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Abstract—Power line insulator detection is pivotal for the 

consistent performance of the entire power system. It forms the 

basis of Unmanned Aerial Vehicle (UAV) inspection, an 

emerging trend in power line surveillance. This paper addresses 

the challenge of insulator detection in cluttered aerial images, 

given the constraints of a limited dataset and lower 

computational resources, specifically on the NVIDIA Jetson 

Nano platform. We have developed two approaches based on 

active and passive deep learning algorithms, underpinned by the 

Single Shot Multibox Detector (SSD) meta-architecture with 

MobileNetV2 as its backbone - SSD300 and SSD640. The 

proposal models managed a frame rate of 9 fps in 10W power 

mode and 5.6 fps in 5W power mode. Our experiments 

demonstrated that the proposed active learning model could 

conduct robust insulator detection, achieving a mAP of 94.5% 

while using only 43% of the total dataset, comparable to the 

traditional deep learning approach's 94.6% mAP using the 

entire dataset. Significantly, the active learning model seeks 

feedback during the training process, allowing the model to 

learn from its mistakes while enhancing its accuracy over time. 

This also contributes to improved generalizability and 

interpretability of the model by seeking diverse and 

representative samples during training, all while reducing the 

computational and annotation overhead. 

Keywords— Insulator detection, single shot detector, deep 

learning, active learning, embedded platforms 

I. INTRODUCTION 

Electricity, a cornerstone of modern civilization, requires 
an efficient and reliable delivery system. At the heart of this 
system, the transmission network performs a crucial function 
by ferrying power from generation stations to local 
distribution networks. Such a network's robustness directly 
impacts the overall reliability and performance of the entire 
power system. Within the components of high-voltage 
transmission lines, insulators play a vital role. They not only 
maintain electrical insulation but also provide mechanical 
support to conductors. Thus, the detection and inspection of 
power line insulators become a critical task in preserving the 
consistent operation of power systems. 

In the past, the methods for inspecting insulators primarily 
involved the use of binoculars or helicopters. However, recent 
years have witnessed a growing trend toward using Unmanned 
Aerial Vehicles (UAVs) for these inspection tasks. This shift 
is attributable not only to the unique airborne perspective these 
vehicles provide but also to their ability to closely approach a 
power line. At the same time, electricity continues to flow, 
thus increasing efficiency and safety. 

The meticulous examination of power line insulators for 
defects is essential to ensure a stable power grid. Nonetheless, 
before any inspection can occur, there is a prerequisite need 
for detecting the insulator. This task has been the subject of 
many studies, leading to the development of various methods 
aimed at effective insulator detection. This task can be 
addressed with camera sensors through a computer vision 
application. Traditional computer vision tasks, however, are 
known for their sensitivity to multiple factors, underscoring 
the importance of deep learning models. With their robust 
capabilities, these models present a more reliable solution for 
the detection of objects, providing a promising avenue for the 
future of power line insulator detection. 

II. LITERATURE REVIEW 

In recent years, special attention has been given toward the 
automation of power line insulator inspections. This was 
guided by the desire to reduce the risks and costs related to 
this process. The inspection process requires first the correct 
and stable detection of the insulators. 

A. High-Voltage Insulator Detection 

Earlier insulator detection strategies primarily employed 
traditional image processing and computer vision techniques. 
These methods offer less computational complexity, power, 
and resource consumption. For example, Fei et al. [1]utilized 
Bayesian segmentation for insulator detection, while Zhai et 
al.[2] employed adaptive morphology and saliency to identify 
faulty insulators. Another effective approach is Li et al.[3]'s 
usage of template matching to detect insulators from UAV 
images. Oberweger et al. [4]proposed a RANSAC-based 
model for insulator detection that used a voting approach. 
Other noteworthy methodologies include feature-based 
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algorithms like those proposed by Liao and An[5], as well as 
Tudevdagva et al.[6], who focused on detecting faults in 
insulators based on symmetry detection. 

