
Embedded Self Organizing Systems (Vol 9. No 4. 2022) (pp.48-51)

48

Special Issue Topic: “Learner Centered Learning“

Description Of The Task Generator For Testing

Students' Knowledge

Alkhamov Radik
Faculty of Applied Mathematics and Informatics

Tashkent Branch of Moscow State University
Tashkent,Uzbekistan
radikrr60@gmail.com

Abstract - Automation of knowledge testing is one of the
important tasks. There are special systems that allow you to
test knowledge using a task generator. These systems use a
special language similar to programming languages. An
interpreter has been developed for the described language,
which allows to translate the source text into an internal
representation. This representation is transferred to the
block in which the question is displayed, as well as the
analysis of the student's answers. All tasks can contain
random parameters, which makes the tasks unique. Each
task can contain up to 16 types of answers. This article
describes the system and language developed for knowledge
testing. This system allows the student to display the
algorithm for solving the problem step by step. The system
also allows you to collect statistics of student responses.

Keywords— automatic generation of tasks, knowledge
check, task generator, random parameters.

I. INTRODUCTION
Nowadays, the use of computer technology in various fields

is becoming crucially important. The best example is the
education area. The use of computer technologies for testing
student knowledge began with testing programs when the
student must choose the correct answer from a given list of
possible answers. However, this approach has several
disadvantages. One of these disadvantages is the ability to
"guess" the answers. The tool based on a task generator helps
to reduce the impact of this disadvantage.

Theoretical bases for testing methods with random
parameters are given in [1]-[4]. Description of such systems is
given in [5]-[8].

DrFrost [9] and KutaSoftware [10] are the most used
services. However, these services don`t allow third-party users
to add new tasks. Similar systems have already been

considered [11]-[14]. However, most of these systems do not
have the ability to display the progress of the task

II. METHODS FOR CONSTRUCTING A TASK GENERATOR
A task generator is a tool that allows the teacher to create a

bank of tasks using random parameters.
A special language and interpreter have been developed for

the task generator to make adding tasks to the system
convenient for the teacher. The interpreter translates text from
this language into an internal representation. Then the resulting
program is transferred to the block that generates questions and
the output block of the algorithm description for solving
problems.

The proposed language has a block structure, i.e. all
commands are written as blocks. Each instruction is written on
a separate line. Each block starts with a line like "#<block
name>" and ends with a line like "%<block name>". The
following blocks are defined.

The “#K” block contains the values of the main constants,
for example: DEL=':' UMN=CHR(183).

In program, for example: DEL=':' UMN=CHR(183).
The block “#V” contains the description of all variables.

The following types of variables are allowed: INTEGER -
integer variable in the range (from -65535 to 65536), REAL -
real number in the interval (from 1.5 10^-18 to 3.2 10^18),
STRING - string variable, up to 65535 characters, FRACTION
– common fraction is a set of three integers, INTARRAY[N]
array of integers, consisting of N elements, RLARRAY[N]
array of real numbers, consisting of N elements,
STRINGARRAY[N] array of string data, consisting of N
elements.

Block "#C" contains the text of the program, which consists
of instructions (operators).

Alkhamov Radik ESS (Vol 9. No 4. 2022) (pp.48-51)

49

The assignment operator has the form
<variable>:=<arithmetic expression>. The type of the variable
and the arithmetic expression must be the same.

The conditional operator looks like:
IF <conditional expression> <statements 1> ELSE

<statements 2> ENDIF.
In addition, the user can use 2 types of loop operator.
The first loop operator looks like:
FOR <variable>:=<start value> TO <end value>
<operators>
ENDFOR
The second loop operator is DO, looks like: DO

<statements> WHILE <conditional expression>
Block "#F" defines a variable containing the text of the task.
The "#P" block defines variables containing hints for the

task.
The "#O" block defines the parameters of the task. This

block consists of the type of answer and the value of the correct
answer, which is defined as a variable.

