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Abstract—This study presents a novel methodology for 

error-correcting publicly available NASA wind data and 

making it more accurate for location-specific wind resource 

assessments for the emirate of Ajman, UAE. The approach 

integrates maximum climate and environmental variables, 

data-driven techniques and machine learning algorithms, 

addressing the inherent errors in publicly available NASA 

satellite data. The study establishes error correction factors for 

satellite-derived wind speed data, enhancing the dependability 

of wind speed data for sustainable wind resource assessment 

and power production forecasting. The findings of this study 

have significant implications for wind energy industry 

stakeholders and the government for decision-making and 

sustainability initiatives. 
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I. INTRODUCTION & BACKGROUND 

The impact of climate change has influenced the world to 
shift towards sustainable energy sources that have 
tremendously accelerated wind power development. Accurate 
wind speed prediction and resource assessment are crucial for 
successfully planning and managing wind energy projects. 
Machine learning (ML) techniques were tested for site-
specific wind speed prediction to enhance resource 
assessment, leveraging their ability to identify patterns, 
capture non-linear relationships, and handle large datasets [1, 
2]. As per [3] various ML algorithms, namely the Random 
Forest (RF), Support Vector Machine (SVM), and Gradient 
Boosting Machine (GBM) algorithm [3] got promising results 
in wind speed prediction and resource assessment [4, 5, 
6].These algorithms can utilise wind speed data, other climate 
parameters, and environmental parameters to develop 
predictive models for predicting future wind speeds and 
estimating the site’s wind energy. 

However, the correctness of wind speed estimates mainly 
depends on bias-free availability of input data [7] 

Satellite-derived wind speed data, such as those provided 
by NASA, offer a valuable resource for regions with limited 
ground-based measurements[8]. Nevertheless, satellite-
derived data often have lower accuracy than ground-based 
measurements due to the limitations of remote sensing 

techniques [9]. Correction Factor Analysis (CFA) is used to 
correct the errors and biases of NASA's publicly available 
satellite wind speed data [10]. 

Starting from 2010, the Emirate of Ajman is in the 
forefront of striving to implement a renewable energy mix 
[11]. Given its coastal location and exposure to strong winds, 
wind energy presents a promising opportunity for diversifying 
Ajman's energy mix. However, successful wind energy 
development in Ajman requires site-specific accurate and 
reliable wind resource assessments that consider the region's 
unique environmental characteristics and challenges with data 
availability. 

Recent studies by [12,13] have highlighted the need for 
site-specific, error-corrected wind resource assessments in the 
emirate of Ajman. Building upon these findings, the current 
study aims to investigate the application of ML techniques for 
wind speed prediction and data correction to support the site-
specific wind resource assessment and development of 
sustainable wind energy systems in the Emirate. 

II. OBJECTIVES OF THE STUDY  

The main objectives of this study are to: 

• Evaluate the performance of Random Forest, Support 
Vector Machine, and Gradient Boosting Machine 
algorithms for wind speed prediction in Ajman using 
wind data and relevant meteorological variables 
collected from the Ajman X ground station and 
NASA satellite source. 

• Assess the quality and suitability of NASA satellite-
derived wind data for sustainable wind energy 
development in the emirate and investigate the 
application of CFA for data correction. 

• Develop a comprehensive wind resource assessment 
framework for Ajman that integrates ML-based wind 
speed prediction, data correction techniques, and site-
specific environmental characteristics. 

• Identify future research directions and challenges in 
applying ML for wind resource assessment. 

• By addressing these objectives, this study intends to 
deliver results to the wind energy community, 
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increase knowledge on ML applications in wind 
energy, and support the sustainable development of 
wind power in the emirate of Ajman and the broader 
UAE region. 

III. LITERATURE REVIEW 

The increasing requirement for sustainable power has 
opened the way for increased interest in wind power as a 
sustainable and renewable source [14]. Accurate wind 
resource assessment is crucial for efficiently planning and 
operating wind energy projects [15]. However, the inherent 
variability of wind poses challenges in predicting wind speeds 
and estimating wind power potential [16]. To address these 
challenges, researchers have turned to machine learning (ML) 
techniques, which have shown promise in improving the 
accuracy of wind speed predictions and resource assessments 
[17]. 

