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Abstract—Wood plates are widely used in the interior design 
of houses primarily for their aesthetic value. However, 
considering its esthetical values, surface defect detection is 
necessary. The development of computer vision and CNN-based 
object detection methods has opened the way for wood surface 
defect detection process automation. This paper investigates 
deep-learning applications for automatic wood surface defect 
detection. It includes the evaluation of deep learning algorithms, 
including data generation and labeling, preprocessing, model 
training, and evaluation. Many adjustments regarding the 
dataset size, the model, and the modification of the neural 
network were made to evaluate the model's performance in the 
specified challenge. The results indicate that modifications can 
increase the YOLOv5s performance in detection. The model 
with GCNet added and trained in 4800 images has achieved 
88.1% of mAP. The paper also evaluates the time performance 
of models based on different GPU units. The results show that 
in A100 40GB GPU, the maximum time to process a wood plate 
is 2.2 seconds. Finally, an Active learning approach for the 
continual increase in performance while detecting with the 
smaller size of manual labeling has been implemented. After 
detecting 500 images in 5 cycles, the model achieved 98.8% of 
mAP. This scientific paper concludes that YOLOv5s modified 
model is suitable for wood surface defect detection. It can 
perform with high accuracy in real time. Moreover, applying the 
active learning approach can facilitate the labeling process by 
increasing the performance during detection. 

Keywords: Wood surface, defect detection, YOLOv5, Active 
Learning 

I. INTRODUCTION 

Wood is a ubiquitous natural material with diverse 
applications across various industries, including furniture, 
construction, and paper production. The quality of wood is a 
critical factor in ensuring the safety and durability of 
structures and products made from it. Traditionally, the 
identification of wood defects has been performed manually 
by experts in the wood industry, which is time-consuming 
and labor-intensive. With the development of technology, 
new hardware methods were invented to make the process 
easy. Those methods are known as Non-destructive wood 
testing methods [1]. With the advent of computer vision, the 
automatic identification of wood surface defects has become 
a promising area of research. The Line-camera scanners have 

been developed for capturing high-resolution images for 
wood industry applications. In the beginning, those scanners 
were combined with the classical (hand-crafted) machine 
learning methods for detecting defects. Those methods, 
despite usability, leaked performance regarding precision. 
With the development of deep learning methods, such as 
convolutional neural networks (CNNs), there has been a great 
interest in applications in the detection and classification of 
wood defects. Also, several approaches have been applied in 
small-size damage detection.  
Convolutional Neural Network methods for object detection 
can be categorized based on the organization into two groups: 
The two-stage approach and the one-stage approach. The 
two-stage approach contains the generation of the region of 
proposals in the first stage, then applies CNN, classification, 
and detection using boundary boxes in the second stage, 
known as the Classification and Regression stage. Differently 
from the two-stage approach, the one-stage approach makes 
classification and regression directly from the input image. In 
subsections are listed algorithms designed based on both 
methods. One of the representatives of two-stage methods is 
You Only Look Once – YOLO [17] which is still under 
development. 
This research work aims to develop an automated 
identification system of wood surface defects based on 
current state-of-the-art detection methods such as 
YOLOv5[22] with several modifications for better accuracy 
in small-size detection and with active learning for a better-
trained model with a rich, confident dataset. 
However, there exist problems with the application and 
precision of such methods: 

• Higher detection precision needed (above 90%) 
• Real-time detection 
• Previous solution more oriented on general defect 

detection than on class of error detection 
• Continual learning for new defects 

The objectives of this work are: 
•  Development of the wood surface defect detection 

system based on active learning 
•  Modification of the current state-of-the-art model 

for small-size detection 
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•  Achievement of higher mean average precision 
(above 90%) 