The system supports the following answer types: one
integer, one fraction, one real number, one character string, two
integers in any order, two integers in any order, two fractions in
any order, two fractions in this order, two real numbers in any
order, two real numbers in the given order. Moreover, the
number of answers can be increased to 4, and fractions can be
presented both in reduced and non-reducible form.

The file “Tem.sqt” is required for the system to work, which
contains the main parameters of the system, a description of the
topics that the system uses, as well as the names of the files in
which the description of the tasks is located.

The system works according to the following algorithm:
The student selects the topic and the type of problem.

According to the type of the selected topic, a file containing a
description of tasks on a given topic is read, and then the
interpreter translates the task from a text form to an internal
representation, while selecting random parameters and
substituting them into the task conditions.

The generated task is transferred to the main testing block,
which displays the task, and requests the student's answer, by
the type of answer. Depending on the parameters of the task,
the student may choose the answer several times. If the answer
type is one number or a string of characters, then the student's
answer is compared with the correct answer. If the answer type
specifies several numbers, and their order is unimportant, then
before comparing the answers, they are sorted in ascending
order.

If student has entered a predefined number of incorrect
answers, then he is suggested to look at the solution of the
problem in expanded form.

III. EXAMPLES OF PROGRAM INTERFACE
Below is the text of the program in the language that is

processed by the system.
#Z 0402 Quadratic equation with not reduced
#K constant
STRING PLS='+'
STRING DEL=':'

STRING UMN=CHR(183)
STRING MNS='-'
STRING PRB=' '
%K
#V Variable
A,B,C,X1,X2,X3,X4,D,E:INTEGER
D1,D2:FRACTION
S01,S02,S03,S04,S05,S06,S07,S08,S09:STRING
%V
#C -main program
X1:=Gener(-20,20,'<>0')
X2:=Gener(-20,20,'<>0')
X3:=Gener(2,10,'<>0')
X4:=Gener(2,10,'<>0')
A:=X3*X4
B:=X1*X4+X2*X3
B:=(-1)*B
C:=X1*X2
D:=B*B-4*A*C
S01:=VIR2(A,'x',B,C)+' = 0'
S02:='D='+STRSQUARE('B')+'-4'+UMN+'A'+UMN+ 'C='
S02:=S02+INTTOSTR(B*B)+'-4'+UMN+

INTTOSTSKOB(A)+UMN+INTTOSTSKOB(C)
S02:=S02+'='+INTTOSTR(D)
E:=ISQRT(D)
S03:=STRSQRT('D')+' = '+INTTOSTR(E)
S08:='-B+'+STRSQRT('D')
S09:='2'+UMN+'A'
S04:='x'+STRSUB('1')+'='+STRTOFRAC(S08,S09)
S08:='-'+INTTOSTSKOB(B)+'+'+INTTOSTR(E)
S09:='2'+UMN+INTTOSTR(A)
S04:=S04+'='+STRTOFRAC(S08,S09)
D1:=INT3TODRB(0,X1,X3)
PRIVED(D1)
S04:=S04+'='+DRBTOSTR(D1)
S08:='-B-'+STRSQRT('D')
S09:='2'+UMN+'A'
S05:='x'+STRSUB('2')+'='+STRTOFRAC(S08,S09)
S08:='-'+INTTOSTSKOB(B)+'-'+INTTOSTR(E)
S09:='2'+UMN+INTTOSTR(A)
S05:=S05+'='+STRTOFRAC(S08,S09)
D2:=INT3TODRB(0,X2,X4)
PRIVED(D2)
S05:=S05+'='+DRBTOSTR(D2)
%C
#F task formation
ZAD01:=S01
PST01:='Solve the equation'
%F
#P hints
PDS01:=S01
PDS02:=S02
PDS03:=S03
PDS04:=S04
PDS05:=S05
%P
#O form task

Alkhamov Radik ESS (Vol 9. No 4. 2022) (pp.48-51)

50

Kolstrk:=1
Kolx:=2
TipOtv1:=10
TipOtv2:=10
Kolp:=0
X01:=D1
X02:=D2
HZ1:=34
HZ2:=20
HZ3:=20
HZ5:=10
NPS01:='x'+STRSUB('1')+'='
NPS02:='x'+STRSUB('2')+'='
%O
%Z
Let's look at an example of how the program works. The

interface consists of the following dialog windows. In “Fig. 1”
shows the main window contains a list of topics and tasks on
this topic.

