinetics differ 

from globally studied Class F fly ashes. These variations in 

chemical composition and mineral structure result in distinct 

patterns of strength development, highlighting the importance of 

developing region-specific prediction models to ensure structural 

safety, cost efficiency, and sustainability in Mongolian 

construction practices. The study further provides a foundation 

for integrating ML-based predictive tools into local engineering 

practice and design standards. 
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I.  INTRODUCTION  

Concrete plays a central role in modern civil engineering, 

providing the backbone for infrastructure such as bridges, 

highways, buildings, and power facilities. Its compressive 

strength is the most critical parameter determining safety, 

durability, and long-term serviceability of structures [1]. With 

rapid urbanization and industrial development, demand for 

concrete has surged globally, and especially in emerging 

economies such as Mongolia. Mongolia is undergoing a 

construction boom driven by housing projects, infrastructure 

expansion, and policy reforms. This rapid growth intensifies 

the need for efficient quality control systems that can reliably 

predict the mechanical properties of concrete before structural 

application [2].  

Fly ash, a by-product of coal-fired power plants, has 

become a widely recognized supplementary cementitious 

material (SCM). Globally, fly ash is known to enhance 

workability, durability, and sustainability of concrete by 

reducing cement consumption and associated CO₂ emissions 

[3]. In Mongolia, where approximately 93% of electricity is 

generated from coal, fly ash is produced in large quantities, 

predominantly of the high-calcium (Class C) type [2]. The 

chemical composition of Mongolian fly ash, particularly its 

elevated CaO content, distinguishes it from the low-calcium 

(Class F) fly ashes commonly reported in international 

literature [1]. This compositional difference results in distinct 

hydration kinetics and strength development behaviors, 

necessitating region-specific research.  

Traditional prediction methods for compressive strength—
such as empirical equations and regression-based models—
have long been employed in construction practice [4]. While 
these approaches offer interpretability and simplicity, they 
struggle with non-linear material interactions, multicollinearity, 
and variability in local raw materials [2]. As a result, inaccurate 
predictions may occur: overestimating strength in the early 
stages can lead to premature demolding and structural failures, 
while underestimation in later stages may cause conservative 
mix designs, inflating costs and resource consumption [1]. This 
distinction provides the main novelty of the study, as it applies 
machine learning methods to a uniquely Mongolian material 
system that has not been quantitatively analyzed in prior 
international research. 

Recent advancements in Artificial Intelligence (AI) and 
machine learning (ML) have revolutionized predictive 
modeling across various engineering domains. In the field of 
concrete technology, methods such as Artificial Neural 
Networks (ANN), Support Vector Machines (SVM), and 
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Decision Trees have demonstrated superior accuracy compared 
to linear models [3]. These approaches are capable of capturing 
complex, non-linear interactions among multiple input 
parameters—including cement content, fly ash replacement 
ratio, water-to-binder ratio, curing conditions, and testing 
age—without requiring explicit physical equations. 
Importantly, ML can adapt to local datasets, making it a 
promising tool for addressing Mongolia’s unique fly ash 
properties. 

Despite these promising advances, challenges remain. The 
performance of ML models heavily depends on the availability 
and quality of training data. In Mongolia, datasets are often 
limited, fragmented, or inconsistent due to a lack of systematic 
experimental programs [2]. Moreover, while black-box models 
like ANN can achieve high accuracy, their interpretability is 
limited, creating difficulties in practical engineering decision-
making. This study therefore aims not only to apply machine 
learning but also to critically compare different models—
Multiple Linear Regression (MLR), Ridge Regression, Lasso 
Regression, and Decision Tree Regression—for their accuracy, 
robustness, and applicability in predicting the compressive 
strength of Mongolian fly ash concrete. 

In particular, the study introduces machine learning as a 

novel approach for predicting the strength of Mongolian fly ash 

concrete, combining experimental data with data-driven 

modeling for the first time in this regional context. This paper 

makes three major contributions. First, it presents a 

comparative analysis of four predictive models applied to both 

experimental Mongolian data and benchmark international 

datasets. Second, it evaluates their predictive performance 

across multiple statistical indicators, highlighting the 

importance of model selection in engineering practice. Third, it 

demonstrates that Mongolian fly ash concretes exhibit unique 

strength development trends, underscoring the necessity of 

region-specific predictive tools. By addressing these points, the 

study aims to advance data-driven concrete design methods in 

Mongolia while contributing to the broader discourse on 

sustainable and intelligent construction. 

II. METHODOLOGY  

 Five fly ash types were considered: four Mongolian high-
calcium fly ashes (MNG1–MNG4) and one low-calcium 
Japanese reference sample [1]. Portland cements from 
Mongolia and China were used, with natural sand and crushed 
gravel as aggregates. Concrete mixes were designed with 10–
40% fly ash replacement and water-to-binder ratios of 0.39–
0.50. Compressive strength was tested at 3, 7, 28, and 91 days 
following JIS A 1108 [4]. 