•  Real-time detection 
The wood surface is characterized by décor which can lead to 
misdetection of the real defect. It is challenging for the 
YOLOv5 network to detect small targets in the meantime 
ensuring the detection of larger targets. 
To overpass this challenge we have proposed the introduction 
of attention layers in the backbone for feature extraction such 
as SENet[56] and GCNet[57].  
Another challenge is to detect defects in high-resolution 
images without losing the information of the small defects. 
As the images are captured by a line scanning camera with a 
high resolution, we have proposed several steps of image 
preprocessing for splitting the image without down-sampling 
or reducing the resolution. While the splitting of the image 
and detection in several images sequentially can lead to 
longer time and non-real-time detection, we have monitored 
the iteration time during detection and compared it on several 
GPUs with different qualities.  
The wood surface detection by a supervised learning 
technique requires a large dataset for model training. To 
overcome this challenge, we tried to evaluate the transfer of 
the weights from a model trained on a larger dataset (COCO 
2017) with no similarity to ours and to evaluate the size of the 
dataset by generating images based on images of raw wood 
plates and segmented defects using a Defector-API based on 
GAN network with Autoencoder using U-Net as a generator. 
In the end, we have performed an Active Learning strategy 
for continual improvement of the model on newly detected 
data with the least confidence. 

II. RELATED WORKS 

During the process of researching our topic, we have 
classified several scientific papers and works, which are 
listed below with their ideas, use cases, implementation, 
results, and conclusions. 
Zhao et al. [44] proposed a real-time defect detection system 
for particleboard surfaces using an improved version of the 
You Only Look Once version 5 (YOLOV5) deep learning 
model. The system achieved a mean average precision (mAP) 
of 0.906, outperforming other state-of-the-art object 
detection models for particleboard surface defect detection. 
Ding et al. [45] proposed a defect detection system for solid 
wood panels using a modified version of the Single Shot 
Detector (SSD) deep learning algorithm. The system 
achieved a mean average precision (mAP) of 0.927, 
outperforming other state-of-the-art object detection models 
for solid wood panel defect detection. The system also 
demonstrates robustness to various lighting conditions and 
camera angles, suggesting its practicality for industrial use. 
Fang et al. [46] proposed an automated system for detecting 
surface knots on sawn timbers using the YOLOv5 deep 
learning model. The proposed system achieves a mean 
average precision (mAP) of 0.925, outperforming other state-
of-the-art object detection models for surface knot detection. 
Bunjemea et al. [47] proposed a modification to the YOLOv5 
deep learning model to improve small object detection in the 
context of autonomous vehicles and named it YOLO-Z. They 
used DenseNet instead of CSPDarknet-53 in the backbone 
and FPN instead PAN in the neck. YOLO-Z achieved mAP a 

95.5 % on small objects, outperforming the state-of-the-art 
model. 
Yao et al. [19] proposed a real-time detection algorithm for 
detecting defects in kiwifruits using the YOLOv5 deep 
learning model. The proposed algorithm achieved an average 
precision (AP) of 94.7% on the test set, outperforming other 
state-of-the-art methods for kiwifruit defect detection. The 
proposed algorithm can potentially improve quality control in 
the food industry. 

III. METHODOLOGY AND IMPLEMENTATION  

In this chapter will be discussed the concept of the paper with 
the proposed models and their implementation. The concept 
includes image preprocessing, dataset evaluation, and 
modification of the YOLOv5 object detector to create a new 
model with higher performance. The different models of 
YOLOv5 have been trained, and their results have been 
discussed. In our concept, we propose using the Active 
learning process for continually training the model in newly 
detected images. Also, the impact of transfer learning during 
the training process is evaluated. The schematical 
representation of the concept is represented in Figure 1. 

 
Fig. 1. Defined classes of defects 

A. Technical Architecture 

This research uses the YOLOv5 object detector provided by 
Ultralytics and the PyTorch library, which is an open-source 
machine learning framework for deep learning developed by 
Google Brain. The hardware site used is the Google Colab 
platform, which provides a runtime environment in different 
graphic cards and a high amount of RAM suitable for training 
large amounts of data. Two shared GPUs have been used from 
Google Colab, the Tesla T4 with 16GB and the A100 with 
40GB. The proposed models have been trained on A100 and 
tested on all the above graphic cards.  