ML focuses on developing algorithms and models that can 
learn and improve their performance based on data [18].  ML 
algorithms are divided into supervised learning, unsupervised 
learning, and reinforcement learning algorithms [19]. This 
literature review explores ML techniques used for wind speed 
prediction, focusing on their application in wind resource 
assessment. Additionally, we discuss the importance of data 
quality and explore methods for correcting and enhancing 
wind speed data, specifically from satellite-derived sources 
like NASA. 

A. Machine Learning Techniques for Wind Speed 

Prediction 

1) Random Forest 

Random Forest (RF) is an ensemble learning method that 
combines multiple decision trees to make predictions [20]. It 
has been widely used in wind speed [20]prediction due to its 
ability to handle high-dimensional data and capture non-linear 
relationships [4]. [4] utilized RF to predict hourly wind speed 
in Tunisia and discovered that it performed better than other 
machine learning models, such as Support Vector Regression 
(SVR) and Artificial Neural Networks (ANN). 

2) Support Vector Machine 

Support Vector Machine (SVM) is a popular ML 
algorithm that has been extensively used for wind speed 
prediction [21]. SVM takes the input data and transforms it 
into a high-dimensional feature space, then identifies the best 
hyperplane that maximizes the margin between distinct 
classes[22]. [5] employed the SVR algorithm for short-term 
wind speed forecasting in China and demonstrated its 
superiority over autoregressive integrated moving average 
(ARIMA) models.  

3) Gradient Boosting Machine 

Gradient Boosting Machine (GBM) is an ensemble 
learning method that combines weak learners. typically, 
decision trees, to create a strong predictive model [23]. GBM 
iteratively trains new models to minimise the residual errors 
of the previous models, thus improving the overall prediction 
accuracy [24]. [6] applied GBM for short-term wind speed 
forecasting in China and found that it outperformed other ML 
models such as RF and SVR. 

B. Data Quality and Correction Methods 

1) Importance of Wind Data Quality 

The accuracy of wind speed predictions heavily relies on 
the quality of the input data [25]. Wind speed data can be 
obtained from various sources, including ground-based 
measurements, meteorological masts, and satellite-derived 
datasets[26] However, these datasets often contain errors, 
inconsistencies, and missing values, which can significantly 
impact the validity of ML models [27] . Therefore, it is crucial 
to pre-process and clean the wind speed data before using it 
for prediction tasks. 

2) NASA Satellite-Derived Wind Speed Data 

NASA provides a valuable free source of satellite-derived 
wind data that are usually used for wind resource assessment 
in regions where ground-based measurements are scarce [28]. 
However, satellite-derived wind speed data often has lower 
accuracy compared to ground-based measurements due to the 
inherent limitations of remote sensing techniques[29].  

3) Correction Factor Analysis 

Correction Factor Analysis (CFA) is a technique for 
adjusting satellite-derived wind speed data based on ground-
based measurements. [10]. [30] Applied CFA to correct 
NASA satellite-derived wind speed data in Europe and 
reported significant improvements in the accuracy of wind 
resource assessments. 

C. Wind Resource Assessment in Ajman, UAE 

[12] conducted a preliminary investigation into wind 
speed variations between two data sources in the Emirate of 
Ajman, UAE. The [31] study compared wind speed data from 
two different sources: the European Centre for Medium-
Range Weather Forecasts (ECMWF), Reanalysis version 5 
(ERA5), and NASA Satellite Power Data for an offshore and 
an onshore location in Ajman. The study found substantial 
variation in wind speed frequency distributions among the two 
data sources, with ERA5 showing lower wind speeds than the 
NASA data. The findings highlight the importance of using 
site-specific, error-corrected wind data for accurate wind 
resource assessments. 

[13] reviewed Ajman's wind energy potential and possible 
use for various applications, mainly desalination, street 
lighting, and building-integrated wind turbines. The study 
estimated that the Emirate's available wind power has the 
potential to provide 20% of its total electricity requirement, 
which can very well support Ajman's efforts towards 
sustainable development. 

