
Embedded Self Organizing Systems (Vol 10. No 8. 2023) (pp.12-17)

12

Evaluating YOLOv7 Deployment Performance on
Diverse Platforms and Strategies for Real-time

Object Detection

Fatima Abouzid

Electrical Engineering Department

Faculty of Science and Technology

University Sidi Mohamed Ben Abdellah

Fez, Morocco

Fatima.abouzid@usmba.ac.ma

Shadi Saleh

Department of Computer Engineering

Chemnitz University of Technology

Chemnitz, Germany

shadi.saleh@informatik.tu-chemnitz.de

Mohamed Salim Harras

Department of Computer Engineering

Chemnitz University of Technology

Chemnitz, Germany

mohamed-salim.harras@informatik.tu-

chemnitz.de

Wolfram Hardt

Department of Computer Engineering

Chemnitz University of Technology

Chemnitz, Germany

wolfram.hardt@informatik.tu-chemnitz.de

Ghennioui Hicham

Electrical Engineering Department

Faculty of Science and Technology

University Sidi Mohamed Ben Abdellah

Fez, Morocco

ghennioui@gmail.com

Abstract— In the past few years, machine learning (ML) has

evolved from academic research curiosity into a practical
domain capable of addressing tangible business challenges.
Deploying machine learning (ML) models to production with an
equivalent degree of thoroughness and automation as
conventional software systems has proven to be a complex
endeavor, demanding additional attention and infrastructure to
address the unique challenges involved. Building and training
machine learning models is just one part of the process.
Deploying models into production is a critical step that brings the
potential of these models to life and allows them to deliver value
to organizations and end users. It's the bridge between the
theoretical work in the research and the practical application of
machine learning in real-world scenarios. This research paper
presents an original study focused on deploying a traffic sign
detection and recognition system utilizing the YOLOv7
algorithm. The study evaluates the algorithm's performance
across diverse platforms and determines a robust production
deployment strategy for YOLOv7.

Keywords —Traffic sign, Detection, Classification, Deep

Neural networks, YOLOv7, Deployment

I. INTRODUCTION

Many researchers focus on building and training machine
learning models, but it is important to note that having a model
file on a local computer is just one part of the process. The true
impact of machine learning is realized when these models are
effectively deployed in production environments, where
clients and end-users can use them to make real-time decisions
and automate tasks[1].

This transition comes with challenges. Similar to other
domains, there are notable distinctions between what proves
effective in an academic environment and what a real-world
system demands. The principal difficulties when deploying
machine learning models in production include constraints on
scalability, the absence of real-time interaction, and the
challenge of providing user access to the models [2].

Conversely, the deployment of machine learning offers a
multitude of benefits, such as improving user access to model
predictions in practical scenarios, enabling real-time decision-
making, and swiftly adjusting to dynamic circumstances.
Additionally, machine learning can enhance model
performance, leading to higher accuracy rates when compared
to traditional methods.

Over the years, traffic sign detection and recognition
systems have given extra value to driver assistance, leading to
a more user-friendly driving experience and much improved
safety for passengers[3]. It helps regulate the number of
accidents and helps drivers who commit traffic mistakes,
particularly those who fail to heed traffic signs[4].

Traffic signs have a dual role: the first one, they regulate
the traffic and the second one is to indicate the state of the road
by guiding and warning the drivers and pedestrians. Those
who drive vehicles need to learn to detect and recognize all
traffic signs for traffic safety reasons[5], drivers are required
to process the knowledge of cyclist signs, pedestrian signs,
mandatory signs and advisory signs to reduce some unwanted
circumstances during driving especially in Morocco where the
driving task is complex because of road and weather
conditions[6].

This work provides a comparative study -in terms of
speed- of the best known and most efficient traffic sign
recognition deployment methods based on the YOLOv7
algorithm.

The paper is structured as follows: The second section
delves into a review of prior work concerning traffic sign
recognition systems and deployment approaches. The third
section offers an in-depth survey of traffic sign detection for
driver assistance using the YOLOv7 algorithm. Subsequently,
the fourth part introduces the study's proposal and analyzes the
primary experimental results to identify a resilient deployment
strategy for YOLOv7. Moving forward, the fifth section

Fatima Abouzid et al. ESS (Vol 10. No 8. 2023) (pp.12-17)

13

discusses the current landscape of this field and outlines
potential avenues for future research. Lastly, the sixth section
draws the paper to a conclusion.