ModifiedOpenLabeling[51], a tool provided in GitHub, has 
been used to label the dataset. 
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B. Initial Dataset 

The dataset is collected especially for the use case of this 
project. The initial dataset has 20 images of different sizes 
from 2874×4174 to 5477 × 5414 pixels. It was collected using 
a 4i Scanner, which measures the plates that arrive 
individually via a conveyor belt and are scanned from below 
and above with a line camera as they pass through. The 
maximum plate size can be up to 1.5 meters wide and 3 meters 
long, depending on the Scanner. Approximately ten plates per 
minute are checked in transit. Special features of this system 
are the scaling invariance and the illumination invariance. The 
illumination and scaling invariance comes from using a line 
scan camera. The image dataset represented 6 different wood 
designs: Sonoma Eiche, Mammut Eiche, Bergeiche, Marmor 
Dunkel, Beton treuffelgrau, and Wildeiche. The size of the 
images was not appropriate for YOLO v5 input, leading to the 
loss of pixels and not a clear representation of defects. To 
address this, cropping of images was performed and 277 
images of size 1280×1280 pixels were generated. 11 classes 
of defects were labeled manually by defining the bounding 
box around them. These classes included decay, deep hole, 
shallow hole, crack, scratch, deep scratch, saw scratch, live 
knots, dead knots, sticker, and carving. The defined classes in 
the dataset are represented in Figure 2. 

 
Fig. 2. Defined classes of defects 

For the training of a model, the dataset should be divided into 
training and validation data in report 80% to 20%. By this 
ratio, the training set contains 218 images, and the validation 
set 59 images. 

C. Extended Dataset 

The dataset has been extended with provided ground images 
and segmented defects. In general, 258 images without 
defects and 139 segmented defects were provided by the 
company. The size of base images variated from 7.5 MB to 
187MB or 1704×4600 pixels to 8320×23626 pixels. For 
generating the dataset, company Hecht AG provided 
Defektor-API and data augmentation tool implemented in 
[52]. To create variances and not focus on specific features 
for creating overfitting, the images without defects and 
segmented defects were transformed during defection. The 
transformation was mainly based on brightness, rotation, 
size, and deformation. The deformation has been 
implemented using a resolution change of the image and 
Gaussian low pass filter. First, the coordinates of the images 
were extracted from a lower-resolution image and then 

remapped on the original image. Then the Gaussian filter has 
been applied to filter the high band noises and reshape the 
image with the result. The parameters for the filter have been 
chosen: sigma in the range of 15 to 20 and alfa 5 to 20. The 
sigma parameter represents the frequency of the filter, and the 
alfa represents the gain. The higher the gain, the higher the 
shift of XY, and the lower the sigma, the higher the 
representation of the high band noises [52]. 
The extended dataset contains 4800 images of size 1280 × 
1280 pixels consisting of 800 images for each wood plate 
décor. The background images or True negative images 
represent 21% of the dataset. In the extended dataset, the 
number of defect classes is reduced to six after no need for 
several class detection which represents the decors of the 
wood design. The defect classes include decay, deep hole, 
shallow hole, scratch, a deep scratch, and sticker. 

D. Image Preprocessing 

The output of the 4i Scanner, as we explained in the Dataset 
section, is constructed in high resolution, which corresponds 
to the size of the wood plate with a maximum of 1.5m wide 
and 3m long. The images captured by the Scanner also 
contain a sliding track in the background which moves the 
wood plate inside the Scanner. To get rid of the track and get 
the wood surface as a region of interest, preprocessing steps 
have been implemented to extract the contour of the wood 
plate. After extracting the wood plate image and applying the 
perspective transform, the image needed to resize to the 
nearest multiplied value of 1280 in width and height. This 
resizing has a low effect on quality loss. In the end, the image 
is splinted by the nearest multiplier value of 1280 found 
before in N × M images of 1280 × 1280 pixels. The 1280 × 
1280 images are now fit to be used as input in YOLOv5 
convolutional neural network. The flow chart of the 
preprocessing steps can be found in Figure 3. 

