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Abstract—Error messages are a helpful tool for everyone
interested in learning a programming language. Even after
learning the language, novice and experienced programmers
alike, have to interact with an error message one way or another.
However, there is no single programming language that is used
across all platforms and systems, so the programmers have to
write programs in many different languages. If the programming
languages have similar structures, working with a new language
is relatively easy. We have asked the question, whether the
same effect could be observed in case of error messages. We
designed an online survey which was conducted internationally
to measure whether the general experience of programmers
from any programming language influences the programmer’s
ability to correct python error message. The survey was aimed
at students who have some experience with programming. We
find in comparison with novices, on average the experienced
programmers find and fix an error in the code given the same
error message with its corresponding code snippet. Additionally,
we see correlations between the average of correctly fixed errors
and number of programming languages that the participants had
experience with, as well as their chosen major and their age.

Index Terms—programming experience, error message,
python, student

I. INTRODUCTION

A central part of learning any programming language is
making mistakes and errors. When a mistake is made while
programming, in case of the python programming language
as well as many others, error messages are shown so that
the programmer can fix (debug) their error (bug). However,
more often than not the error messages are cryptic and hard
to read. There are ongoing and previous researches related to
error messages, their cause, readability and effectiveness in
helping the programmer solve the problem [1]–[8]. We tried
to concentrate our focus on the influence of the students’ past

experience in programming language, given error messages in
python, on the likelihood of solving the error correctly and on
the time necessary for solution.

It might seem trivial that the more experienced the program-
mer is it is more likely that they do better and faster at finding
and correcting an error in the code, however it is not always
the case as it was actually shown in the field of medicine that
newly graduated doctors perform better than senior doctors
because the medical knowledge is still fresh in their minds
[9]. A similar case could be seen in mental health fields [10].
It is of interest to us to experiment whether the same could
be also observed in case of programming.

This paper is organized as follows: Section II contains
the research question, hypotheses, planning of experiment,
participants, and material creation, Section III presents the col-
lected data from the conducted survey, and the corresponding
descriptive statistics, in Section IV we discuss our findings
from the collected data and test its significance, additionally,
possible threats to validity of the result are considered, lastly in
Section V we conclude the topic and mention potential future
works relating to the topic.

II. STUDY DESIGN

A. Research Goals

Error messages should deliver the programmers, in particu-
lar to novice programmers, essential information regarding the
location and cause of an error in the code [4,11,12]. Further-
more, error messages should avoid frustrating the program-
mer by being challenging to understand and giving useless
information to the user [11]. These exact difficulties with
error messages make programming seem hard and influence
beginners negatively which sometimes make them reluctant in
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learning a programming language [2]. Regarding this issue,
Jadud mentioned in 2006 that error messages that commercial
compilers generate are often misleading [13].

According to [4] error messages in modern programming
languages are still cryptic, misleading and uninformative.
It is true that even now, programmers have complications
understanding an error message. Especially, if it is an error
message from a programming language one is not acquainted
with, the programmers have trouble finding the error and fixing
the error.

B. Research Question

In this research the following research question are asked:
(RQ) How does the past programming experience of the
student influence the likelihood of finding the correspond-
ing mistake in the code, and the time to find it, given the
python error message?

Here, the independent variables are the past experience of
the student with programming in general, and the shown error
message. The dependant variables are the likelihood of finding
the mistake, and the time it takes to find it. The dependent
and independent variables have been operationalized. As a
clear distinction between experienced and inexperienced pro-
grammers is needed for the analysis, we considered students
with equal to or more than a year’s worth of experience in
programming as more experienced and students with less than
a year of experience as novices. Likelihood is measured by
the amount of correctly found and fixed mistakes, per codes
shown.

C. Hypotheses

With the operationalized variables we propose following
hypotheses and their null hypotheses.

Hypotheses:
H1: Given the same python error message, experienced
programmers are more likely to find and solve the corre-
sponding mistake than inexperienced programmers.
H2: Given the same python error message, experienced
programmers find the corresponding error faster than
inexperienced programmers.

Null Hypotheses:
H10: Given the same python error message, experience of
the programmer has no effect on the likelihood in finding
and solving the corresponding mistake.
H20: Given the same python error message, experienced
and inexperienced programmers will find the correspond-
ing error in the code in the same amount of time.

We hypothesize that the experience of the students in a
programming language influences their python error message
interpretation positively, such as solving the existing error
faster and more precisely. However, the python error mes-
sage could also be sufficiently well written so that the non-
experienced students can interpret the message just as correctly
as their experienced colleagues.