Recently, more focus has been invested in AI-based 
methods to solve the detection task. With the progress of deep 
learning and CNNs, precise methods for insulator detection 
have been proposed, improving upon traditional methods in 
terms of accuracy and speed. These models have been 
commonly classified into two categories: single-stage 
detectors and two-stages detectors[7].  

For instance, Zhao et al.[8] proposes a model for insulator 
recognition and fault detection in transmission lines, using an 
enhanced Faster RCNN model with Feature Pyramid 
Networks and various image processing techniques. Their 
model demonstrated high accuracies exceeding 90% in mAP. 
Another research [9] outlines a novel, robust approach using 
deep learning to detect cracked insulators in high voltage 
transmission lines. A Region-based Fully Convolutional 
Networks (R-FCN) algorithm was used to localize the 
insulator followed by the inspection step. The model 
demonstrates an average accuracy rate of 90.5% and strong 
environmental adaptability.  

Han et al. [10]presents an improved insulator defect 
detection algorithm using YOLOX. An enhanced SIoU loss 
function is used to address issues related to minor target 
sensitivity and complex backgrounds in aerial insulator 
images. By incorporating an Efficient Channel Attention 
Module (ECA), the model reduces the impact of redundant 
features on detection accuracy, achieving an impressive mAP 
of 97.18% and a detection speed of 71 fps. Another study [11] 
used an improved SSD algorithm for real-time UAV-based 
power inspection, utilizing a lightweight MnasNet network 
and multiscale feature fusion technique, achieving a detection 
accuracy of 93.8% and a speed of 154 ms per frame. 

In a previous study[12], we trained a YOLOv4-Tiny 
model and analysed the performance in the scope of an 
embedded platform. The results showcased that real-time 
detection was possible thanks to the lightweight model and a 
specific power configuration of the embedded board. 

B. Passive vs. Active Learning 

The application of deep learning in visual inspection 
systems has surged in the past decade due to advances in 
neural networks, greatly enhancing their robustness. The 
quality of these models relies heavily on the architecture of the 
deep learning and the strategies used in training.  

Traditional supervised learning, in other words passive 
learning, refers to the process where a model is trained on a 
labelled dataset without any interaction during the training 
phase. This learning process is referred to as passive since it 
learns independently from the data without any guidance. This 
means that once the model is fed with data, it would train it on 
one iteration. Therefore, it highly relies on the quality of the 
dataset to produce accurate models. 

However, the approach of passive learning presents 
several limitations, leading to the rise of active learning. 
Contrasting passive learning, which relies on a fixed dataset 
with pre-labelled examples, active learning actively selects 
samples for labelling to optimize its learning process. Active 
learning offers the advantage of reducing the annotation cost 
by prioritizing the most informative instances, while passive 
learning follows a more traditional approach of training on a 

fixed labelled dataset. The choice between passive and active 
learning for inspection problems depends on the availability 
of labelled data, the cost of annotation, and the desired 
efficiency and accuracy trade-offs. 

Active learning is a machine learning methodology 
designed to augment model accuracy while reducing the need 
for labelled data. A semi-supervised learning method selects 
the most informative examples from a large unlabelled data 
set and presents them to a human expert for labelling. After 
these examples are labelled, they are used to train the model 
in an iterative process. According to Shadi et al.[13], [14], 
active learning can greatly decrease the need for labelled data 
and match, or even exceed, the accuracy of passive deep 
learning methods. 

In visual inspection tasks, where labelled data is scarce or 
expensive to obtain, active learning can be a useful approach. 
It offers the benefit of minimizing the need for data annotation 
and can achieve performance on par with deep passive 
learning methods but with fewer labelled datasets However, 
passive deep learning could be a viable choice if there is easy 
access to a large and labelled dataset and the cost of annotation 
is not a significant issue. The unique constraints, available 
resources, and preferred compromises regarding data 
efficiency and annotation costs dictate the decision between 
these two methods [14]. 

III. METHODOLOGY 

This study introduces a methodology to automate the 
insulator detection process using a SSD architecture. This 
approach involves a process that includes data collection, data 
augmentation, and training based on both traditional and 
active learning strategies.  