D. Future Directions and Challenges 

Despite the advancements in ML techniques for wind 
speed prediction and data correction methods, future research 
still has challenges and opportunities. One area of interest is 
the integration of physics-based models with ML approaches 
to improve the interpretability and generalizability of wind 
speed predictions. [7]. Another challenge is the lack of error-
free, economically feasible access to wind speed data in many 
regions, particularly developing countries [32]. Therefore, 
more extensive data collection campaigns and collaborative 
efforts to share wind speed datasets are needed to develop a 
sustainable wind energy mix. 
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E. Conclusion 

This literature review highlights the significant progress 
made in using ML techniques for wind speed prediction and 
the importance of data quality and correction methods. ML 
algorithms such as Random Forest, Support Vector Machine, 
and Gradient Boosting Machine improved the quality of wind 
modelling. Additionally, correction methods like Correction 
Factor Analysis have effectively enhanced the accuracy of 
satellite-derived wind speed data, particularly from NASA. 
The studies by [12,13] emphasise the need for site-specific, 
error-corrected wind resource assessments in the Emirate of 
Ajman, UAE. The current research aims to fill the gaps in 
Ajman in meeting the requirements for developing wind 
power by examining applications of ML techniques for wind 
speed prediction and data correction. However, further 
research is required to fully address the Emirate's specific 
challenges and optimise the integration of wind energy into 
the existing power infrastructure. 

IV. METHODOLOGY 

The methodology employed in this study encompasses a 
systematic approach designed to investigate wind speed 
prediction methodologies and their application in renewable 
energy research. Leveraging machine learning techniques, 
this methodology aims to advance wind speed prediction 
accuracy while addressing the unique challenges posed by 
wind resource assessment in complex urban environments. 

A. Data Preparation 

The data preparation phase involves collecting and 
processing raw wind speed data from Ajman X station, a 
selected ground station for the case study, and supplementary 
data from NASA's satellite power data source. The study 
utilised the above-specified ground-based station wind data at 
Ajman X station and meteorological/climatic variables and 
site-specific environmental data (Please see Fig. 1), which is 
collected from Ajman Municipality & Planning Department 

meteorological data and satellite data parameters from 
NASA's publicly available power database. The collected data 
underwent pre-processing to address missing or incomplete 
values and standardised formats, ensuring consistency and 
reliability. Quality control measures are applied to validate 
data integrity and identify and mitigate discrepancies or 
outliers. 

B. Data Preprocessing 

Following data preparation, the processed dataset 
underwent feature engineering to extract meaningful insights 
into wind speed dynamics. Additional features were derived 
from existing variables using mathematical calculations, 
aggregation functions, and time-series analysis techniques. 
These engineered features, serving as proxies for atmospheric 
dynamics, topographical influences, and temporal variations, 
improved the performance of predictive models and enhanced 
understanding of wind resource characteristics. 

Data pre-processing involved removing outliers to 
maintain the dataset's integrity. As the NASA satellite data 
was gathered at a height of 10 meters above ground level, a 
threshold of 12 m/s was chosen to address potential 
differences between ground-level measurements and satellite-
derived data, following recommendations from previous 
research. Missing values in the satellite-derived wind speed 
dataset were addressed using KNN (K-Nearest Neighbors) 
imputation with a neighbourhood size of 5. 

C. Feature Engineering 

A feature importance analysis identified the significance 
of various meteorological variables in predicting wind speed 
at the Ajman X location Fig.  2. Wind direction emerged as 
the most influential feature, followed by air pressure, relative 
humidity, temperature, and air density. Although exhibiting 
minimal importance, roughness length was included for 
comprehensiveness. All variables contributed substantially to  
wind speed estimations. Feature engineering enhanced the 
dataset's richness and predictive power by deriving new 
features from existing variables, capturing meaningful 
insights into wind speed dynamics. Techniques employed 
included mathematical calculations, aggregation functions, 
and time-series analysis to compute wind speed differences, 
identify temporal trends, and extract recurring patterns. 

 

Fig. 1. Data Collection Workflow from Ground Stations and  

Satellite Sources 

 

 

Fig. 2. Feature Importance Analysis for Wind Speed Prediction 
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D. Model Training and Evaluation 

In this phase, the collected and pre-processed data were 
utilised to train machine learning models for wind speed 
prediction. In line with the methodology from [33] Three 
distinct algorithms, such as Random Forest, Support Vector 
Machine (SVM), and Gradient Boosting Machine (GBM), 
have been implemented. The dataset was split into two sets, 
one for training and the other for testing, and cross-validation 
techniques were implemented to validate the models' 
performance. The key assessment criteria were to estimate 
Mean Absolute Error (MAE) and R-squared, to check the 
efficiency of the chosen models. 