II. RELATED WORK

A. DevOps

The DevOps cycle is a continuous and iterative process
that integrates development (Dev) and operations (Ops) in
software development and deployment[7]. It is a software
development methodology that streamlines the software
lifecycle by integrating development and operations,
increasing speed, efficiency, and output. By reducing the
number of steps in the lifecycle, DevOps enables teams to
work more collaboratively and deliver high-quality software
more quickly[8]. It aims to enhance team productivity and
outcomes by promoting collaboration, automation, and an
iterative software development and operations management
approach. By implementing various strategies, teams can
streamline workflow and deliver high-quality software more
efficiently.

1) DevOps Lifecycle
The DevOps lifecycle (See Fig. 2), also known as the

DevOps pipeline, is a continuous software development
process that incorporates DevOps best practices at every stage,
from planning and building to deployment and monitoring. By
providing continuous feedback, teams can improve the
software and deliver high-quality results [7].

The DevOps lifecycle typically consists of the following
stages [6]:

• Plan: Define the project goals, requirements, and

success criteria.

• Code: Write the code for the application or feature.

• Build: Compile the code into a deployable artifact.

• Test: Run automated tests to ensure the code works

as expected.

• Deploy: Release the code into the production

environment.

• Monitor: Continuously monitor the application for

performance, errors, and other issues.

• Feedback: Collect feedback from users and

stakeholders to improve the application.

The DevOps lifecycle is designed to be iterative and
continuous, with each stage feeding into the next. By
automating as many steps as possible, teams can reduce the
time it takes to deliver new features and improve the quality
of their software[9].

2) DevOps for Machine Learning (MLOps):
MLOps, short for "Machine Learning Operations”, is a set

of practices, principles, and tools that combine machine
learning (ML) and artificial intelligence (AI) with the
principles of DevOps to enable the end-to-end management of
ML models and workflows. MLOps aims to streamline and
automate the deployment, monitoring, and management of
machine learning models in production environments, similar
to how DevOps does for software development and IT

operations [10]. The process is highlighted in Fig. 1.

MLOps is a collaborative, continuous process that
emphasizes the operationalization of data science by treating
statistical, data science, and machine learning models as
reusable, highly available software artifacts. This is achieved
through a repeatable deployment process focusing on
managing these models as a cross-functional team.

The three main stages of the MLOps process are
"Designing the ML-powered application", "ML
Experimentation and Development," and "ML
Operations"[11]. The first stage comprises tasks linked to
digesting the data, building the software with machine
learning capabilities, and understanding the business
objectives. Then, by building a Proof-of-Concept for an ML
model, the 'ML Experimentation and Development' phase is
focuses on verifying that machine learning is feasible for the
specified issue. The main goal of the 'ML Operations' phase is
to implement the previously developed ML model in a real-
world setting. Using well-established DevOps techniques—
including testing, version control, continuous delivery, and
continuous monitoring [11].

B. YOLOv7 Architecture

YOLOv7 is one of the models in the YOLO (You Only
Look Once) series of object detection. The YOLO framework
has three main components: Backbone, head and neck (Fig.
3).

The Backbone mainly extracts essential features of an
image and feeds them to the Head through Neck. The neck
collects feature maps extracted by the Backbone and creates
feature pyramids. Finally, the head consists of output layers
that have final detections [12].

In 2022, the YOLOv7 [13]algorithm is making big waves

in the computer vision and machine learning communities. Its
performance was evaluated based on previous YOLO versions

Fig. 2. DevOps Lifecycle [6]

Fig. 1. MLOps Pipeline [8]

Fig. 3. YOLO Architecture [10]

Fatima Abouzid et al. ESS (Vol 10. No 8. 2023) (pp.12-17)

14

(YOLOv4 and YOLOv5) and YOLOR as baselines. However,
it surpasses all previous object detectors in terms of both speed
and accuracy, ranging from 5 FPS to as much as 160 FPS [14].
As seen in Fig. 5, the benchmark showcases the difference in
average precision in relation with time.

C. Deployment Strategies

Deep learning computations may be run on a variety of
devices, including edge servers (ESs), cloud servers, and edge
devices (EDs). This determines the following computing
paradigms [12].

1) Cloud computing:
Cloud computing is a paradigm for extensive distributed

computing that uses of technologies like virtualization, grid
computing, and service orientation. It provides the ability to
quickly acquire and release customizable computing resources
from a shared pool of infrastructure, with little participation
from the server infrastructure provider [15].