 
Fig. 3. Image Preprocessing Flow Chart 

E. Modifications in Convolutional Neural Network 

During the performance of the first trained models, it has 
been seen as essential to add attendance layers as proposed in 
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different papers [53][54][55]. Therefore, we have selected to 
train two modified models, the first by adding Squeeze and 
Excitation Network in the Backbone of the YOLOv5. Feature 
fusion between channels of the convolution operation in the 
backbone network is the main focus of the SENet[56]. The 
primary innovation of this network is the model's ability to 
automatically determine the significance of various channel 
features by concentrating on the connections between 
channels. The SE module mainly performs operations using 
excitation and compression (Squeeze). In order to encode the 
full spatial feature on a channel as a local feature, the Squeeze 
operation uses global average pooling. The Squeeze 
operation first collects the channel information, then builds a 
gate mechanism out of two fully linked layers and activates it 
with the Sigmoid function. In the end, the output weight of 
SENet is mapped to the original feature. The SENet has been 
incorporated in the last feature extraction layer (C3) of the 
backbone of the YOLOv5 small model. 

 
Fig. 4. The schema of modified YOLOv5s with SENet added 

The second model has been modified by adding Global 
Context Network (GCNet)[57]. The suggested GCNet can 
effectively model the global context through additional 
fusion as the Non-Local network (NLNet). As the NLNet is 
heavy and difficult to integrate into several layers, GCNet 
acquires SENet, which represents the lightweight property. 
As a result, on critical benchmarks for multiple recognition 
tasks, GCNet can outperform both NLNet and SENet thanks 
to more efficient global context modeling. 
By using GCNet as the backbone network in YOLOv5, the 
architecture can benefit from its ability to capture both global 
and local context information, which can improve the 
accuracy of object detection. During the application of 
GCNet in the YOLOv5 small model, we have replaced the 
current feature extractor module, which contains 
CSPBottlenecks with three convolutional layers (C3 
module), with a modified feature extractor module, C3_GC, 
which has three convolutions and CSPBottleneck, the Global 
Context block. Except for the first feature extractor module, 
which remained the same, all other C3 modules have been 
replaced with C3_GC. 

 
Fig. 5. The schema of modified YOLOv5s with GCNet added. 

F. Transfer Learning 

This work also conducts the impact of transfer learning on the 
performance results of YOLOv5 in object detection. The use 
of transfer learning was tested by using pre-trained weights 
with and without freezing the layers. 
Freezing layers means that layers selected to be frozen are 
prevented from training on the target dataset by transferring 
the initial weights trained on the pre-trained dataset. Only the 
weights remaining unfrozen layers are tuned on the target 
dataset while training the network. The training of the dataset 
without frozen layers means all weights are typically 
continuously tuned depending on the features of the target 
dataset. The creators of YOLOv5 have provided the pre-
trained model and its weights trained in the COCO dataset. 
The COCO dataset contains over 330 000 images displaying 
1.5 million objects and is trained on 90 classes. Training with 
frozen layers requires fewer resources while the process of 
training and also performs faster training, but it may result in 
a negative transfer and reduction of final trained accuracy. 
In our research, we have used both frozen and unfrozen 
transfer learning in different phases. The standard YOLOv5s 
was trained with a completely frozen backbone. As the 
modifications have happened the in the backbone of feature 
extraction layers, it was not possible to use transfer learning 
with frozen layers in before mentioned modified models. The 
model used to be trained on the extended dataset has not been 
pre-trained as it was interesting for the topic to see the 
performance without transferring weights. 

G. Active Learning 

This paper introduces Active Learning, a semi-supervised 
learning method for object detection using deep learning. The 
dataset used is unlabeled and the labeled dataset pool is empty 
in the first stage. The dataset consists of 500 images divided 
into five parts of 100 images. 30 images with the least 
confident result are selected for manual labeling, and the 
images without objects are entitled to 0 as a confidence score. 
The model was trained on 50 epochs and the batch size was 
set to 4. After each cycle, the trained weights were used on 
the next training cycle. This process was possible by using 
transfer learning for weight transfer from pre cycled model. 
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IV. RESULTS AND DISCUSSION 