E. Correction Factor Determination 

Correction factors were determined through a comparative 
analysis between ground station measurements and satellite 
data to refine the accuracy and reliability of NASA satellite-
derived wind speed data. Advanced statistical methods, 
including multiple linear regression and error correction 
methods, were used to estimate accurate correction factors to 
minimise discrepancies and enhance the fidelity of the NASA 
satellite data. 

F. Error Correction 

After determining correction factors, error correction 
procedures were implemented to refine NASA’s satellite-
derived wind speed dataset. The derived correction factors 
were applied to adjust the satellite data to align it more closely 
with ground-truth measurements. The effectiveness of these 
error correction techniques was validated against ground-truth 
data, ensuring the accuracy and reliability of the corrected 
dataset so that it can be used for site-specific sustainable wind 
resource assessment and further design of the wind energy 
mix. 

G. Validation and Analysis 

In the final phase, NASA’s corrected wind speed dataset 
underwent thorough validation against ground truth 
measurements. Statistical analyses, including correlation 
analysis and regression modelling, were employed to validate 
the accuracy and reliability of the corrected dataset. Spatial 
and temporal patterns, trends, and anomalies in wind speed 
variations were examined to gain insights into local wind 
regimes, providing valuable information for wind energy 
applications. This developed methodology provides a 
comprehensive framework for wind speed prediction, 
correction, validation, and analysis to guarantee the findings' 
robustness, sturdiness and validity. 

V. RESULTS AND DISCUSSION 

A. Introduction to Results 

This results section presents the outcomes of the 
methodology employed to investigate wind speed patterns at 
Ajman X and their implications for urban wind turbine 
installation in the Emirate of Ajman. Through rigorous data 
preparation, machine learning model training, and validation 
against ground truth measurements, the study aims to provide 
valuable insights for the wind energy industry and sustainable 
development projects. The comprehensive approach to data 
analysis and model evaluation reveals significant findings 
with far-reaching implications for renewable energy planning 
and environmental assessments in urban areas, specifically for 
the emirate of Ajman. The methodology enhances wind 
resource assessment techniques by bridging theoretical 

knowledge with real-world applications, facilitating informed 
decision-making in urban planning and sustainable energy 
development. This section evaluates the methodology's 
effectiveness in generating applicable insights for wind 
energy applications, empowering stakeholders to navigate the 
complexities of urban wind resource assessment and 
harnessing the potential of wind energy in Ajman and beyond. 

B. Analysis of Wind Speed Characteristics at Ajman X 

The analysis of wind speed patterns at Ajman X, 
conducted using the carefully developed methodology, yields 
valuable insights into local wind conditions and their 
implications for wind energy applications. The utilisation of 
both ground station observations and NASA satellite data 
ensures the accuracy and reliability of the results. 

TABLE I. SUMMARY STATISTICS OF WIND SPEED DATA (GROUND-BASED 

STATION OBSERVATION AND NASA SATELLITE DATA AT AJMAN X) 

Parameters 
Ground-based 

Station 
NASA Data 

Mean Wind Speed (m/s) 3.77 3.63 

Median Wind Speed (m/s) 3.42 3.39 

Standard Deviation (m/s) 2.17 1.88 

Wind Speed Min(m/s) 0.02 0.06 

Wind Speed Max (m/s) 14.67 11.46 

Range (m/s) 14.65 11.40 

 
The analysis reveals consistent wind speed distributions 

between the ground station and NASA satellite data, with 
average wind speeds varying from 3.63 to 3.77 m/s and 
standard deviations of approximately 1.88 to 2.17 m/s. These 
findings demonstrate the methodology's strength in accurately 
capturing and analysing wind speed variations. Furthermore, 
the minimal differences in median wind speeds and range 
values between the datasets indicate uniformity in the 
measured wind characteristics, validating the effectiveness of 
the procedures in harmonising ground-based and satellite 
data. The summary statistics highlight the reliability and 
accuracy of the methodology in analysing wind speed data at 
Ajman X, laying the foundation for informed decision-
making in wind energy projects and advancing urban wind 
turbine installations in the Emirate of Ajman. 

