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Abstract— In the past few years, machine learning (ML) has 

evolved from academic research curiosity into a practical 
domain capable of addressing tangible business challenges. 
Deploying machine learning (ML) models to production with an 
equivalent degree of thoroughness and automation as 
conventional software systems has proven to be a complex 
endeavor, demanding additional attention and infrastructure to 
address the unique challenges involved. Building and training 
machine learning models is just one part of the process. 
Deploying models into production is a critical step that brings the 
potential of these models to life and allows them to deliver value 
to organizations and end users. It's the bridge between the 
theoretical work in the research and the practical application of 
machine learning in real-world scenarios. This research paper 
presents an original study focused on deploying a traffic sign 
detection and recognition system utilizing the YOLOv7 
algorithm. The study evaluates the algorithm's performance 
across diverse platforms and determines a robust production 
deployment strategy for YOLOv7. 

Keywords —Traffic sign, Detection, Classification, Deep 

Neural networks, YOLOv7, Deployment 

I. INTRODUCTION 

Many researchers focus on building and training machine 
learning models, but it is important to note that having a model 
file on a local computer is just one part of the process. The true 
impact of machine learning is realized when these models are 
effectively deployed in production environments, where 
clients and end-users can use them to make real-time decisions 
and automate tasks[1].  

This transition comes with challenges. Similar to other 
domains, there are notable distinctions between what proves 
effective in an academic environment and what a real-world 
system demands. The principal difficulties when deploying 
machine learning models in production include constraints on 
scalability, the absence of real-time interaction, and the 
challenge of providing user access to the models [2]. 

Conversely, the deployment of machine learning offers a 
multitude of benefits, such as improving user access to model 
predictions in practical scenarios, enabling real-time decision-
making, and swiftly adjusting to dynamic circumstances. 
Additionally, machine learning can enhance model 
performance, leading to higher accuracy rates when compared 
to traditional methods. 

Over the years, traffic sign detection and recognition 
systems have given extra value to driver assistance, leading to 
a more user-friendly driving experience and much improved 
safety for passengers[3]. It helps regulate the number of 
accidents and helps drivers who commit traffic mistakes, 
particularly those who fail to heed traffic signs[4].  

Traffic signs have a dual role: the first one, they regulate 
the traffic and the second one is to indicate the state of the road 
by guiding and warning the drivers and pedestrians. Those 
who drive vehicles need to learn to detect and recognize all 
traffic signs for traffic safety reasons[5], drivers are required 
to process the knowledge of cyclist signs, pedestrian signs, 
mandatory signs and advisory signs to reduce some unwanted 
circumstances during driving especially in Morocco where the 
driving task is complex because of road and weather 
conditions[6]. 

This work provides a comparative study -in terms of 
speed- of the best known and most efficient traffic sign 
recognition deployment methods based on the YOLOv7 
algorithm. 

The paper is structured as follows: The second section 
delves into a review of prior work concerning traffic sign 
recognition systems and deployment approaches. The third 
section offers an in-depth survey of traffic sign detection for 
driver assistance using the YOLOv7 algorithm. Subsequently, 
the fourth part introduces the study's proposal and analyzes the 
primary experimental results to identify a resilient deployment 
strategy for YOLOv7. Moving forward, the fifth section 
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discusses the current landscape of this field and outlines 
potential avenues for future research. Lastly, the sixth section 
draws the paper to a conclusion. 

II. RELATED WORK 

A. DevOps 

The DevOps cycle  is a continuous and iterative process 
that integrates development (Dev) and operations (Ops) in 
software development and deployment[7]. It is a software 
development methodology that streamlines the software 
lifecycle by integrating development and operations, 
increasing speed, efficiency, and output. By reducing the 
number of steps in the lifecycle, DevOps enables teams to 
work more collaboratively and deliver high-quality software 
more quickly[8]. It aims to enhance team productivity and 
outcomes by promoting collaboration, automation, and an 
iterative software development and operations management 
approach. By implementing various strategies, teams can 
streamline workflow and deliver high-quality software more 
efficiently. 

1) DevOps Lifecycle 
The DevOps lifecycle (See Fig. 2), also known as the 

DevOps pipeline, is a continuous software development 
process that incorporates DevOps best practices at every stage, 
from planning and building to deployment and monitoring. By 
providing continuous feedback, teams can improve the 
software and deliver high-quality results [7].  