2) Edge computing:
Moving processing resources physically closer to the

location where data is generated, often a sensor or Internet of
Things device, is known as edge computing. Edge computing,
is so named because it brings compute capacity to the network
or device's edge, enables quicker data processing, more
bandwidth, and guaranteed data sovereignty[15].

Many enterprises deploy their AI applications using edge
computing, which refers to processing that happens where
data is produced. Edge computing handles and stores data
locally in an edge device instead of cloud processing in a
distant, centralized data reserve[16]. Consequently, cloud and
edge computing may cooperate and have a range of
advantages and use cases.

III. EXPERIMENTS

This section describes the efforts undertaken during our
research. first, we commence by assembling the dataset and
initiate the training process, in order to select the most suitable
model for deployment.

A. Model Selection and Training:

There are several steps involved in the applied ML
process. Although the steps are the same, the descriptions may
change in what they call for them. We can define the process
using four high-level steps: define the problem, prepare data,
evaluate models, and finalize the model [17].

1) Data Preparation:
Once we have identified the problem and collected the

data useful in traffic sign detection, we initiate the essential
second step in ML process, data preparation. Since the
predictions made by ML systems can only be as good as the
data on which they have been trained.

The designs of traffic signs are standardized through laws
but differ across the world. In Morocco as in other countries,
shapes and colors are used to categorize different types of
signs: circular red signs are prohibitions, circular blue signs
are obligations, triangular red signs are warnings, and
rectangular blue signs are recommendations and traffic lights.
The recognition algorithm requires an extensive database with
several images of traffic signs, but in a Moroccan context, it
was evident that there is a lack of databases with Moroccan
traffic signs.

The dataset comprises approximately 2000 images in
different conditions: at night and during bad weather to prove
the robustness of the model that will be chosen. The dataset is
partitioned into distinct subsets to facilitate the model's
development and assessment. Specifically, 70% of the data is
allocated for training, 20% for testing, and the remaining 10%
for validation.

We ensure balance within our dataset across the five classes.:
obligation, recommendation, warning, light, and prohibition.
This is showcased in the class distribution in Fig. 6.

2) Model Selection and Training

Fig. 5. COCO Benchmark for YOLO Models [11]

Fig. 4. Dataset Samples

Fig. 6. Dataset Class Distribution

Fatima Abouzid et al. ESS (Vol 10. No 8. 2023) (pp.12-17)

15

While training a machine learning model using the dataset
prepared, we opted to work with the YOLOv7 algorithm due
to its exceptional speed and accuracy. The model learns to
predict and classify traffic sign panels during this process.

The model underwent training on Google Colab, utilizing a
Tesla T4 GPU. The training process was divided into three
segments: the first involved 55 epochs, the second extended to
110 epochs, and the third encompassed 126 epochs (See Table
I).

TABLE I. TRAINING HYPERPARAMETERS

Trainings YOLOv7 Hyperparameters

1st Training
Epoch 55

Batch size 16

2nd Training
Epoch 110

Batch size 16

3rd Training
Epoch 126

Batch size 16

The third section, consisting of 126 epochs and a batch size

of 16, produced weights that demonstrated strong
performance, particularly in terms of precision, recall, and
mAP@0.5. This is the key reason why we decided to choose
this section for the deployment phases.

B. Model Deployment

Model deployment represents a challenging phase within
the MLOps cycle. It necessitates careful planning, robust
infrastructure, and collaboration among multidisciplinary
teams.

Hence, efficient deployment is a critical requirement to
ensure that machine learning models consistently deliver
optimal performance in production environments and achieve
their expected value. It demands constant focus, proactive
observation, and a dedication to change and advancement.

In this section, we initiated the model deployment process.
This part consists of several steps, commencing with the
selection of deployment strategies, followed by the

identification of the resources employed and the deployment
frameworks utilized.

1) Deployment Strategies and Resources
Many businesses choose to implement edge computing for

their AI applications due to its performance, security, cost-
effectiveness, and adaptability benefits. It is a popular choice
across diverse use cases, which is why we decided to deploy
our machine learning model on the edge.

We chose to deploy our model across various resources to
ensure optimal machine learning deployment performance
(Table II). Initially, we conducted deployments on our local
PC, followed by Nvidia Jetson Nano, and finally, on Google
Colab. This approach allowed us to thoroughly evaluate the
model's performance and inference times across different
resources, helping us identify the most robust option.

2) Deployment Frameworks
Several frameworks available for deploying machine

learning, each with its own distinct features and capabilities.
In our study, we decided to deploy the machine learning model
across various frameworks to identify the one that
demonstrates the most incredible robustness and
compatibility, particularly with YOLOv7.