The first training includes modified models based on the 
YOLOv5s model. The model with added GCNet and the pre-
trained YOLOv5s model with a frozen backbone have shown 
better results in precision than the model with added SENet. 
In the recall metric, the models have almost similar results 
after 300 epochs, but the model with added GCNet and the 
standard pre-trained model with a frozen backbone have 
faster saturation (after 70 epochs). 
Regarding mAP, the YOLOv5+GCNet model has slightly 
better results in mAP0.5 than the standard model with a 
frozen backbone. Meanwhile, the model with SENet added, 
after 300 epochs, but with slower saturation, is not far behind. 
The situation is also reflected in mAP0.5-0.95, where SENet 
is still lower in the result and with slower saturation than the 
other two models. 
On the other hand, the validation results of mAP make a 
difference. The model with GCNet added has shown better 
results than the two other models compared in this phase. 
This model has reached 72% of mAP 0.5 and 44.3% of mAP 
0.5-0.95. Meanwhile, the standard YOLOv5s model with a 
frozen backbone has reached 69.9% of mAP 50% and 44.1 of 
mAP with an IoU threshold of 50-95%. The model with 
added SELayer showed the lowest performance with 68.6% 
(mAP0.5) and 36.9 (mAP0.95). The standard YOLOv5s with 
frozen backbone and SENet added model leaks on detection 
of defect with IoU threshold 50%. Otherwise, the GCNet 
added model had overpassed the standard pre-trained model 
for 1.6% in mAP0.5 and 8% in mAP0.5-0.95. 
The model trained in an extended dataset during the training 
process has achieved nearly 90% of mAP with IoU 50%. It 
seems that after 120 epochs, the results became stable. 
Compared with the second phase, it has a 20% improvement. 
As per mAP0.5-0.95, the model has achieved nearly 60% 
during training, and the saturation of the result came after 150 
epochs. The results compared to the second phase model are 
nearly 15% higher during the training. During the validation, 
we have the same situation. The mAP0.5 result is 88.1% 
which is 16.1% higher than the second phase model. The 
result of mAP with IoU threshold variable 50-95% in 
validation is 58.4%. This result is 12.1% higher than the 
second phase model. 

TABLE I.  REPRESENTATION OF VALIDATION RESULTS FOR MEAN 
AVERAGE PRECISION WITH IOU THRESHOLD 50% AND IOU THRESHOLD 50-

95% FOR RESPECTIVE TRAINED MODELS. 

Model 
Parameters 

Batch 
Size 

Epochs mAP50% 
mAP50- 

95% 
Pretrained Yolov5s6 (freeze 
backbone) 

16 300 0.699 0.441 

Pretrained Yolov5s+SENet 16 300 0.686 0.369 

Pretrained Yolov5s + GCNet 16 300 0.72 0.443 

Non-pretrained Yolov5s+ 
GCNet model (Extended 
Dataset) 

16 300 0.881 0.584 

 

 

 

TABLE II.  REPRESENTATION OF ITERATION TIME OF DETECTION FOR 
TRAINED MODELS IN VARIOUS GPUS 

Model 
Graphical Processing Units 

GTX1650Ti 
4GB 

Tesla T4 
16GB 

A100 
40GB 

Pretrained Yolov5s6 (freeze 
backbone) 

139ms 21.6ms 14.3ms 

Pretrained Yolov5s+SENet 110ms 20.2ms 12.8ms 

Pretrained Yolov5s + GCNet 143ms 23.1ms 17.8ms 

Non-pretrained Yolov5s+GCNet 
model (Extended Dataset) 

143ms 23.7ms 17.4ms 

 
This work includes a comparison of detection time per 
images on various Graphic Processing Units. In the case of 
the YOLOv5s + GCNet model, it has achieved 23.1ms for the 
detection of one image with the size of 1280 × 1280 pixels on 
a Tesla T4 GPU with 16GB. We can see that this time is lower 
in A100 GPU taking just 17.8ms. Compared with the other 
two models (standard and with SENet), the GCNet added 
model has a higher detection time due to more GFLOPs. The 
SENet added model takes less time than two other models for 
detection. Based on the results, for a scanned wood plate (the 
dataset image with the largest size of 8320 × 23626 pixels), 
in T4 GPU it needs less than 3 seconds to detect defects in a 
full image. Of course, this time is lower if A100 GPU with 
40GB is used. In A100, the model takes 17ms to detect an 
image of size 1280 × 1280. For the 8230 × 23626 pixels 
image, it takes 2 seconds to detect defects. Considering that 
the scanner scans ten wood plates in one minute, the 
maximum time for proceeding with one wood plate would be 
6 seconds. In low-quality 1650Ti GPU, it will need 143ms 
per image or approx. Eighteen seconds per whole wood plate. 
 