A. Materials  

TABLE 1. CHEMICAL AND PHYSICAL PROPERTIES OF FLY ASH 

Type 
of fly 

ash 

Chemical composition [wt. %] Specific 
gravity [-

] 

Surface 
area 

[cm2/cm3] 

Loss of 
ignition SiO2 Al2O3 Fe2O3 CaO SO3 MgO Others 

MNG1         15,409 0.80 

MNG2         26,096 1.45 

MNG3         22,298 0.80 

MNG4         20,242 0.50 

JPN         15,158 5.70 

 

Commercially available Portland cement was used in all mix 

designs. A total of six different cement types were 

employed—two sourced from Mongolia and four from China. 

Although all are classified as Portland cement, their 

mechanical performance may vary due to differences in 

chemical composition and the nature of binders originally 

incorporated by the manufacturers. 

 

Fine aggregate was sourced from natural sand that passed 

through a 5 mm sieve, whereas crushed gravel with a 

maximum particle size of 20 mm was utilized as the coarse 

aggregate. To maintain uniform workability across all test 

cases, a high-performance water-reducing admixture based on 

polycarboxylate ether was added to the mixtures.  

 

B. Mix proportions  

The concrete mixtures were prepared with the primary 

goal of evaluating both the influence of fly ash chemical 

composition and the effect of varying replacement rates on 

compressive strength. The water-binder ratio was controlled 

within the range of 39 to 50% to assure the flowability as well 

as avoiding the segregation. 

Cement replacement ratios by the fly ash ranged from 10% 

to a maximum of 40% by mass of total binder. Two water-to-

binder (W/B) ratios were employed for each fly ash type, 

tailored to their specific characteristics. To ensure uniform 

workability across all mixes, the dosage of the superplasticizer 

was adjusted accordingly. A target slump of 200 ± 20 mm was 

achieved for all batches, thereby allowing the preparation of 

comparably compacted and workable concrete specimens.AI 

systems in medicine require a higher level of computation 

within the hospital and therefore higher costs for the stronger 

computers that are used. 

C. Specimen preparation and testing  

Concrete mixing was conducted using a horizontal one-

axis mixer. Cylindrical specimens with a diameter of 100 mm 

and a height of 200 mm were cast in steel molds. After 

casting, the specimens were demolded 48 hours later and then 

water-cured at a controlled temperature of 20 ± 2°C. 

Compressive strength tests were performed at 3, 7, 28, and 

91 days following the guidelines of JIS A 1108: Method of 

Test for Compressive Strength of Concrete [4]. 

III. STRENGTH PREDICTION BASED ON MACHINE LEARNING 

TECHNOLOGY   

 In this study, a variety of machine learning 
methodologies were explored to predict the compressive 
strength of concrete, leveraging both experimental data and a 
publicly available dataset. As a baseline, multiple linear 
regression (MLR) analysis was first applied due to its 
interpretability and simplicity. Subsequently, more advanced 
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models, including decision tree regression, Ridge regression, 
and Lasso regression, were implemented to evaluate their 
predictive performance and generalization capabilities. 

Along with the experimental findings presented in the 
previous section, this study also utilizes a benchmark dataset 
from the University of California, Irvine (UCI) Machine 
Learning Repository. Originally compiled by Yeh [3], this 
dataset consists of 1,030 samples and includes the following 
nine input features relevant to concrete mix design: cement 
content, blast furnace slag content, fly ash content, water con-
tent, superplasticizer content, coarse aggregate content, fine 
aggregate content, and the age of testing. These features are 
used to predict the compressive strength of concrete.  

The integration of machine learning into concrete strength 
prediction provides a data-driven alternative to empirical or 
theoretical approaches, potentially enabling more accurate and 
scalable predictions across varied mix designs and material 
properties.  

A. Multi Linear Regression Analysis  

Multiple linear regression (MLR) serves as the initial and most 

intuitive technique applied in this study. The model was 

implemented using the built-in regression tool in Microsoft 

Excel, which provides an accessible platform for non-

specialists and practitioners working in industrial settings. 

MLR models the relationship between a dependent variable 

(compressive strength) and multiple independent variables by 

fitting a linear equation to the data. The regression equation is 

generally represented as: 

( ) 0 1 1 2 2 n nf x x x x   = + + + +  (1)  

where f(x) is the predicted compressive strength, x1, x2, …, xn 

are the input variables, and 0, β1, …, βn are the regression 

coefficients. 

B. Strength prediction based on decision tree method  

Decision tree regression is a non-parametric supervised 

learning method used for continuous output prediction. It 

constructs a tree-like model of decisions by recursively 

partitioning the input space based on feature values that 

minimize prediction error (typically measured by mean 

squared error in regression). 

