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Abstract—Impact detection using piezoelectric sensors is an ac-
tual and widespread research field. The current work provides an
approach for a real-time realization of an impact detection system
using deep learning methods. For realization a hardware software
co-design approach is used utilizing hardware acceleration by a
continuous pipelining FPGA structure. The concept describes the
hardware software partitioning of the underlying functions and
the methodology for ensuring continuous data processing and the
associated real-time capability. The behavior of the hardware is
realized with the help of a finite state machine and thus the
correctness of the data is ensured and the impact identification
is realized. The results show the real-time capability as well as
a reasonable resource utilization of the FPGA design.

Index Terms—Signal processing, Machine learning, Signal
processing systems, Real time

I. INTRODUCTION

In the aerospace sector, components made of composite
materials are used to save weight without compromising
the stability of flying objects, and thus to comply with the
increasingly stringent emission guidelines by reducing fuel
consumption [1]. The problem with composites is that, in
contrast to metallic components, impact damage is hardly
visible from the outside [2]. Inside the hybrid laminates, these
impacts can nevertheless lead to delamination of interlayers,
fiber breaks and matrix cracks, which must be detected early
on, especially in safety-critical applications [3], [4]. For this
reason, piezoelectric sensors have been used for many years
to detect and localize impacts on composite materials [5].

Another area of application for impact localization on hy-
brid laminates is as a multifunctional lightweight component in

the automotive industry. As part of the MERGE federal cluster
of excellence, research is being conducted on an intelligent
center console that will detect inputs similar to a touch display
and perform the corresponding functions, such as opening and
closing windows or controlling the multimedia system [6], [7].

In addition to localize the impacts as precisely as possible,
resource consumption and the necessary computation time are
also relevant. Particularly when used as an input facility for,
among other things, safety-critical functions, reliable and real-
time capable localization of the inputs must be provided.

II. RELATED WORK

To localize impacts on composite materials, deep learning
approaches, among others, have been evaluated in various
research projects. In 2000, Worden and Staszewski equipped
a 530mm wide and 400mm long composite panel with 17
piezoceramic sensors [8]. As a result, this correctly predicted
the impacts with an average difference of 23.1mm in the x-
direction and 25.7mm in the y-direction [8]. Tabian et al.
were also able to achieve accuracies of over 95%, and in
most cases over 99.4%, on a composite 1 150mm long and
750mm wide equipped with 12 piezoceramic lead zirconate
titanate (PZT) sensors, using a CNN-based approach [1].
Damm et al. confirmed these results in 2020 on a 280mm long
square composite plate equipped with three PZT sensors [9].
They were able to determine the exact position with an
accuracy of 99.55% and an average deviation of 0.16mm [9].

Based on the MERGE center console equipped with four
piezoelectric sensors, various options for localizing the in-
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puts have already been evaluated. Using a support vector
machine (SVM) with a polynomial kernel, Schmidt et al.
achieved an accuracy of 84% with an energy consumption
of approximately 1.7W [7]. The time differences between
the individual sensors, determined by thresholding, have been
used as input data, resulting in an intensity dependency [7].
This dependency is impractical for use as a center console,
so Böhle et al. considered signal features that guarantee
intensity independence [10]. Overall, the results obtained are
not satisfactory, since a maximum accuracy of about 70% does
not meet the requirements of a safety-critical system [10].

An improvement has been obtained by Lede et al. using feed
forward neural networks (FFNN) and convolutional neural net-
works (CNN) [11]. A Digilent-branded Zynq XC7Z010 board
with a 650MHz ARM dual-core processor and FPGA has been
used for data processing and prediction calculation [11]. The
neural networks are trained by using the amplitude spectrum of
the sensor data recorded by several subjects [11]. The average
accuracy during testing of the learned FFNN is 99.26%, while
the CNN achieved 98.53% [11]. In addition to the accuracy,
the time required and the resource utilization have been also
evaluated, whereby the FFNN, which required only 12ms
for the calculation of the prediction, has been faster than
the CNN with 38ms [11]. The maximum physical memory
consumption is less than 17MB and the maximum virtual
memory consumption less than 29MB for both networks.

As a result, neural networks were found to meet all require-
ments for impact localization on an automotive center console.
So far, except for the analog-digital conversion of the sensor
signals, all functionalities are performed on the processor.
However, the current analyses include the processing time
for classification and the necessary Fast Fourier Transfor-
mation (FFT) transformation only. The additional necessary
identification of relevant measurement windows as input for
the classification are not included. Therefore, the identification
of a potential impact should be executed directly by the
hardware and just relevant sensor data should be streamed
to the software. This keeps resources free to enable further
applications such as the Graphical User Interface or necessary
interfaces.