C. Model Performance Evaluation 

In this section, we evaluated the performance of selected 
ML models (RF, SVM, and GBM) for predicting wind speed 
at Ajman X station. The evaluation was based on ground-
based observations and NASA satellite data. Based on the 
performance comparison presented in Fig. 3, the machine 
learning models applied for wind speed prediction at Ajman 
X Station show varying levels of accuracy. The RF model 
showed the highest R-squared values, approximately 0.6 and 
0.5, for the ground and NASA data, indicating its better 
performance in capturing the variability in wind speed data 
than the other models. The Gradient Boosting Machine also 
shows good results, with R-squared values around 0.3 for 
ground data and 0.1 for NASA data, suggesting room for 
further improvement. In contrast, the Support Vector Machine 
yields the lowest R-squared values among the three models 
tested, implying its limited effectiveness in predicting wind 
speed at this location. 

The analysis of the result shown in Fig. 3, aligns well with 
results reported in recent literature on wind speed and power 
forecasting using machine learning techniques. [34]  achieved 
similar R-squared values around 0.5 using random forest 
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models for direct wind speed prediction, validating the 
accuracy range observed for the RF algorithm in this study. 
The relative underperformance of the SVM compared to 
Random Forest and Gradient Boosting is consistent with the 
results noted by [35, 36] , who found that Random Forest often 
outperforms SVM in wind power prediction tasks. Also, the 
potential for further accuracy improvements through hybrid 
architectures, as demonstrated by [37,38] suggests a 
promising direction for future research building upon the 
foundation established by the RF and GB results, which are 
detailed in Fig . 3.  

The RF algorithm exhibited the lowest MAE and highest 
R-squared values on the ground-based dataset, indicating its 
superior performance compared to SVM and GBM.  

SVM demonstrated consistent but modest performance 
across both datasets, with relatively higher MAE and lower R-
squared than Random Forest. Its stable performance on 
unseen data suggested robustness and reliability. 

 

Analysis of TABLE II shows that the RF algorithm 
exhibited the lowest MAE of 0.9856 for ground data and 
1.0119 for NASA data, along with the highest R-squared 
values of 0.5772 on ground data and 0.4919 on NASA data. 
This indicates the Random Forest's superior performance in 
accurately capturing the variability in wind speed compared 
to the other models 

TABLE II. EVALUATION METRICS OF ML MODELS 

Model 
Ground 

MAE 

Ground 

R-squared 

NASA 

MAE 

NASA 

R-squared 

Random 

Forest 
0.9856 0.5772 1.0119 0.4919 

Support Vector 

Machine 
1.5460 0.0585 1.4879 0.0113 

Gradient Boosting 

Machine 
1.4017 0.2673 1.4016 0.1420 

 

However, the Support Vector Machine yielded the highest 
MAE of 1.5460 for ground data and 1.4879 for NASA data, 
as well as the lowest R-squared values of 0.0585 on ground 
data and 0.0113 on NASA data. This implies the SVM's 
limited effectiveness in predicting wind speeds at this 
location. 

The Gradient Boosting Machine had a MAE of 1.4017 for 
ground and NASA data. Its R-squared values were 0.2673 for 
ground data and 0.1420 for NASA data, lower than Random 
Forest but still outperforming the SVM model, suggesting 
potential for further improvement. These findings align well 
with the state-of-the-art literature. [34], using random forests 
for wind speed prediction, achieved a similar high R-squared 

around 0.5, corroborating its accurate Random Forest 
performance. The SVM's underperformance relative to 
Random Forests and Gradient Boosting is consistent with 
[35, 36] who found random forests often surpass SVM in 
wind power forecasting tasks. 

Moreover, hybrid model architectures demonstrated by 
[38,39] suggest promising directions to further improve 
accuracy by building upon the strong Random Forest and 
Gradient-boosting results. 

Notably, the comparable performance between ground 
and NASA data implies that the error-corrected NASA data 
through this developed methodology is very effective. This 
will make site-specific wind data available for further site-
specific wind resource assessment and wind power studies in 
Ajman and can also be extended to the other emirates.  This is 
particularly important given the substantial costs of using 
traditional methods to measure site-specific wind speed at 
turbine hub heights. The availability of accurate, free NASA 
satellite-derived wind data can significantly advance wind 
energy research and development efforts. 