 
Fig. 6. Detection results in all décors for all classes of defects of Yolov5s 

+ GCNet model trained on the extended dataset. 

A. Active Learning Process Results 

After the first phase, the mAP0.5 got raised to 95.8%. The 
mAP0.5-0.95 also got raised to 78.6%. In the second phase, 
there is a dropdown of mAP results. The mAP0.5 goes under 
60%, and the mAP 0.5-0.95 drops to 50%. In the third phase, 
mAP0.5 rises to 90%, and mAP0.5-0.95 rises to nearly 80%. 
The rise also continues in the fourth phase, where mAP0.5 
raised to 99.5%, which is a very high performance. And the 
mAP0.5-0.95 raises to above 90% to 93.1%. This means that 
the location of bounding boxes of detected inferences is so 
accurate, nearly in the same place as with labels of the 
validation set. In the final phase, the mAP0.5 results become 
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more stable, and the drop is just 0.7%, meaning 98.8%. On 
the other hand, mAP0.5-0.95 drops to 74.7%. 
Comparing the results before and after active learning, we 
find out that the improvement in mAP 0.5 is 10.7%, and in 
mAP 0.5-0.95 is an improvement of 16.3%. 
 

V. CONCLUSION AND FURTHER WORKS 

The results demonstrate the excellent performance of 
YOLOv5 models in detecting wood surface defects. The 
modifications in feature extraction by adding attendance 
layers such as GCNet has shown improvement in increasing 
performance. Otherwise, adding SELayer showed a decrease 
in performance. At the same time, transfer learning with 
freezing all layers has shown that it is not an excellent choice 
to undertake. Adding GCNet has performed an increase of 
1.6% in mAP0.5 while the mAP0.5-0.95 got increased by 8%. 
The modified YOLOv5s+GCNet proved that it could be real-
time operable while detecting the maximum wood plate 
image, while the model extra-large failed in this direction. 
For an image of 1280 × 1280 pixels, it needs 143ms in low-
performance GPU, 23.7ms in medium-performance GPU and 
17.4ms in high-performance GPU. Moreover, while 
performing dataset evaluation, the modified model 
YOLOv5s+GCNet can perform much better in larger 
datasets. Considering that transfer learning was not 
performed, we have achieved 88.1% of mAP0.5 and 58.4% 
of mAP0.5-0.95. These results show a significant 
improvement in mAP by more than 10%. Those 
improvements come from a variety of data used with 
balanced representation for all types of wood plates. But the 
results could have been higher if labeling had been performed 
in a more professional way by an expert in the wood industry. 
Finally, the Active learning approach proved the necessary 
need for application in the wood industry for the 
improvement of performance. It has been shown that the 
mAP performance can change drastically while continually 
training the model in new detections. Achieving 98.8% of 
mAP0.5 and 74.7% of mAP0.5-0.95 after 500 detected 
images greatly impacts this process to create a highly 
performable model. 
Despite the result, more work needs to be done in this field.  
A more detailed definition of the defects is required for 
labeling which leads to a better classification of defects. This 
process requires the involvement of an expert in the wood 
industry which none of the authors can replace. 
Also, the depth of the defect represents a piece of important 
information for the reliability of the system. As sensor fusion 
techniques have shown remarkable results in automotive 
applications, a similar approach needs to be researched for 
combining line-scanning cameras and laser-based depth 
sensors with CNN object detection techniques for defect 
detection. Recently, YOLOv8 has been released and has 
shown an increase in performance compared with YOLOv5. 
In the future, newer modifications should be researched to 
improve defect detection techniques. 
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