III. CONCEPT

To realize this, a hardware-software co-design is required,
which can be implemented on the hardware mentioned in
section II. For this purpose, the hardware has to convert the
analog signals of the four piezoelectric sensors into digital
signals and monitor if certain limit values are exceeded. In
addition, it is necessary to ensure that the impact is fully
contained in the data stream. The fundamental idea is to
continuously fill a memory, which works according to the first
in - first out principle (FIFO), with sensor data and forward the
complete content to the software when an impact is detected.

The overall system concept is shown in Figure 1. The first
step is to connect the piezoelectric sensors to the analog-to-
digital converter (ADC) interface through an electrical circuit
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(cf. [7]). The hardware-software partitioning is done by dis-
tributing the functions to the FPGA as hardware and the ARM 
processor as software resource. The first s tep o f t he FPGA 
implementation is to provide the ADC interface converting the 
analog signals into digital values ensuring the availability for 
subsequent components. The impact detection is to be done 
via a threshold comparison, which is triggered as soon as one 
of the sensors exceeds the given limit. As soon as the FIFO 
is filled, t he d ata i s s treamed t o t he s oftware v ia t he AXI4-
Stream interface. Subsequently, the processor performs a FFT 
and starts classification using the selected neural network. The 
determined input can be sent to the interface via a desired 
medium, such as CAN, Ethernet or UART.

Fig. 1. Concept of system architecture for real-time processing based on Zynq
SoC (XC7Z010).

Two options exist for classification, using either a FFNN
or a CNN. In terms of accuracy, both networks are very
similar, with the FFNN (99.26%) performing slightly better
than the CNN (98.53%) when tested with previously unknown
data [11]. On the other hand, for the loss function values,
the CNN performs better, especially for training and valida-
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tion [11]. For the functions performed by the software, the
execution times are already known. The calculation of the am-
plitude spectrum (magnitude of the FFT) requires 10ms and
the classification using the CNN 38ms, respectively 12ms for
the FFNN [11]. This results in two options, either with slightly
better accuracy using the CNNs or with faster computation
time using the FFNNs. The time remaining to get from an
impact to a result is determined by the time required to perform
the FPGA’s operations. Consequently, two valid options are
available for the realization in the software part, which can be
selected depending on the available resources and the required
accuracy of the given application ensuring reusability of the
Hardware implementation. By using a deterministic system,
as well as the predictability of the hardware acceleration, a
fixed deadline can be ensured, making the system real-time
capable.

IV. IMPLEMENTATION

A detailed explanation of the implementation of the software
part is omitted, as this has been described in preliminary
work [11]. The FPGA design implements a continuous data
flow, which consists of ADC interface, Threshold Comparison,
and data storage in the FIFO. The data flow is regulated
by an finite state machine (FSM) ensuring the necessary
functionality and FIFO storage behavior. After the relevant
impact data is stored, the software is informed to read the
FIFO and perform the FFT and classification, accessing the
data via an AXI DMA. In the following, the structure and
function of the ADC interface just as the data processing are
explained in more detail, whereby a detailed description of
the FIFO and the DMA is omitted, since these are standard
XILINX IP cores.

A. ADC Interface

In addition to the standard reset and clock inputs, the
ADC interface has one positive and one negative input for
each of the four sensors, whereby 500 000 12 bit samples
per second can be recorded. As output a 64 bit vector is
used, which contains the data samples of one point in time
of all four recorded ADC channels representing four sensor
signal samples. Additionally, a validation signal is provided
indicating whether the data in the vector is valid and can be
processed further. The control of the interface is taken over
by a FSM, whose states are explained in more detail below.

After initialization, the interface is in the idle state and
waits until an analog-to-digital conversion is completed. It then
determines which of the sensor values are currently available
and stores them in the respective vector. In parallel, as soon
as a sensor signal has been converted, its value is written to
the corresponding position of the output vector. After all four
sensor signals have been proceed and stored in the output
vector, a confirmation is provided by setting the corresponding
validation signal. Further data processing in the FIFO control
unit takes place and the ADC interface can sample new data
by returning to the idle state ensuring real time behavior and
continuous data processing.