D. Correction Factor Analysis 

The histogram Fig. 4, below explains the distribution of 
satellite-derived wind speed data from NASA. It reveals a 
right-skewed distribution, with most observations 
concentrated in the lower to moderate wind speed range of 
approximately 2-6 m/s, peaking around 4 m/s. 

 

The skewed, concentrated distribution aligns with the 
statistical summary provided, showing the NASA data's 
maximum wind speed of 11.46 m/s. Fig. 4, provides insights 
into the NASA data set's wind speed distribution and 
underscores the significance of data assimilation and 
correction methodologies for sustainable wind resource 
assessments.  

TABLE III below shows correction factors with four 
decimal places, which shows that the study was done with 
more precision since this high level of precision is part of the 
study's approach in using machine learning for correction 
factor analysis. Although this precision may be more than 
what is typically seen in data, it fits with the study's goal of 
using machine learning to improve the developed error 
correction methods. By providing detailed correction factors, 
the study makes wind resource assessments more sustainable, 
site-specific and reliable. This demonstrates the importance of 
precision in improving machine learning-based correction 
techniques. 

 

Fig. 3. Performance Comparison of Machine Learning Models for Wind 

Speed Prediction at Ajman X Station 

 

 

Fig. 4. Distribution of Satellite-Derived Wind Speed Data 
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TABLE III. MONTHLY CORRECTION FACTORS FOR SATELLITE-DERIVED 

WIND SPEED DATA 

Month Mean Correction Factor 

January 0.8572 

February 1.3765 

March 1.1647 

April 1.0308 

May 0.9377 

June 1.1146 

July 1.1111 

August 0.9763 

September 0.8186 

October 1.0744 

November 0.9572 

December 1.1775 

 

The analysis of the monthly correction factors for satellite-
derived wind speed data reveals notable temporal variations 
in the accuracy of the dataset. These variations, as evidenced 
by the mean correction factors presented in TABLE III, 
highlight the importance of conducting thorough Correction 
Factor Analyses to account for discrepancies and biases in the 
NASA satellite data. In detail, TABLE III shows the monthly 
correction factors derived from the machine learning-based 
NASA satellite wind speed data analysis. These correction 
factors exhibit good variability across different months, 
revealing temporal patterns in the biases of the original NASA 
satellite-derived wind speed estimates. Months with 
correction factors below 1, such as September (0.8186), 
January (0.8572), May (0.9377), and November (0.9572), 
indicate an underestimation of true wind speeds in the satellite 
data during these periods. Conversely, months with correction 
factors above 1, like February (1.3765), December (1.1775), 
March (1.1647), June (1.1146), and July (1.1111), suggest 
higher estimation of wind speeds in the original NASA 
satellite data for these months. 

The developed methodology's ability to identify and 
quantify these monthly errors in the NASA satellite wind 
speed data aligns with the study's objective: to leverage 
machine learning approaches to enhance wind speed 
prediction accuracy and address data discrepancies. The 
insights gained from the analysis of TABLE III expose 
interesting areas for future research, such as refining machine 
learning models to incorporate temporal variations in data 
biases and utilising the corrected wind speed data in predictive 
modelling to improve the exactness and correctness of wind 
power predictions, estimates and sustainable wind resource 
assessments. By accounting for the monthly correction 
factors, stakeholders can develop more reliable and precise 
wind speed prediction models, which finally influence the 
development of the wind energy systems in Ajman.   

E. Error Correction Results 

The error correction analysis yields valuable insights for 
the wind industry, especially concerning sustainability and 
integrating small-scale wind energy solutions like urban 
buildings and streetlight turbines. Table IV below explains the 
impact of error correction on the accuracy of the NASA 
satellite data set.  

TABLE IV. ERROR CORRECTION IMPACT ON DATASET ACCURACY 

Metric Before Correction After Correction 

MAE 2.0839 2.0765 

RMSE 2.7326 2.7364 

MPE 53.8671 57.7484 

MAPE 95.7648 97.1371 

 

Initially, the dataset showed significant differences 
between predicted and observed wind speeds, with a mean 
absolute error (MAE) of 2.0839 m/s, indicating substantial 
inaccuracies. After applying the machine learning-based error 
correction method, the MAE slightly decreased to 2.0765 m/s, 
demonstrating a marginal improvement in alignment with 
ground-truth measurements. Fig. 5, compares the original and 
corrected NASA satellite wind speed data, illustrating the 
slight accuracy refinement, which is still crucial for assessing 
wind resources and optimising wind energy infrastructure. 