 

                    

Figure 1: Accuracy of prediction based on decision tree (tree nodes: 

198).  

C. Strength prediction based on Ridge regression approach  

Ridge regression, also known as L2-regularized linear 

regression, mitigates multicollinearity by adding a penalty 

term to the loss function, which reduces the magnitude of 

coefficient values towards zero. The modified loss function is 

expressed as: 

( )( )
2 2

Loss i i jy f x  = − +  (2) 

where  is a regularization parameter controlling the degree of 

penalty. 

 

TABLE II. OBTAINED PARAMETERS BY RIDGE REGRESSION METHOD 

Variables Parameters Symbol Coefficient 

- Intersect 0 36.1 

x1 Cement 1 10.7 

x2 Fly Ash 2 4.25 

x3 Slag 3 7.55 

x4 Water 4 -5.68 

x5 Sand 5 0.939 

x6 Gravel 6 0.163 

x7 Age 7 7.71 

D. Strength prediction based on Lasso regression method  

Lasso regression (Least Absolute Shrinkage and Selection 

Operator) employs L1 regularization to not only shrink 

coefficient values but also perform variable selection by 

driving some coefficients to zero. The loss function includes 

an L1 penalty term: 

( )( )
2

Loss i i jy f x  = − +   (3) 

TABLE III. OBTAINED PARAMETERS BY LASSO REGRESSION METHOD 

 

Variables Parameters Symbol Coefficient 

- Intersect 0 36.1 

x1 Cement 1 12.0 

x2 Fly Ash 2 5.51 
x3 Slag 3 8.95 

x4 Water 4 -4.75 

x5 Sand 5 2.80 

x6 Gravel 6 1.22 

x7 Age 7 7.85 

 

IV. RESULTS AND CONCLUSION 

 

This research explored the use of different machine learning 

methods to predict the compressive strength of concrete, 

particularly focusing on mixtures containing locally sourced 

Mongolian materials. By integrating new experimental data 

with established predictive frameworks, the study addressed 

both the regional specificity of material properties and the 
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broader potential of machine learning in practical mix design 

optimization. 

Table IV presents a quantitative evaluation of the predictive 

performance of multiple regression-based and machine 

learning models in estimating the compressive strength of 

concrete, both with and without fly ash incorporation. Among 

the evaluated approaches, the decision tree model clearly 

outperforms all others, achieving an R2 value of 0.950, a root 

means square error (RMSE) of 3.71 N/mm2, and a mean 

absolute percentage error (MAPE) of 8.00%. This high level 

of precision underscores the decision tree’s capability to 

effectively accommodate non-linear relationships and capture 

the underlying variability in concrete strength—especially in 

datasets characterized by material heterogeneity and multi-

source inputs. 

In contrast, traditional linear modeling techniques such as 

multiple linear regression (MLR), ridge regression, and lasso 

regression yield comparable but significantly less accurate 

results, with R2 values around 0.574, RMSE near 10.8 N/mm2, 

and MAPE exceeding 31%. This performance plateau can be 

attributed to the inherent limitations of linear models, which, 

while interpretable, struggle to encapsulate the complex 

interactions between constituent materials—particularly when 

such interactions deviate from linear behavior. 

TABLE IV. PERFORMANCE EVALUATION OF PREDICTION METHODS  

 

Method R2 RMSE 

[N/mm2] 

MAPE 

[%] 

MAE 

[N/mm2] 

MLR 0.574 10.8 31.5 8.57 

Decision 

tree 
0.950 3.71 8.00 2.53 

Ridge 0.573 10.8 31.8 8.61 

Lasso 0.574 10.8 31.5 8.57 

 

A deeper interpretation of the results, supported by 

comparative plots in Fig 1 reveals a systematic trend: the 

group of red markers representing concrete made with 

Mongolian local materials exhibits a markedly different slope 

compared to data derived from earlier studies or international 

sources. This suggests a material-specific divergence in 

strength development behavior, potentially due to variations in 

cement fineness, fly ash reactivity, or aggregate mineralogy. 

As a consequence, linear models trained predominantly on 

global or legacy datasets tend to overestimate compressive 

strength in the low-strength region, while underestimating it 

for higher-strength concretes. This bi-directional deviation not 

only threatens structural safety particularly during critical 

early-age decisions such as demolding, but can also lead to 

overconservative mix designs, increasing material usage and 

compromising economic efficiency. 

Therefore, to realize the full potential of data-driven mix 

design, there is a compelling need to expand the regional 

database of compressive strength tests, especially those using 

locally sourced Mongolian materials. To strengthen the 

practical impact, future research should include comparative 

analyses with other regional fly ashes, validation under 

different curing conditions, and collaboration with code 

development bodies to translate these models into engineering 

practice.   
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