TABLE II. RESOURCE ANALYSIS

 Pc Jetson nano Google Colab

CPU
Intel® Core™ i5-

6th 2.5 GHz
ARMv8 rev 1 (v8l) *4 Intel Xeon CPU

GPU
- NVIDIA Tegra X1

CUDA v10.2

Tesla T4

CUDA v11.2

RAM 8.00 GB 4.00 GB 13.00 GB

OS Windows 10 Ubuntu 18.04 LTS -

From the numerous frameworks accessible for machine

learning deployment, we opted to deploy our model with
PyTorch, ONNX, TensorRT, and TensorFlow Lite. Each of
these frameworks possesses distinct characteristics that set it
apart from the others. The table displayed below offers an
overview of the unique attributes associated with each
framework. (Table III)

TABLE III. COMPARISON OF DEPLOYMENT FRAMEWORKS UTILIZED.

 PyTorch (.pt) ONNX (.onnx) TensorRT (.trt) TensorFlow Lite

(.tflite)

Version v 1.12.0 v 1.12.0 v 11.2 TensorFlow 2.x v

Advantages Adaptable for various

deployment scenarios.

Easy to use.

Compatible with graphics cards

(GPU)[18].

Easy to access hardware

acceleration.

Supports popular DL

frameworks[19].

High-speed

inference.

Flexibility in

deploying models

[20].

Optimizing existing

models to be less

memory and cost-

consuming [21].

disadvantages Large Model Sizes

Limited production

optimizations[18].

Not designed for model

training [19].

Designed to work with

NVIDIA GPUs [20].

Performance depends on

the hardware it's

deployed on [21].

IV. RESULTS

Here, we provide the findings from our investigation on
machine learning model deployment and how well they
operate in different deployment scenarios, platforms, and
frameworks. Our work is motivated by the urgent need to
close the knowledge gap between the creation of machine

learning models and their successful implementation in
practical applications.

Before discussing the details of our findings, it is critical
to highlight that our results are significant not just for machine
learning practitioners but also for companies and

Fatima Abouzid et al. ESS (Vol 10. No 8. 2023) (pp.12-17)

16

organizations looking to integrate AI and machine learning
into their daily operations.

A. Training Results

This part of our research was designed to analyze the
behavior of training models, optimization methods, and the
efficacy of the YOLOv7 algorithm. The training phase forms
the fundamental step of machine learning, where models learn
to extract patterns, make predictions, and drive innovations.

After three hours of training the model, the obtained
results are received from the confusion matrix, which offers
detailed information about predictions for each class,
facilitating a deeper understanding of the model's performance
across the five classes.

Here, it is clear that the model has high accuracy,
precision, and average precision with 0.967 for all classes. The
‘recommendation’ class shows the best results compared with
other classes. It stands out with the highest recall score of 1
and an impressive mAP@0.5 of 0.991.

The 'prohibition' class exhibits relatively lower results in
comparison to other classes, with notable figures of 0.807 in
precision and 0.897 in mAP@0.5. This indicates that more
development of this class is necessary to improve its accuracy
and performance.

B. Deployment results:

Regarding the results of ML deployment, here, we provide
the results of running the model on several platforms,
providing a thorough rundown of the results for every resource
and framework.

Beginning with the results from PyTorch, the Table IV
presents the inference times (IT), including the highest (HV),
lowest (LV), and average (AV) values for model deployment
on various resources: local PC, Google Colab, and Jetson
Nano. Notably, the GPU demonstrates a significant average
inference time of 15.4 ms when compared to CPUs. On the
other hand, the CPU of Google Colab delivers favorable
results when compared to the CPUs of other resources. The
inability to utilize a GPU on Jetson Nano is primarily due to
the absence of GPU support on Jetson Nano, and mainly
because of its lack of CUDA compatibility. The

Table V highlights the ONNX results, it shows that the
CPU of Google Colab performs remarkably well compared to
the CPUs of other resources. In this experiment, the pytorch
wights are converted to ONNX and then the inference is
performed, giving us the following results.