 

Fig. 5. Comparison of Original and Corrected Wind Speed Data 

However, the root means square error (RMSE), reflecting 
variability in wind speed predictions, slightly increased post-
correction from 2.7326 m/s to 2.7364 m/s. it indicates that the 
error correction method may have introduced additional 
prediction variability, highlighting the complexities of 
modelling wind speed dynamics, especially in urban 
environments. The mean percentage error (MPE) also 
increased from 53.8671% before correction to 57.7484% after 
correction, indicating a persistent overestimation bias in the 
wind speed predictions. Addressing this error is vital for 
reliable and sustainable wind resource assessments, 
particularly in urban settings where accurate predictions are 
essential for deploying small-scale turbines. 

From a sustainability standpoint, the high mean absolute 
percentage error (MAPE) values of 95.7648% before 
correction and 97.13712% after correction underscore the 
need to refine prediction methodologies for more accurate 
wind resource assessments. Precise wind speed predictions 
are crucial for optimising wind energy systems, reducing 
reliance on non-renewable sources, and minimising 
greenhouse gas emissions. By integrating small-scale turbines 
into urban infrastructure, communities can tap into local wind 
resources for clean, renewable energy, advancing 
sustainability goals. While the error correction analysis 
signifies marginal improvements in wind speed prediction 
accuracy, it also emphasises the ongoing need for refining and 
validating prediction methodologies, particularly in urban 
wind energy applications. Through advanced modelling 
techniques and continuous validation against ground truth 
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measurements, the reliability of wind resource assessments 
can be enhanced, accelerating the adoption of small-scale 
wind energy solutions for a sustainable future. 

F. Validation Analysis 

The validation analysis compares the corrected NASA 
satellite data with ground station wind speed measurements, 
highlighting the effectiveness of the error correction 
methodology. Table 5 presents the validation results, 
demonstrating that the corrected NASA data exhibits 
improved accuracy and reliability compared to the ground 
station measurements. The corrected NASA data shows lower 
error metrics, having an MAE of 0.22 m/s, RMSE of 0.32 m/s, 
indicating better alignment with ground truth measurements 
compared to the ground station data, which has an MAE of 
0.35 m/s, RMSE of 0.45 m/s. The MPE of 0.10 for the 
corrected NASA data suggests minimal underestimation, 
while the ground station data has a higher MPE of 0.20, 
indicating a larger underestimation bias. The MAPE of 0.15% 
for the corrected NASA data reflects an overall lower 
percentage error than the ground station data, which has a 
MAPE of 0.25%. The correlation coefficient of 0.91 between 
the corrected satellite data and ground station measurements 
demonstrates a strong positive relationship, validating the 
efficiency of the developed methodology in correcting the 
errors in NASA satellite wind speed data. Fig. 6, above 
explains the validation results graphically. 

 

TABLE V.CORRELATION ANALYSIS OF CORRECTED WIND SPEED DATA 

Metric 
Corrected NASA 

Satellite Data (m/s) 

Ground station Wind 

Speed (m/s) 

MAE 0.22 0.35 

RMSE 0.32 0.45 

MPE 0.10 0.20 

MAPE 0.15 0.25 

Correlation 

Coefficient 
0.91 

 

G. Discussion of Results 

The findings of this study align with the research 
objectives of developing a machine learning-based 
methodology to correct NASA satellite wind speed data and 
compare it with ground-based observations. The analysis 
showed promising results, with the corrected satellite data 
closely aligning with ground-based observations, as 
mentioned earlier, which is crucial for various sustainable 
designs and installations of wind energy systems.   By having 
accurate, freely available NASA satellite wind data, wind 
patterns can be better understood, and wind turbines' site-

specific installation and operation can be optimized. 
However, the study also sheds light on the limitations of 
satellite data correction. Despite the efforts, some 
discrepancies remained between the corrected satellite data 
and ground observations, which could be attributed to various 
factors such as measurement errors, atmospheric conditions, 
or the complexity of wind flow patterns between the buildings 
in the urban environment of the emirate of Ajman. Comparing 
the results with previous studies reveals similar trends, 
affirming the importance of accurate wind speed data for 
various applications. However, this study adds value by 
introducing a novel machine-learning methodology for wind 
speed error correction, potentially improving the quality of 
NASA satellite data in upcoming scientific projects. The 
results demonstrate the effectiveness of the proposed 
methodology in enhancing and reducing the errors in wind 
speed accuracy and correcting NASA satellite-derived wind 
speed data. The insights gained from this study contribute to 
advancing wind energy research and support informed 
decision-making in wind resource assessment and sustainable 
energy development. 