The DevOps lifecycle typically consists of the following 
stages [6]: 

• Plan: Define the project goals, requirements, and 

success criteria. 

• Code: Write the code for the application or feature. 

• Build: Compile the code into a deployable artifact. 

• Test: Run automated tests to ensure the code works 

as expected. 

• Deploy: Release the code into the production 

environment. 

• Monitor: Continuously monitor the application for 

performance, errors, and other issues. 

• Feedback: Collect feedback from users and 

stakeholders to improve the application. 

The DevOps lifecycle is designed to be iterative and 
continuous, with each stage feeding into the next. By 
automating as many steps as possible, teams can reduce the 
time it takes to deliver new features and improve the quality 
of their software[9]. 

2) DevOps for Machine Learning (MLOps): 
MLOps, short for "Machine Learning Operations”, is a set 

of practices, principles, and tools that combine machine 
learning (ML) and artificial intelligence (AI) with the 
principles of DevOps to enable the end-to-end management of 
ML models and workflows. MLOps aims to streamline and 
automate the deployment, monitoring, and management of 
machine learning models in production environments, similar 
to how DevOps does for software development and IT 

operations [10]. The process is highlighted in Fig. 1. 

MLOps is a collaborative, continuous process that 
emphasizes the operationalization of data science by treating 
statistical, data science, and machine learning models as 
reusable, highly available software artifacts. This is achieved 
through a repeatable deployment process focusing on 
managing these models as a cross-functional team.  

The three main stages of the MLOps process are 
"Designing the ML-powered application", "ML 
Experimentation and Development," and "ML 
Operations"[11]. The first stage comprises tasks linked to 
digesting the data, building the software with machine 
learning capabilities, and understanding the business 
objectives. Then, by building a Proof-of-Concept for an ML 
model, the 'ML Experimentation and Development' phase is 
focuses on verifying that machine learning is feasible for the 
specified issue. The main goal of the 'ML Operations' phase is 
to implement the previously developed ML model in a real-
world setting. Using well-established DevOps techniques— 
including testing, version control, continuous delivery, and 
continuous monitoring [11]. 

B. YOLOv7 Architecture 

YOLOv7 is one of the models in the YOLO (You Only 
Look Once) series of object detection. The YOLO framework 
has three main components: Backbone, head and neck (Fig. 
3).   

The Backbone mainly extracts essential features of an 
image and feeds them to the Head through Neck. The neck 
collects feature maps extracted by the Backbone and creates 
feature pyramids. Finally, the head consists of output layers 
that have final detections [12]. 

 
In 2022, the YOLOv7 [13]algorithm is making big waves 

in the computer vision and machine learning communities. Its 
performance was evaluated based on previous YOLO versions 

 

Fig. 2. DevOps Lifecycle [6] 

 

Fig. 1. MLOps Pipeline [8] 

 

Fig. 3. YOLO Architecture [10] 
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(YOLOv4 and YOLOv5) and YOLOR as baselines. However, 
it surpasses all previous object detectors in terms of both speed 
and accuracy, ranging from 5 FPS to as much as 160 FPS [14]. 
As seen in Fig. 5, the benchmark showcases the difference in 
average precision in relation with time. 

C. Deployment Strategies 

Deep learning computations may be run on a variety of 
devices, including edge servers (ESs), cloud servers, and edge 
devices (EDs). This determines the following computing 
paradigms [12]. 

1) Cloud computing: 
Cloud computing is a paradigm for extensive distributed 

computing that uses of technologies like virtualization, grid 
computing, and service orientation. It provides the ability to 
quickly acquire and release customizable computing resources 
from a shared pool of infrastructure, with little participation 
from the server infrastructure provider [15]. 

2) Edge computing: 
Moving processing resources physically closer to the 

location where data is generated, often a sensor or Internet of 
Things device, is known as edge computing. Edge computing, 
is so named because it brings compute capacity to the network 
or device's edge, enables quicker data processing, more 
bandwidth, and guaranteed data sovereignty[15]. 

Many enterprises deploy their AI applications using edge 
computing, which refers to processing that happens where 
data is produced. Edge computing handles and stores data 
locally in an edge device instead of cloud processing in a 
distant, centralized data reserve[16]. Consequently, cloud and 
edge computing may cooperate and have a range of 
advantages and use cases. 