TABLE IV. COLLECTED RESULTS FOR PYTORCH FRAMEWORK ON

DIFFERENT RESOURCES

 Local Colab Jetson Nano

CPU

[s]

GP

U

[ms]

CPU

[s]

GPU

[ms]

CPU

[s]

CPU

[s]

IT

HV 2.56 - 2.19 15.7 3.01 -

LV 1.37 - 1.32 14.3 2.95 -

AV 1.96 - 1.76 15.4 2.98 -

TABLE V. COLLECTED RESULTS FOR ONNX FRAMEWORK ON DIFFERENT

RESOURCES

 Local Colab Jetson Nano

CPU

[s]

GP

U

[ms]

CPU

[s]

GPU

[ms]

CPU

[s]

GPU

[ms]

IT

HV 4.13 - 3.78 19.6 4.62 -

LV 2.45 - 1.59 18.1 3.16 -

AV 3.29 - 2.67 18.5 3.89 -

Recording its limited compatibility with other hardware,

TensorRT is highly designed for NVIDIA GPUS. It is an
NVIDIA library and runtime for optimizing deep learning
models for deployment on GPUs, with a focus on enhancing
inference performance. Hence, in the table below, we observe
that there are no results available for the CPU, with results
exclusively presented for the GPU (Table VI).

TABLE VI. COLLECTED RESULTS FOR TENSORRT FRAMEWORK ON

DIFFERENT RESOURCES

 Local Colab Jetson Nano

CPU

[s]

GP

U

[ms]

CPU

[s]

GPU

[ms]

CPU

[s]

GPU

[ms]

IT

HV - - - 10.2 - -

LV - - - 8.9 - -

AV - - - 9.6 - -

Relating to TensorFlow Lite, which is comparatively more

resource-intensive than other frameworks, the table below
illustrates that the inference time on Colab consistently
remains shorter than on other resources (Table VII).

TABLE VII. COLLECTED RESULTS FOR TENSORFLOW LITE FRAMEWORK ON

DIFFERENT RESOURCES

 Local Colab Jetson Nano

CPU

[s]

GP

U

[ms]

CPU

[s]

GPU

[ms]

CPU

[s]

GPU

[ms]

IT

HV 6.42 - 5.62 212.3 6.93 -

LV 6.12 - 5.48 182.6 6.87 -

AV 6.27 - 5.56 194.2 6.87 -

While analyzing the various results, we noticed a

contradiction in the outcomes: one set of results pertained to
GPU performance, while the other set focused on CPU
performance (Fig. 7 and Fig. 8).

Regarding the GPU, it is important to highlight that
TensorRT exhibits strong performance, delivering lower
inference times. On the other hand, PyTorch delivers strong
performance and provides favorable results on the CPU,
leading to shorter inference times.

mailto:mAP@0.5

Fatima Abouzid et al. ESS (Vol 10. No 8. 2023) (pp.12-17)

17

V. CONCLUSION AND LIMITATIONS

In conclusion, our comprehensive study on machine
learning deployment has illuminated the complexities,
challenges, and opportunities in efficiently utilizing the power
of AI models for real-world applications. Throughout this
research, we explored the various stages of model
deployment, from data preparation to selecting deployment
frameworks, and even extending to evaluating their
performance on different resources.

The research followed two principal objectives. The
study's primary objective was to develop a traffic sign
detection and recognition system. Utilizing the YOLOv7
algorithm, beginning with data collection and preparation,
model training, and the eventual model selection. The second
objective involved evaluating the algorithm's performance
across diverse platforms and selecting a robust production
deployment strategy for the model.

The training phase produced a high-performance model
with an impressive mAP@0.5 of 0.967, which was
subsequently chosen for the deployment stage. This model
was deployed throughout various resources, including PCs,
Google Colab, and Jetson Nano, utilizing both GPU and CPU.
The inference time data indicates that TensorRT excels in
GPU performance, while PyTorch delivers robust
performance on the CPU.

The constraints identified in our study, including the
inability to use GPU on Jetson Nano, the complexity of the
YOLOv7 model, its size, and the number of classes, will be
addressed in our future work. We plan to evaluate these
limitations and explore alternative deployment strategies
using other boards equipped with GPUs.

REFERENCES

[1] U. Bhatt et al., “Explainable machine learning in deployment,”
FAT* 2020 - Proc. 2020 Conf. Fairness, Accountability,

Transpar., pp. 648–657, 2020, doi: 10.1145/3351095.3375624.

[2] A. Paleyes, R. G. Urma, and N. D. Lawrence, “Challenges in

Deploying Machine Learning: A Survey of Case Studies,” ACM
Comput. Surv., vol. 55, no. 6, pp. 1–29, 2022, doi:

10.1145/3533378.