D. Experiment Planning

The design of our experiment is intended to allow us to gain
a comprehensive understanding of the relationship between
past experience and the ability to interpret error messages
in programming. By targeting students with programming
experience, we aim to capture a broad range of perspectives
and experiences, which will help us to build a more complete
picture of the topic.

To reach a large and diverse participant pool, we have
decided to conduct an online survey that can be accessed
from anywhere in the world at any time of day. This approach
allows us to gather data from a wider range of participants,
which help us to draw more robust conclusions about the
relationships between the level of past experience and error
message interpretation.

As our experiment is focused on comparing the experiences
of participants with different levels of programming experi-
ence, it can be seen as a between-group design experiment.
This means that we will compare the results of participants
who have different levels of experience, in order to identify
the impact of experience on their ability to interpret error
messages.

E. Participants

The participants are split into multiple groups, depending on
their level of experience, age, major, gender, self assessment,
and experience with number of programming languages. The
level of experience is determined with various questions before
the survey. These questions determine the following points:

• Whether the participant has studied or is studying any
programming languages.

• Whether the participant is working or has worked in a
programming related job.

• What was the first programming language the participant
learned?

• When did the participant learn their first programming
language?

• When was the last time the participant did programming?
• How confident are the participants in their program

debugging abilities?
Using the answers to the questions above we classified our
subjects into different groups of experience level. The ques-
tions also helped in determining data that could have unwanted
effects on the result such as false data or outliers.

F. Material Creation

For our experiment we collected online responses from
students around the world using the SoSci online platform.
It was necessary to differentiate between questions that deter-
mine the programmer’s level of experience, and questions that
the ability to debugging the given errors. For this purpose,
we divided the survey into two parts. Upon launching the
survey, the participant is greeted with an introduction page
that informs them how the survey will run, as well as the
contact details of the researchers in case they have feedback.
By clicking on next, the participant goes to the first part of
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the survey. In the first part the participant is asked questions
to help us classify their level of experience.

In the second part of the survey the participant is shown
10 error message examples and codes individually, and during
the 10 minute time limit they would try to solve as much
of these errors as possible. A time limit was introduced to
later compare the speed of the participant for whole set of
questions in regard to the correctness, rather than comparing
time for individual questions. The survey ends, when the timer
runs out or the participant finishes the survey.

III. RESULTS

The data was collected for one month, beginning from
December 20, 2022 until January 20, 2023. During this period
49 students took part in the survey. Upon closer inspection,
20 participants were excluded from further analysis due to
missing time values in the second part of the survey, leaving
29 answers for the analysis.

A. Presentation of the Collected Data

After the exclusion of data from participants that did not
reach the second part of the survey, the remaining data was
split into several groups connecting the first and second part
of the survey. For each group the average number of correctly
answered questions in part two was calculated. With the
calculation results graphs were drawn, with the average score
on the y-axis and the related groups on the x-axis, to visualize
and compare the data. During the visualization, it became
apparent that the remaining data still had additional outliers
which distorted the outcome of the graph. These outliers were
participants who reached the second part of the survey but
did not spend enough time on each question as well as the
question set as a whole.

Another type of outliers were participants that qualify as
inexperienced programmers according to the criteria, however
they had very high scores. As we can see in Fig. 1, two outliers
from the inexperienced group showed inconsistency within the
group.

Fig. 1. Boxplot showing comparison between experienced and inexperienced
programmers.

According to their answers, the two outliers are studying
Computer Science in their fourth masters semester, that would

mean that it is partly expected of them to have studied a
programming language in their earlier semesters, therefore
more than a year ago. By removing the outliers we are left
with 20 participants.

Overall, a few patterns were seen: most participants were
majoring in computer science, the rest were majoring in
engineering. The subjects came from different countries such
as Germany, Mongolia, Egypt, Iran, Pakistan, Mexico, Taiwan,
and Kazakhstan. The majority of participants noted that they
used their programming skills at work and knew several
programming languages. The majority were also male.

B. Descriptive Statistics

The analysis of the average test scores involved a multi-
faceted approach. Factors such as the age, gender, major,
familiarity with programming languages, and previous expe-
rience with different programming languages were taken into
consideration. This information was then visualized in Fig. 2.
The aim of this analysis was to identify any correlations or
trends between different variables and average test scores. By
considering various perspectives, a comprehensive understand-
ing of the data could be achieved.

Fig. 2. Average score by age, major and gender.