Fig. 1. Main window contains a list of topics and tasks.

After selecting a task, in the window appears a task for an

independent solution. In “Fig. 2” shows a window for selecting
a task.

Fig. 2. Selecting a task.

Next, the student should write the answer in the special field
of interactive interface of the task. In “Fig. 3” shows an example
of a task.

Fig. 3. Example of a task.

There is a button with the ability to see the progress of the

solution in the window with progress of solving the problems.
In “Fig. 4” shows an example of the progress of solving the
problem.

Fig.4. Progress of solving the problem.

IV. CONCLUSION
The described tool can be used not only as a checking

knowledge tool but as a learning tool. The system can be
improved by providing theoretical material. The considered
system in the course of experiments showed that the use of this
system increases the assimilation of mathematical knowledge
among students. The main advantage of the system is the ability
of displaying step-by-step solution of tasks.

REFERENCES

[1] P. Cristea, R. Tuduce, Automatic generation of exercises for self-testing in
adaptive elearning environments, Workshop on Authoring of Adaptive
and Adaptable Educational Hypermedia (Part of WBE), 1126 (WSEAS
Publishing, 2011).

Alkhamov Radik ESS (Vol 9. No 4. 2022) (pp.48-51)

51

[2] Mark Kellogg, Steve Rauch, Ryan Leathers, Mary Ann Simpson, David
Lines, Lisa Bickel, and Jeff Elmore, Construction of a Dynamic Item
Generator for K-12, Mathematics Annual Meeting of the National
Council on Measurement in Education Chicago, IL April 15-19, 2015.

[3] Sinharay, S., and Johnson, M.. Statistical modeling of automatically
generated items. Automatic item generation: Theory and practice, 2013,
(pp. 183-195).

[4] M. Gangur, Mikulas.. Matlab Implementation of the Automatic Generator
of the Parameterized Tasks. 2013, from https://www.
researchgate.net/publication/259901567.

[6] M. Gangur, Automatic generation of cloze questions. Proceedings of 3rd
International Conference on Computer Supported Education, 2011,
CSEDU’11.

[7] Todeush Alexander, Sherman Mychailo, Methods of generating tasks for
knowledge assessment Kherson State University DOI, from
https://doi.org /10.32839/2304-5809/2020-10-86-42.

[6] Vysotsky V.Yu., Goguneky V.T. Tests with random parameters for
automated learning modeling in applied research - Proceedings of the
National Polytechnic University. Х1Х2011 Odessa 2009.

[7] Overview of some technologies for designing a task generator in higher
mathematics for distance learning systems S.A. Mukhanov, A.A.
Mukhanova, and V.V. Britvina1, SHS Web of Conferences 141, 03009,
MTDE 2022.

[8] Ganna Kaplun, Automatic test generation: approaches and tools, from
https://dou.ua/lenta/articles/automatic-test-generation/.

[9] Kuta Software LLC. from https://www.kutasoftware.com/ index.html.
[10] Dr Frost, from https: //www.drfrostmaths.com/index.php.
[11] Math Goodies, from https://www.mathgoodies.com.
[12] SunRav TestOfficePro Program for creating tests, from

https://sunrav.ru/testofficepro.html.
[13] Overview and possibilities of the "MOODLE" system: a course for

teachers, from ttps://prepod.nspu.ru/course/ view.php?id=1378.
[14] Using Item Response Theory in adaptive testing, from

http://www.wikiznanie.ru/ru-wz/index.php.

https://dou.ua/lenta/articles/automatic-test-generation/
https://www.kutasoftware.com/

	I. Introduction
	II. Methods for constructing a task generator
	III. Examples of program interface
	IV. Conclusion
	References