[3] S. Saleh, C. Rellan, S. P. Surana, and J. Nine, “Collision Warning
Based on Multi-Object Detection and Distance Estimation

Network Simulation View project Cross-Correlation with Up-

Sampling View project,” no. January 2021, 2020, [Online].
Available: https://www.researchgate.net/publication/348155370

[4] A. Møgelmose, M. M. Trivedi, and T. B. Moeslund, “Vision-

based traffic sign detection and analysis for intelligent driver
assistance systems: Perspectives and survey,” IEEE Trans. Intell.

Transp. Syst., vol. 13, no. 4, pp. 1484–1497, 2012, doi:

10.1109/TITS.2012.2209421.
[5] S. Saleh, S. A. Khwandah, A. Mumtaz, A. Heller, and W. Hardt,

“Traffic signs recognition and distance estimation using a

monocular camera,” CEUR Workshop Proc., vol. 2514, no.
November, pp. 407–418, 2019.

[6] S. Soo, “Object detection using Haar-cascade Classifier Object

detection using Haar-cascade Classifier,” Academia, pp. 1–12,
2014, [Online]. Available:

https://www.academia.edu/38877608/Object_detection_using_Ha

ar_cascade_Classifier
[7] M. Gokarna and R. Singh, “DevOps: A Historical Review and

Future Works,” Proc. - IEEE 2021 Int. Conf. Comput. Commun.

Intell. Syst. ICCCIS 2021, pp. 366–371, 2021, doi:
10.1109/ICCCIS51004.2021.9397235.

[8] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “DevOps,”

IEEE Softw., vol. 33, no. 3, pp. 94–100, 2016, doi:
10.1109/MS.2016.68.

[9] “devops-lifecycle @ www.browserstack.com.” [Online].

Available: https://www.browserstack.com/guide/devops-lifecycle
[10] A. B. Kolltveit and J. Li, “Operationalizing Machine Learning

Models - A Systematic Literature Review,” Proc. - Work. Softw.

Eng. Responsible AI, SE4RAI 2022, pp. 1–8, 2022, doi:
10.1145/3526073.3527584.

[11] “mlops-principles @ ml-ops.org.” [Online]. Available: https://ml-

ops.org/content/mlops-principles
[12] “652a482cfdce57aac13f06ccda16905e5345cff2 @

learnopencv.com.” [Online]. Available:

https://learnopencv.com/yolov7-object-detection-paper-
explanation-and-inference/

[13] “understanding-yolov7-neural-network-343889e32e4e @

medium.com.” [Online]. Available:
https://medium.com/@nahidalam/understanding-yolov7-neural-

network-343889e32e4e

[14] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7:
Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-

Time Object Detectors,” pp. 7464–7475, 2023, doi:
10.1109/cvpr52729.2023.00721.

[15] P. Joshi, M. Hasanuzzaman, C. Thapa, H. Afli, and T. Scully,

“Enabling All In-Edge Deep Learning: A Literature Review,”
IEEE Access, vol. 11, no. December 2022, pp. 3431–3460, 2023,

doi: 10.1109/ACCESS.2023.3234761.

[16] “33fe758121d8c2765c578d4bdd3e7bfca40e8696 @
blogs.nvidia.com.” [Online]. Available:

https://blogs.nvidia.com/blog/2022/01/05/difference-between-

cloud-and-edge-computing/
[17] L. Y. Deng, M. Garzon, and N. Kumar, “What is dimensionality

reduction (dr)?,” Dimens. Reduct. Data Sci., pp. 67–77, 2022,

doi: 10.1007/978-3-031-05371-9_3.
[18] “pytorch-tout-savoir @ datascientest.com.” [Online]. Available:

https://datascientest.com/pytorch-tout-savoir

[19] “two-benefits-of-the-onnx-library-for-ml-models-4b3e417df52e
@ medium.com.” [Online]. Available:

https://medium.com/trueface-ai/two-benefits-of-the-onnx-library-

for-ml-models-4b3e417df52e
[20] “c4a60abc7bc3349f66acb3de35fb219511cfb0cc @ itsocial.fr.”

[Online]. Available: https://itsocial.fr/actualites/nvidia-annonce-

tensorrt-llm-sa-bibliotheque-opensource-pour-accelerer-le-
developpement-de-lia/

[21] “cd54b39442713720ef91d9daa105de4492a07d28 @ viso.ai.”

[Online]. Available: https://viso.ai/edge-ai/tensorflow-
lite/#:~:text=TF Lite can optimize existing,use cases of

TensorFlow Lite.

Fig. 7. CPU-based Deployment Results

Fig. 8. GPU-based Deployment Resutls