The data analyzed suggest that age may play a role, as those
who are older than 20 years old appear to have a higher success
rate in fixing code errors. This may be due to the accumulation
of experience and knowledge over time. Furthermore, the data
indicate that individuals who have majored in computer sci-
ence may be better equipped to solve code errors, as they have
likely received a more in-depth education in programming and
computer science principles. The survey results did not reveal
any apparent differences in scores between male and female
students. Additionally, the average score was graphed over
the number of programming languages the participants had
previous experience in, see Fig. 3.

The data presented in the Fig. 4 shows a correlation between
proficiency in multiple programming languages, particularly
including Python, and the ability to solve errors in code.

This suggests that having a wider range of programming
knowledge can help with identifying and fixing mistakes
in code. Additionally, the graphs show that those who use
programming in their work are also more likely to have
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Fig. 3. Average score by number of programming languages.

Fig. 4. Average score by past experience with different programming
languages and work related programming.

success in fixing code errors. This can be attributed to the
fact that regularly using programming skills helps maintain
and improve their proficiency.

In Fig. 5, we can see an interesting correlation between self
evaluation and average scores. It seems that the students who
evaluated themselves as good in programming scored better
compared to the other two groups.

Fig. 5. Average score by self estimation.

The results suggest that experienced programmers are able
to quickly identify the source of the error and implement the
necessary changes, while novice programmers may struggle
to understand the error message and take longer to make

the correction. It is important to note that this conclusion is
based on the data presented in Fig. 1 and Fig. 6 and may not
necessarily apply to all cases. Factors such as the complexity
of the error, the specific programming language involved, and
individual aptitude for programming may also play a role
in determining how quickly and accurately an error can be
corrected.

Fig. 6. Boxplot of response time of experienced and inexperienced program-
mers.

Significance and validity are discussed in the following
sections.

IV. DISCUSSION

A. Significance

The average score for older students was 3.14, while the av-
erage score for younger students was 1.25. Similarly, computer
science students had an average score of 3.33, compared to 1.5
for engineering students. The study also found that students
with programming experience in any language, especially in
Python, performed better compared to those without experi-
ence. The self-assessment of the participants was found to be
consistent with the results of the study which indicate that
the self estimation is a reliable way to measure programming
experience [14]. Those who regarded themselves as bad or
very bad programmers on average only scored one point, while
those who considered themselves to be average programmers
scored 2.16 points. Those who regarded themselves as good
programmers scored 3.61 points on average.

These results suggest that age and academic background,
which correspond with their experience, can play a role in
student’s ability to correct errors in code. Additionally, having
programming experience, particularly in Python, can also have
a positive impact on the ability to correct errors.

In order to test the results on significance, the Shapiro-
Wilk test was performed using a pre-written python script on
the correctness and average response time of the two groups:
Beginners and experienced programmers. The Shapiro-Wilk
test is a statistical test that is used to determine if a sample
of data comes from a normal distribution by comparing the
sample’s mean and variance to a critical value from the
Shapiro-Wilk distribution table [15]. The test determined that
the data did not look Gaussian for the response time for

65



Gantogoo Oyunbat and Ahmad Hassanien ESS (Vol 10. No 7. 2023) (pp.62-67)

both the beginners and experienced programmers. For the
correctness, the data from the beginner group did not look
Gaussian while the experienced group looked Gaussian. When
the data does not look Gaussian, it means that the data is not
symmetrically distributed around the mean.

Given the results from the Shapiro-Wilk test, we proceeded
to apply the Mann-Whitney U-test. Mann-Whitney U-test
is a non-parametric test that compares the medians of two
independent samples to determine if they come from different
populations [16]. According to Mann-Whitney U-test there
was no statistically significant difference between beginners
and experienced programmers in terms of response time; U =
17.000, p = 0.135 (α = 0.05). However there was, indeed,
a significant difference in terms of correctness; U = 55.500,
p = 0.025 (α = 0.05).

Our research question was How does the past programming
experience of the student influence the likelihood of finding
the corresponding mistake in the code, and the time to find
it, given the python error message? We found that in case
of correctly finding and fixing a bug the experienced group
was significantly better than the novice group which was
tested with Mann-Whitney U-test. Contrary to our expecta-
tions, however, there was no statistically significant differ-
ence between two groups. This would mean that our first
hypothesis ”Given the same python error message, experienced
programmers are more likely to find the corresponding mistake
than inexperienced programmers.” is possibly true, but our
second hypothesis is likely to be false which would mean
our second null hypothesis ”Given the same python error
message, experienced and inexperienced programmers will
find the corresponding error in the code in same amount of
time.” is possibly true.