B. Data Processing for Impact Detection

The data processing necessary for impact detection is done
by the FIFO control unit. This is implemented by a FSM
controlling the overall data flow and it contains a FIFO with a
write depth of 16 384 and a width of 64 bit. In addition to the
reset and clock inputs, it has inputs to determine whether the
AXI DMA is ready to receive data, a data input from the ADC
interface and the corresponding valid signal. The outputs of the
control unit are the data from the FIFO and the corresponding
valid signal.

As can be seen in Figure 2, the FSM starts in the INIT
state, initializing necessary control signals. This is followed
by the PREFILL state, in which the FIFO is filled with 1 638
values. This is necessary because the used classification in the
software part has already received sensor data with this buffer
during the training process. This ensures that the entire impact
is evaluated and no important data for the classification is lost.
Simultaneously, it is ensured that the comparability of the life
system and the training data is given. As soon as the FIFO
contains this amount of data, the FSM changes to the IDLE
state in which the threshold comparison is performed. The
minimum and maximum threshold values of the sensors are
stored in registers, which allows adjustment by the software.
As long as the values are in the idle range, new data is
permanently stored in the FIFO and the corresponding number
of oldest data is discarded. This ensures a continuous flow
of data, which guarantees the actuality and correctness of
the data. As soon as the respective threshold value has been
undercut or exceeded, the FSM changes to the FILLING state.
The new data, which now contains the impact, is written to
the FIFO until it is full, whereupon the FIFO switches to the
FULL state. Now it is checked whether the AXI DMA is ready
to receive data and whether valid data is present at the data
output of the FIFO. If this is the case, the data is read out and
streamed to the software via the AXI DMA until the FIFO is
empty, whereupon the FSM is switched back to the PREFILL
state.

Fig. 2. Finite state machine of the FIFO control unit
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V. RESULTS

By synthesizing, implementing, and simulating this design,
the following results can be achieved. In the Table I, the
resource usage of the embedded system can be seen which
shows that 18.91% of the available Look Up Tables (LUT),
11.95% of the Flip Flops (FF) and 55% of the Block
RAMs (BRAM) are used.

TABLE I
RESOURCE UTILIZATION OF THE TARGET SYSTEM PER IMPLEMENTED

COMPONENT

Resource Component Utilization Available

LUT

Total 3329

17600

AXI Interconnect 1954
AXI DMA 1062

FIFO Control 182
ADC 54

Miscellaneous 77

FF

Total 4207

35200

AXI Interconnect 2172
AXI DMA 1551

FIFO Control 83
ADC 121

Miscellaneous 280

BRAM
Total 33

60AXI DMA 4
FIFO Control 29

The simulation can also be used to determine the times re-
quired for the individual functions. This allows us to determine
that at an FPGA clock rate of 100MHz, one sample of valid
data from the four sensors takes 2 080 ns. Furthermore, the
Table II shows which time the individual states of the FIFO
Control FSM require, whereby all values are constant except
for the IDLE state. This is due to the system waiting in the
IDLE state until an impact is identified. As a result it can be
derived that from the moment of the impact about 30.84ms
are needed until the data is streamed to the software.

TABLE II
REQUIRED TIME OF THE INDIVIDUAL STATES OF THE FIFO CONTROL

UNIT FSM DETERMINED BY THE SIMULATION OF AN IMPACT

State Time
INIT 250ns

PREFILL 3.41912ms

IDLE 2 080ns

FILLING 30.66961ms

FULL 0.16385ms

TOTAL 34.25491ms

VI. CONCLUSION AND FUTURE WORK

In this paper a Hardware Software Co-Design has been
presented realizing a real-time capable impact detection on a
Zybo Zynq SoC board using a hybrid laminate equipped with
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piezoelectric sensors. The necessary classification has been re-
alized with deep learning methods on the ARM processor and 
the necessary digital signal processing on the FPGA providing 
a continuous data flow controlled by a FSM. The results show 
a resource utilization of LUTs and FFs with approx. 12 % to 
19 %, which in turn can be considered as low. Contrary, the 
utilization of the BRAMs with 55 % is comparable high for the 
given functionality. This is reasoned by the observation time 
and corresponding measurement window size for one impact. 
A reduction of the measurement window size required for the 
classification process can be achieved by further research. The 
time required to sample an impact is 30.84 ms when the system 
is in the IDLE state. Adding 10 ms required for the FFT and 
12 ms for classification w ith t he F FNN g ives a  c onstant total 
time of about 52.84 ms, proving real-time capability. In the 
future work, the necessary FFT calculation can also be shifted 
to the FPGA to further reduce the load on the ARM processor.
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