III. EXPERIMENTS 

This section describes the efforts undertaken during our 
research. first, we commence by assembling the dataset and 
initiate the training process, in order to select the most suitable 
model for deployment. 

A. Model Selection and Training: 

There are several steps involved in the applied ML 
process. Although the steps are the same, the descriptions may 
change in what they call for them. We can define the process 
using four high-level steps: define the problem, prepare data, 
evaluate models, and finalize the model [17].  

1) Data Preparation: 
Once we have identified the problem and collected the 

data useful in traffic sign detection, we initiate the essential 
second step in ML process, data preparation. Since the 
predictions made by ML systems can only be as good as the 
data on which they have been trained. 

The designs of traffic signs are standardized through laws 
but differ across the world. In Morocco as in other countries, 
shapes and colors are used to categorize different types of 
signs: circular red signs are prohibitions, circular blue signs 
are obligations, triangular red signs are warnings, and 
rectangular blue signs are recommendations and traffic lights. 
The recognition algorithm requires an extensive database with 
several images of traffic signs, but in a Moroccan context, it 
was evident that there is a lack of databases with Moroccan 
traffic signs. 

The dataset comprises approximately 2000 images in 
different conditions: at night and during bad weather to prove 
the robustness of the model that will be chosen. The dataset is 
partitioned into distinct subsets to facilitate the model's 
development and assessment.  Specifically, 70% of the data is 
allocated for training, 20% for testing, and the remaining 10% 
for validation. 

We ensure balance within our dataset across the five classes.: 
obligation, recommendation, warning, light, and prohibition. 
This is showcased in the class distribution in Fig. 6. 

2) Model Selection and Training 

 

Fig. 5. COCO Benchmark for YOLO Models [11] 

 

 

Fig. 4. Dataset Samples  

 

Fig. 6. Dataset Class Distribution 
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While training a machine learning model using the dataset 
prepared, we opted to work with the YOLOv7 algorithm due 
to its exceptional speed and accuracy. The model learns to 
predict and classify traffic sign panels during this process. 

The model underwent training on Google Colab, utilizing a 
Tesla T4 GPU. The training process was divided into three 
segments: the first involved 55 epochs, the second extended to 
110 epochs, and the third encompassed 126 epochs (See Table 
I). 

TABLE I. TRAINING HYPERPARAMETERS 

Trainings  YOLOv7 Hyperparameters 

1st Training 
Epoch 55 

Batch size 16 

2nd Training 
Epoch 110 

Batch size 16 

3rd Training 
Epoch 126 

Batch size 16 

 
The third section, consisting of 126 epochs and a batch size 

of 16, produced weights that demonstrated strong 
performance, particularly in terms of precision, recall, and 
mAP@0.5. This is the key reason why we decided to choose 
this section for the deployment phases. 

B. Model Deployment 

Model deployment represents a challenging phase within 
the MLOps cycle. It necessitates careful planning, robust 
infrastructure, and collaboration among multidisciplinary 
teams. 

Hence, efficient deployment is a critical requirement to 
ensure that machine learning models consistently deliver 
optimal performance in production environments and achieve 
their expected value. It demands constant focus, proactive 
observation, and a dedication to change and advancement. 

In this section, we initiated the model deployment process. 
This part consists of several steps, commencing with the 
selection of deployment strategies, followed by the 

identification of the resources employed and the deployment 
frameworks utilized. 

1) Deployment Strategies and Resources 
Many businesses choose to implement edge computing for 

their AI applications due to its performance, security, cost-
effectiveness, and adaptability benefits. It is a popular choice 
across diverse use cases, which is why we decided to deploy 
our machine learning model on the edge. 

We chose to deploy our model across various resources to 
ensure optimal machine learning deployment performance 
(Table II). Initially, we conducted deployments on our local 
PC, followed by Nvidia Jetson Nano, and finally, on Google 
Colab. This approach allowed us to thoroughly evaluate the 
model's performance and inference times across different 
resources, helping us identify the most robust option. 

2) Deployment Frameworks 
Several frameworks available for deploying machine 

learning, each with its own distinct features and capabilities. 
In our study, we decided to deploy the machine learning model 
across various frameworks to identify the one that 
demonstrates the most incredible robustness and 
compatibility, particularly with YOLOv7. 