The SSD consists of an object detector that performs the 
detection in one forward pass through the network, contrasting 
other models such as RCNN and its variants[15]. The SSD 
model categorizes the output area of bounding boxes into a 
collection of default boxes. This is achieved by altering their 
scales and aspect ratios for each location on the feature map. 
During the prediction phase, the network generates probability 
scores for each category in each default box and then adapts 

 

(a) 

 
(b) 

Fig. 1  Network architecture of SSD (a) with standard VGG16 backbone 

(b) with proposed MobileNetv2 
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the shape of the box to fir the object. In order to handle the 
detection of object with different sizes, the model combines 
the predictions of feature maps at different resolutions[15].  

In the context of this research, we modified the backbone 
of the SSD model by integrating the MobileNetv2 network 
instead of the VGG16. This modification reduces the 
computational complexity, facilitating feature extraction and 
enabling faster training times, which is beneficial for an 
iterative training process like active learning. In addition, it 
reduces the number of network parameters, making the model 
compact and more suitable for resource-limited edge devices. 
The model architecture is shown in Fig 1. 

A. Dataset Collection 

In this work's context, the dataset used in [12] was 
reutilized to save the labelling cost for this research work [12]. 
However, it was necessary to revise the dataset quality. The 
dataset's quality is crucial in ensuring a high-calibre model's 
production. Empirical evidence demonstrates a direct 
correlation between the dataset's quality and the resultant 
model's performance and accuracy [16] 

B. Data Augmentation 

Data augmentation is a technique that allows for the 
expansion of feature variety in the data set used for model 
training[17]. This technique amplifies a model's ability to 
fortify its resistance to changes in object positioning and 
mitigates overfitting. To streamline the training duration and 
reduce resource use, we favoured offline augmentation over 
the online method. We implemented several augmentation 
techniques such as: 

• Brightness (±20%) 

• Exposure (±20%) 

• Rotation 

• Flipping 

• Noise (salt and pepper) 

In the context of this work and given that we planned to 
train our model using two different resolutions, namely 
640x640 (SSD640) and 300x300 (SSD300), we initially 
extracted frames at a 640x640 resolution. Subsequently, these 
images were transformed into a resolution of 300x300 to form 
a separate dataset. This procedure led to the assembly of a 
dataset comprising 2,337 images, which we divided as 
explained in the methodology. 

C. Deep Learning Frameworks 

Our research incorporates two distinguished deep learning 
frameworks: conventional learning and active learning. Each 
learning framework brings specific benefits and challenges to 
the table. These learning approaches determine how our 
model engages with the training data, ultimately influencing 
the model's performance and reducing the effort required in 
the training phase. 

1) Passive Learning 
In the conventional supervised learning approach, also 

known as passive deep learning, the model is trained once on 
a fully labelled dataset without further interaction or 
adjustment during the learning process. This is considered an 
unsupervised learning process. For this study, the dataset was 
divided into an 80:20 ratio, with 80% allocated for training 
and the remaining 20% for testing purposes. The SSD model 

was trained and subsequently fine-tuned using a validation set 
comprising around 20% of the training set.  

2) Active Learning 
Active learning consists of a semi-supervised technique 

that focuses on iteratively selecting the most informative 
instances from a pool of unlabelled data for manual labelling, 
decreasing the volume of labelled data necessary for effective 
training. The active deep learning methodology utilized for the 
detection of insulators encompasses several stages as depicted 
in Fig 2.  

The procedural steps within the proposed framework are 
as follows: 

1. Generate a data pool containing all chosen images 
derived from the aerial video footage. 

2. To initiate, select 15% of the total images for the 

first iteration. The data pool comprises 7008 images, 

and 1051 (15%) are selected for the first iteration. 

3. Use an oracle (such as a human expert) to annotate the 
chosen dataset. 

4. Train the proposed modified SSD model using the 
annotated dataset. 

5. Post-training, verify if the model achieves the 
required mAP accuracy or if the loss function has 
stabilized. If these conditions are not met, draw an 
additional 4% of images from the remaining data 
pool. 