Below is the Violin plot, which combines the box plot and
also describes the data point density:

Fig. 7. Violin plot for response time.

With the violin plots we can see that both groups needed
relatively same amount of time to solve the error. We can
see a small concentration of experienced students between
100 seconds and 230 seconds, on the other hand, a small
concentration from the novice group can be seen between 500
seconds and 630 seconds. However, as there was no significant

difference between the two distribution, and due to the low
number of data we were left with we cannot certainly.

Fig. 8. Violin plot for correctness.

It is important to note that this data only shows correlation
and not causation. Causation between data points shows that
one collection of data or events directly influences another,
for example the calories consumed per day by a group of
people on average directly cause their weight to increase or
decrease. Correlation, on the other hand, simply points to the
fact that two data points seem to have a relationship, but this
relationship is not necessarily causal.

B. Threats to Validity

Regarding an empirical research, its validity should be
discussed. However, in case of external and internal validity it
is often difficult to balance them as increase in external validity
can lead to decrease in internal validity. Thus, it should be
decided whether to concentrate on internal validity, control
the experiment settings and focus on chosen aspects at a
cost of generalizability, or to concentrate on external validity
and observe general effects without exactly knowing which
elements are indeed producing the observed results [17]. In
terms of validity, following can be said about the external and
internal validity of the study:

1) Internal Validity: Internal validity tries to answer the
question of how strongly our study can demonstrate causation,
and if our manipulation explains our outcomes. As with
many other experiments, our experiment has variables that
could influence the dependent variables, time and likelihood
to debug the code. These factors are known as confounding
variables, and they can make determining the true cause-and-
effect relationship between the independent and dependent
variables difficult. Confounding variables are, for example, the
participant’s mood at the time, distractions in the environment,
their focus level, what food they ate before the survey and so
on. If the participant is feeling stressed or distracted during the
survey, their ability to focus and interpret the error messages
correctly could be impacted. Similarly, if a participant had a
heavy meal before taking the survey, their motivation could
be affected. All these variables and more cannot be fully
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controlled but only partly limited. These confounding variables
can make it difficult to draw accurate conclusions from our
study, as it can be challenging to determine whether any
observed changes in the dependent variables are due to the
independent variable (past experience) or due to the influence
of other factors. We tried to design our experiment in such way
and limit possible variables so that our internal validity would
not be low. However, it should be noted, that our internal
validity could not be maximized to balance out the above
mentioned trade-off between internal and external validity.

2) External validity: In case of external validity, we try to
answer the question of how confidently we can generalize our
findings, and whether our study is representative of real life
contexts. Since our study is online, we can sample a wide
variety of people from different backgrounds, ages, countries,
genders and so on. One advantage of conducting our study
online is that it allows us to reach a much larger and more
diverse population of participants than we would be able to
with a traditional, in-person study. By making the survey
accessible to anyone with an internet connection, we can
sample participants from a wide range of backgrounds, ages,
countries, and genders, which can help to ensure that our
results are representative of the general population.

This is particularly important for our study, as we are inves-
tigating the relationship between past experience in program-
ming languages and the ability to interpret error messages,
and we want to make sure that our results are generalizable
to a wide variety of people. By sampling a diverse group of
participants, we can help to ensure that our results are not
influenced by biases or other factors that may be specific to a
particular demographic.

V. CONCLUSION AND FUTURE WORK

In conclusion, the results support the hypothesis H1, experi-
enced programmers are more likely to correctly address errors
in code compared to novice programmers. However, the study
did not find a significant difference in the time required to
correct the errors between the two groups, which would mean
that the hypothesis H2 does not holds. This shows us, past
experience indeed allows the programmer to correct an error
but does not accelerate the solving process. It would seem
surprising if a mathematics professor were to solve a problem
in same amount of time as a high school student. Therefore, it
is interesting for us to observe this kind of outcome in case of
programming. Nevertheless, limitations such as lower number
of samples than expected might have had an effect on the
results. Therefore, it needs further inspection.

Future research in this area should aim to expand the scope
and reach more conclusive results. One way to achieve this
would be to increase the number of participants in the study.
This would allow for a more diverse sample and a better
understanding of the relationships between experience, error
messages, and debugging speed and performance.

Another avenue for future work would be to explore other
programming languages beyond Python. Python is a widely
used language, but it is only one of many programming

languages in use today. By examining other languages, such as
Java, a more comprehensive understanding of the relationships
between experience and debugging performance can be gained.
This would provide a more complete picture of the impact
of error messages on the debugging process and can help
in identifying the best practices that can be applied across
different languages.
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