TABLE II. RESOURCE ANALYSIS 

 Pc  Jetson nano Google Colab 

CPU 
Intel® Core™ i5- 

6th 2.5 GHz 
ARMv8 rev 1 (v8l) *4 Intel Xeon CPU 

GPU 
- NVIDIA Tegra X1 

CUDA v10.2 

Tesla T4 

CUDA v11.2 

RAM 8.00 GB 4.00 GB 13.00 GB 

OS Windows 10 Ubuntu 18.04 LTS - 

 
From the numerous frameworks accessible for machine 

learning deployment, we opted to deploy our model with 
PyTorch, ONNX, TensorRT, and TensorFlow Lite. Each of 
these frameworks possesses distinct characteristics that set it 
apart from the others. The table displayed below offers an 
overview of the unique attributes associated with each 
framework. (Table III) 

 

TABLE III. COMPARISON OF DEPLOYMENT FRAMEWORKS UTILIZED. 

 PyTorch (.pt) ONNX (.onnx) TensorRT (.trt) TensorFlow Lite 

(.tflite) 

Version v 1.12.0 v 1.12.0 v 11.2 TensorFlow 2.x v 

Advantages Adaptable for various 

deployment scenarios. 

Easy to use.  

Compatible with graphics cards 

(GPU)[18]. 

Easy to access hardware 

acceleration. 

Supports popular DL 

frameworks[19]. 

High-speed 

inference. 

Flexibility in 

deploying models 

[20]. 

Optimizing existing 

models to be less 

memory and cost-

consuming [21]. 

disadvantages Large Model Sizes 

Limited production 

optimizations[18]. 

Not designed for model 

training [19]. 

Designed to work with 

NVIDIA GPUs [20]. 

Performance depends on 

the hardware it's 

deployed on [21]. 

IV. RESULTS 

Here, we provide the findings from our investigation on 
machine learning model deployment and how well they 
operate in different deployment scenarios, platforms, and 
frameworks. Our work is motivated by the urgent need to 
close the knowledge gap between the creation of machine 

learning models and their successful implementation in 
practical applications.  

Before discussing the details of our findings, it is critical 
to highlight that our results are significant not just for machine 
learning practitioners but also for companies and 
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organizations looking to integrate AI and machine learning 
into their daily operations. 

A. Training Results 

This part of our research was designed to analyze the 
behavior of training models, optimization methods, and the 
efficacy of the YOLOv7 algorithm. The training phase forms 
the fundamental step of machine learning, where models learn 
to extract patterns, make predictions, and drive innovations. 

After three hours of training the model, the obtained 
results are received from the confusion matrix, which offers 
detailed information about predictions for each class, 
facilitating a deeper understanding of the model's performance 
across the five classes. 

Here, it is clear that the model has high accuracy, 
precision, and average precision with 0.967 for all classes. The 
‘recommendation’ class shows the best results compared with 
other classes. It stands out with the highest recall score of 1 
and an impressive mAP@0.5 of 0.991. 

The 'prohibition' class exhibits relatively lower results in 
comparison to other classes, with notable figures of 0.807 in 
precision and 0.897 in mAP@0.5. This indicates that more 
development of this class is necessary to improve its accuracy 
and performance. 

B. Deployment results: 

Regarding the results of ML deployment, here, we provide 
the results of running the model on several platforms, 
providing a thorough rundown of the results for every resource 
and framework.  

Beginning with the results from PyTorch, the Table IV 
presents the inference times (IT), including the highest (HV), 
lowest (LV), and average (AV) values for model deployment 
on various resources: local PC, Google Colab, and Jetson 
Nano. Notably, the GPU demonstrates a significant average 
inference time of 15.4 ms when compared to CPUs. On the 
other hand, the CPU of Google Colab delivers favorable 
results when compared to the CPUs of other resources. The 
inability to utilize a GPU on Jetson Nano is primarily due to 
the absence of GPU support on Jetson Nano, and mainly 
because of its lack of CUDA compatibility. The  

 

Table V highlights the ONNX results, it shows that the 
CPU of Google Colab performs remarkably well compared to 
the CPUs of other resources. In this experiment, the pytorch 
wights are converted to ONNX and then the inference is 
performed, giving us the following results. 