6. Until the model meets the required mAP accuracy or 
the loss function stabilizes, repeat steps 3 and 4 as 
needed. 

7. The final model exhibiting the highest mAP is chosen 
for inference. 

The strategy for selecting queries is a crucial element of 
the active learning paradigm. Selecting an apt query strategy 
is crucial for achieving optimal results in minimal time. As 
mentioned in the active learning process, the data is collected 
from data pools containing data organized based on a specific 
logic. In the context of this work, the dataset was split into four 
pools based on several features such as light, reflection, blur, 
noise, shadow, angle, and complexity of background. The four 
pools are as follows: 

• High-quality Pool: This category comprises images 
exhibiting the maximum confidence score. These 
images are free from any distortions, such as 
reflection, blur, noise, or shadows, and the 
background is free from clouds or artifacts. 
Moreover, these images were captured in proximity 
to the insulator. 

 

 

Fig. 2 Proposed framework for active deep learning 
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• Intermediate-quality Pool: This category excludes 
images with reflections, blur, or noise. However, it 
includes images that are tilted or partially obstructed. 
The background may occasionally display clouds but 
lacks any additional artifacts. 

• Low-quality Pool: This category includes images 
that might be periodically out of focus, resulting in 
blurry depictions of the insulators. Some e images 
exhibit lens flares, and the backgrounds can 
occasionally be chaotic, with visible houses or 
traffic. 

• Indoor Pool: This category consists of images 
captured within the Indoor Flight Centre (IFC) lab at 
TU Chemnitz. These images are shot under various 
indoor lighting conditions instead of natural daylight. 
While the background remains relatively static, the 
images are captured from various angles. 

D. Model Training 

The model was trained both on passive learning and active 
learning. For passive learning, a batch size of 32 was used to 
train a model on 10000 epochs. The same hyperparameters 
were chosen for the two types of learning paradigms.  

IV. RESULTS AND DISCUSSION 

This section discusses the results and evaluation of our 
trained models. Our training process encompassed two 
models: SSD300 and SSD640, employing both passive and 
active learning techniques. We proceeded to assess the 
performance of these models using evaluation metrics based 
on the confusion matrix. Finally, we deployed the models on 
the NVIDIA Jetson Nano platform and measured their 
detection speed and inference rate, providing valuable insights 
into their real-time performance. 

Table I presents the evaluation results of SSD300. For 
mAP@0.50, both the passive and active learning (8th 
iteration) approaches achieved comparable precision, with 
86.7% and 83.7%, respectively. However, when considering 
the accuracy of the test set, the active approach outperformed 
the passive approach significantly, achieving 71.2% (on the 
8th iteration) accuracy compared to only 52.3% in the passive 
approach. 

The evaluation results of SSD640 are presented in Table 
II. After eight iterations, both approaches demonstrate nearly 
identical mean average precision values for both 
mAP@0.50:0.95 and mAP@0.50. In contrast to SSD300, the 
passive approach performs slightly better on the test set, 
achieving 80.7% compared to the 77.9% accuracy on the 8th 
iteration, during the 8th iteration, the active deep learning (DL) 

approach only utilized 43% of the total dataset, highlighting 
its efficiency in leveraging a smaller portion of the data for 
achieving promising results. 

In addition to evaluating the model's performance, we also 
measure the inference time to assess its efficiency. 
Subsequently, the frame rate is derived from the recorded 
time, indicating the number of frames processed by the model 
per second in a video streaming scenario. By calculating the 
Frames Per Second (FPS) as the inverse of the inference time 
(FPS = 1/inference time), we gain insight into the model's 
ability to meet real-time constraints. Results of the model’s 
detection can be seen in Figure 3. 

Table III comprehensively compares the frame rate and 
average power consumption of the NVIDIA Jetson Nano. The 
inference speed is evaluated under two different power modes: 
5W and 10W, available on the Jetson Nano. 

In the case of SSD300, when operating at 5W power mode, 
the model trained using the passive deep learning strategy 
achieves an average frame rate of 4.2 fps, whereas, at 10W 
power mode, it reaches 9.0 fps. Comparatively, the active DL 
approach yields slightly higher inference rates and consumes 
slightly less power than the passive strategy. 