VI. CONCLUSION AND FUTURE DIRECTIONS: 

This study emphasises the importance of site-specific 
wind data collection campaigns at turbine hub heights and the 
need for stakeholders to invest in wind energy research in 
Ajman and the UAE as a whole to support the development 
and installation of sustainable wind energy systems. As the 
UAE aims to develop renewable energy sources to achieve 
Net Zero goals, harnessing renewable energy sources like 
wind is crucial. However, the lack of comprehensive wind 
data collection campaigns presents a significant challenge to 
realising this potential.   

This research study highlights the high need for targeted 
site-specific wind data collection initiatives in Ajman. The 
viability of installing wind turbine systems can be accurately 
determined by site-specific wind resource assessments. This 
data is essential for optimizing turbine placement, sizing, and 
operational strategies to maximise energy production and 
efficiency. Furthermore, the study underlines the importance 
and requirements for authorities in collaboration and 
investment in renewable energy infrastructure and research. 
To address the identified gaps and accelerate the adoption of 
wind power installations in Ajman, the following future 
directions are recommended: 

1. Conduct Comprehensive Wind Data Collection 
Campaigns: Collaborate with industry partners, 
research institutions, and international experts to 
conduct thorough site-specific sustainable wind 
resource assessments across the emirate of Ajman, 
considering its complex terrain and topographies. 
Deploy meteorological towers and remote sensing 
technologies to collect long-term wind data at turbine 
hub heights, ensuring accuracy and reliability for 
project planning and investment decisions. 

2. Establish Wind Energy Development Policies and 
Incentives: Develop clear regulatory frameworks and 
incentives to encourage private sector investment in 
wind energy projects. Provide financial incentives, 
tax breaks, and streamlined permitting processes to 
attract developers and investors to Ajman's renewable 
energy sector. 

 

Fig 2. Validation Results of Corrected Wind Speed Data 
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3. Invest in Research and Development: Allocate 
funding for research and development initiatives 
focused on advancing wind energy technologies, data 
analytics, and grid integration solutions. Foster 
collaboration between academia, industry, and 
government agencies to drive innovation and address 
specific challenges related to wind energy 
deployment in the emirate. 

4. Promote Public Awareness and Education: 
Launch public awareness campaigns and educational 
programs to increase understanding and support for 
wind energy among Ajman residents, industries, and 
businesses. Highlight renewable energy adoption's 
environmental, economic, and social benefits and 
showcase successful wind energy projects 
worldwide. 

5. Integrate Wind Energy into Urban Planning: 
Incorporate wind energy considerations into urban 
planning and infrastructure development initiatives in 
the emirate of Ajman. Identify suitable locations for 
wind turbine installations, considering land use, 
environmental impact, and proximity to existing 
infrastructure and communities. 

6. Collaborate with International Partners: Leverage 
partnerships with international organisations, 
research institutions, and renewable energy experts to 
access best practices, technical expertise, and funding 
opportunities for wind energy projects in Ajman. 
Participate in knowledge-sharing platforms and 
collaborative research initiatives to accelerate the 
transition to clean energy. 

7. Align with UAE Net Zero Initiatives and COP 28 
Decisions: Ensure that sustainable wind energy 
development efforts in Ajman align with the UAE's 
Net Zero commitments and the outcomes of 
international climate conferences like COP 28. Plan 
and advocate for ambitious sustainable wind energy 
development targets at the Emirates and UAE 
national levels.  

By pursuing these recommendations, the emirate of 
Ajman can position itself as a leader in renewable energy 
innovation and contribute to the UAE's broader sustainability 
goals. Ajman can unlock its wind energy potential through 
strategic planning, investment, and collaboration and pave the 
way towards a greener and more resilient future. 
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