TABLE IV. COLLECTED RESULTS FOR PYTORCH FRAMEWORK ON 

DIFFERENT RESOURCES 

  Local Colab Jetson Nano 

 

 
CPU 

[s] 

GP

U 

[ms] 

CPU 

[s] 

GPU 

[ms] 

CPU 

[s] 

CPU 

[s] 

 

IT 

HV 2.56 - 2.19 15.7 3.01 - 

LV 1.37 - 1.32 14.3 2.95 - 

AV 1.96 - 1.76 15.4 2.98 - 

 

 

TABLE V. COLLECTED RESULTS FOR ONNX FRAMEWORK ON DIFFERENT 

RESOURCES 

  Local Colab Jetson Nano 

 

 
CPU 

[s] 

GP

U 

[ms] 

CPU 

[s] 

GPU 

[ms] 

CPU 

[s] 

GPU 

[ms] 

 

IT 

HV 4.13 - 3.78 19.6 4.62 - 

LV 2.45 - 1.59 18.1 3.16 - 

AV 3.29 - 2.67 18.5 3.89 - 

 
Recording its limited compatibility with other hardware, 

TensorRT is highly designed for NVIDIA GPUS. It is an 
NVIDIA library and runtime for optimizing deep learning 
models for deployment on GPUs, with a focus on enhancing 
inference performance. Hence, in the table below, we observe 
that there are no results available for the CPU, with results 
exclusively presented for the GPU (Table VI). 

TABLE VI. COLLECTED RESULTS FOR TENSORRT FRAMEWORK ON 

DIFFERENT RESOURCES 

  Local Colab Jetson Nano 

 

 
CPU 

[s] 

GP

U 

[ms] 

CPU 

[s] 

GPU 

[ms] 

CPU 

[s] 

GPU 

[ms] 

 

IT 

HV - - - 10.2 - - 

LV - - - 8.9 - - 

AV - - - 9.6 - - 

 
Relating to TensorFlow Lite, which is comparatively more 

resource-intensive than other frameworks, the table below 
illustrates that the inference time on Colab consistently 
remains shorter than on other resources (Table VII). 

TABLE VII. COLLECTED RESULTS FOR TENSORFLOW LITE FRAMEWORK ON 

DIFFERENT RESOURCES 

  Local Colab Jetson Nano 

 

 
CPU 

[s] 

GP

U 

[ms] 

CPU 

[s] 

GPU 

[ms] 

CPU 

[s] 

GPU 

[ms] 

 

IT 

HV 6.42 - 5.62 212.3 6.93 - 

LV 6.12 - 5.48 182.6 6.87 - 

AV 6.27 - 5.56 194.2 6.87 - 

 
While analyzing the various results, we noticed a 

contradiction in the outcomes: one set of results pertained to 
GPU performance, while the other set focused on CPU 
performance (Fig. 7 and Fig. 8).  

Regarding the GPU, it is important to highlight that 
TensorRT exhibits strong performance, delivering lower 
inference times. On the other hand, PyTorch delivers strong 
performance and provides favorable results on the CPU, 
leading to shorter inference times.  

mailto:mAP@0.5
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V. CONCLUSION AND LIMITATIONS 

In conclusion, our comprehensive study on machine 
learning deployment has illuminated the complexities, 
challenges, and opportunities in efficiently utilizing the power 
of AI models for real-world applications. Throughout this 
research, we explored the various stages of model 
deployment, from data preparation to selecting deployment 
frameworks, and even extending to evaluating their 
performance on different resources.  

The research followed two principal objectives. The 
study's primary objective was to develop a traffic sign 
detection and recognition system. Utilizing the YOLOv7 
algorithm, beginning with data collection and preparation, 
model training, and the eventual model selection. The second 
objective involved evaluating the algorithm's performance 
across diverse platforms and selecting a robust production 
deployment strategy for the model. 

The training phase produced a high-performance model 
with an impressive mAP@0.5 of 0.967, which was 
subsequently chosen for the deployment stage. This model 
was deployed throughout various resources, including PCs, 
Google Colab, and Jetson Nano, utilizing both GPU and CPU. 
The inference time data indicates that TensorRT excels in 
GPU performance, while PyTorch delivers robust 
performance on the CPU. 

The constraints identified in our study, including the 
inability to use GPU on Jetson Nano, the complexity of the 
YOLOv7 model, its size, and the number of classes, will be 
addressed in our future work. We plan to evaluate these 
limitations and explore alternative deployment strategies 
using other boards equipped with GPUs. 
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Fig. 7. CPU-based Deployment Results 

 

Fig. 8. GPU-based Deployment Resutls 