With the increase in image size for SSD640, the frame rate 
experiences a significant decrease, nearly halving its value. 
When employing the passive DL approach, the frame rates 
observed are 2.2 fps in the 5W power mode and 3.4 fps in the 

 

Fig. 3 Power Line Insulator Detection using SSD640 

TABLE I.  EVALUATION RESULTS OF SSD300 

Strategy 
mAP@0.5 

(%) 
Precision 

(%) 
Recall 

(%) 
F1 Score 

(%) 
Accuracy 

(%) 

Passive 
Learning 

86.7 52.3 99.7 68.6 52.3 

Active 
Learning 
Iterations 

76.5 53.8 98.9 69.7 53.4 

78.4 59.6 98.8 74.4 59.2 

81.4 59.62 98.8 74.4 59.2 

81.6 58.66 1.0 73.9 58.7 

83.0 64.0 99.5 77.9 63.8 

83.3 65.8 98.2 78.8 64.9 

82.3 71.5 98.8 83.0 70.9 

83.7 71.6 99.3 83.2 71.2 

 

TABLE II - EVALUATION RESULTS OF SSD640 

Strategy mAP@0.5 
(%) 

Precision 
(%) 

Recall 
(%) 

F1 Score 
(%) 

Accuracy  
(%) 

Passive 
Learning 

94.6 89.8 88.8 89.3 80.7 

Active 
Learning 
Iterations 

82.2 86.6 77.3 81.6 69.0 

85.1 87.5 81.8 84.5 73.2 

86.1 86.3 80.9 83.5 71.7 

87.7 89.4 79.7 84.3 72.8 

89.1 86.1 84.1 85.1 74.0 

91.4 93.3 81.4 86.9 76.9 

91.6 94.9 81.4 87.6 77.9 

94.5 95.2 81.1 87.6 77.9 
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10W power mode. These modes correspond to an average 
power consumption of 3.8W and 7.23W, respectively. On the 
other hand, the active DL approach, even on the model from 
the 8th iteration, demonstrates a comparable inference rate of 
2.6 fps on the 5W power mode and 3.9 fps on the 10W power 
mode. The power utilization remains relatively efficient, 
amounting to 3.37W and 7.77W for the respective power 
modes. 

V. CONCLUSION 

This research introduced an approach for automated 
insulator detection utilizing both active and passive learning 
methodologies within the framework of the SSD. It 
demonstrated that active learning could significantly lessen 
the burdensome task of annotating extensive datasets, 
particularly in specialized applications where the procurement 
and labelling of data are both costly and labour-intensive. 

The outcomes highlight that both the SSD300 and SSD640 
models, when trained via active learning strategies, could 
produce noteworthy results, even when using a limited 
number of labelled images. Despite a minor trade-off in the 
frame rate due to a higher image resolution, the SSD640 
model exhibited superior precision and recall. Both models 
adequately fulfilled real-time requirements when 
implemented on the NVIDIA Jetson Nano platform. 

Future efforts will concentrate on enhancing the active 
learning selection process, exploring the application of other 
low-energy edge devices, and assessing the effects of different 
object detection architectures. In general, this research makes 
a substantial contribution to the application of active learning 
in computer vision tasks, setting the stage for more effective 
use of limited labelled data resources in visual inspection 
tasks. 
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TABLE III - PERFORMANCE EVALUATION ON NVIDIA JETSON NANO 

Model 
Power 

Mode 
FPS 

Avg. Power 

(W) 

S
S

D
3

0
0
 

Passive DL 

5W 

4.2 3.80 

Iteration 1 5.6 3.06 

Iteration 8 5.2 3.50 

Passive DL 

10W 

8.6 6.81 

Iteration 1 9.0 6.72 

Iteration 8 8.7 6.46 

S
S

D
6

4
0
 

Passive DL 

5W 

2.2 3.80 

Iteration 1 2.7 3.58 

Iteration 8 2.6 3.37 

Passive DL 

10W 

3.4 7.23 

Iteration 1 4.1 7.91 

Iteration 8 3.9 7.77 

 


