
Embedded Self Organizing Systems (Vol 9. No 3. 2022) (pp.73-81)

73

Special Issue Topic: “International Symposium on Computer Science and Educational Technology”

Tree Detection and Localization Approach for
UAV-based Forest Inspection

Batbayar Battseren

Chemnitz University of Technology
Chemnitz, Germany

batbayar.battseren@informatik.tu-
chemnitz.de

Shadi Saleh
Chemnitz University of Technology

Chemnitz, Germany
shadi.saleh@informatik.tu-chemnitz.de

Mohamed Salim Harras
Chemnitz University of Technology

Chemnitz, Germany
mohamed-salim.harras@informatik.tu-

chemnitz.de

Diego Alejandro Orjuela Aguirre
Chemnitz University of Technology

Chemnitz, Germany
batbayar.battseren@informatik.tu-

chemnitz.de

Wolfram Hardt
Chemnitz University of Technology

Chemnitz, Germany
wolfram.hardt@informatik.tu-chemnitz.de

Abstract—In the last years, the insect infection is causing a
massive impact on deforestation in Germany. The authorities
attempt to fight back this rapidly spreading problem throughout
the usage of conventional methods. These methods require forest
patrolling routines in order to identify the infected trees. Due to
the size and density of the forest, it is a time-consuming and labor-
intensive process that may result in an uninspected area. On the
other hand, UAV-based inspections can cover large areas in a
relatively short amount of time, and infected trees can be
identified using aerial imagery. This paper addresses a remote
sensing-based forest inspection solution for detecting and
localizing the infected trees. The proposed approach is divided
into two main phases: tree detection and tree localization. A deep
learning-based approach is used for the tree detection. Due to the
data scarcity, an active learning method is employed to train the
AI model. The localization step maps the infected trees from the
video frame to the real-world using the detection result and the
UAV geodata.

Keywords—remote sensing, forest inspection, bark beetle infection,
object detection, geo-localization, GPS coordinate, UAV-based
inspection

I. INTRODUCTION

Machine learning-based technologies have recently started
to be used in agriculture to detect diseases and pests. Solutions
like the one presented by Bagheri et al. opt to detect fire blight
in infected pear trees [1], or even plant diseases identification
using the trees leaves [2]. Plenty of these solutions have
focused on solving agriculture problems [3] and multiple have
made use of Convolutional Neural Networks (CNNs) as a base
of their architecture.

According to the Federal Statistics Office of Germany, the
amount of wood that has been damaged by insects, namely the
bark beetle, is rapidly increasing (Fig. 1). It can be noticed that
bark beetles are responsible of 60.1 million cubic meters of
damaged wood. In 2020, this accounts to 72% of the total
amount of damaged wood in Germany [4]. Forestry services
have encountered difficulties in finding dying and dead trees
due to the large forest areas and limited accessibility.
Normally, this task requires human intervention and is carried
out manually. Foresters walk through the forests, inspect the
trees, note the geolocation, and state of the suspicious trees.
This allows them later they to perform the appropriate actions

based on the health of the suspected trees. In case of a bark
beetle infestation, the infected trees have to be cut down
immediately in order to stop the contamination. This is why it
is crucial to detect the infected trees at early stage of infection.

Forest inspection can be carried out with help of

Unmanned Aerial Vehicles (UAV). However, the collection of
the aerial image is only one part of the task. The challenge
remains in the inspection of this data and the accurate
localization of the detected trees.

It is possible to develop UAV-based fully autonomous
systems, capable of performing the autonomous flight, data
collection, and data processing for inspection routines [5]. This
paper focuses on the aspect of data processing for the forest
inspection routine, namely the detection and the geo-
localization of the infected trees.

II. CONCEPT

A. Research questions
To tackle this inspection routine, few points have to be

considered. First, a forest inspection routine must be achieved
for the data collection. Second, an optimal image processing
algorithm must be chosen for the tree detection. Finally, a geo
localization algorithm should take care of finding the GPS
coordinates of the detected objects. Therefore, these aspects
have been formulated into research questions (RQ).

Fig. 1 Timber logged because of damage, by cause [4]

mailto:batbayar.battseren@informatik.tu-chemnitz.de
mailto:batbayar.battseren@informatik.tu-chemnitz.de
mailto:shadi.saleh@informatik.tu-chemnitz.de
mailto:mohamed-salim.harras@informatik.tu-chemnitz.de
mailto:mohamed-salim.harras@informatik.tu-chemnitz.de
mailto:batbayar.battseren@informatik.tu-chemnitz.de
mailto:batbayar.battseren@informatik.tu-chemnitz.de
mailto:wolfram.hardt@informatik.tu-chemnitz.de

Batbayar Battseren et. al. ESS (Vol 9. No 3. 2022) (pp.70-78)

74

RQ1: What data is needed for detecting the infected
trees? Distinguishing between the dead and the
dying trees? And finally localizing them?

RQ2: What technology can satisfy the detection of bark
beetle infection from aerial imagery?

RQ3: How to map the detected object frame coordinates
to their relevant geolocation?

As a requirement from the forest services, the proposed
approach is expected to provide an accurate GPS location for
the suspected trees. The latter have to be classified based on
the level of infection (dead or dying).

B. Proposed solution
Following are three steps that address the above-mentioned

research questions:

First, as questioned in the RQ1, several data are required to
achieve all subtasks of this system. The drone flying over the
forest records the forest with an onboard downward-pointing
camera as shown in Fig. 2. This data is used for the detection
and classification between dead and dying trees. During this
flight, the drone also logs its position data in a fixed frequency,
allowing to the track the movement of the drone and to localize
the trees.

Second, several approaches can tackle the RQ2. It is
proven that Deep Learning (DL) approaches are more robust,
when dealing with detecting objects under changing
environments. Therefore, a CNN-based solution is used to
provide the detection and classification of dying and dead trees
in a video [6]. Furthermore, the dataset will be created entirely
from scratch using videos from inspections of various forests
in East-Germany.

Third, as asked in the RQ3, the geolocation (longitude,
latitude) will be calculated based on the detected object
coordinates on the video frame and drone flight coordinate
information. Aside from those, only the technical
specifications of the camera are required for the calculation.
Finally, all calculated tree coordinates will be clustered to
obtain the definitive coordinates of each detected tree.

In general, the proposed system takes aerial video and
drone flight coordinates as input and returns the detected tree
geo-coordinates (GPS coordinates) as output. In order to keep
the system architecture as modular as possible, all intermediate
outputs will be stored as files.

C. Inspection routine
The UAV-based forest inspection process consists of two

main steps: data collection and data processing. The data
collection sub-process starts with a flight planning. Inspection

coverage is determined by the copter flight time and range. In
Central Europe, the average tree height is around 30 m [7] the
accepted maximum drone flight altitude and in Germany is
100 m. Therefore, the flight is performed across the selected
area at 50 to 100 m above ground level altitude, with 70%
overlapping view. An appropriate flight path has to be used in
order to scan the area entirely. In this study, “Survey” is used
as a flight mode, where the paths are parallel to each other
across the selected field and the distance will be defined by the
overlapping and flight altitude. Fig. 4 illustrates a basic flight
path with key waypoints.

Due to the fact that forested areas are commonly not flat, a

“Terrain Follow” flight mode is used to avoid the potential
crashes, caused by changing ground level altitudes. This flight
mode maintains the drone altitude relative to the ground level.
Another benefit of this mode is the recorded video will have a
consistent field of view. Yuneec H520 drone is used in the
forest inspection. This drone has a built-in “Survey” flight
mode and “Terrain Follow” functionality. For the data
processing step, video recording from waypoint S to waypoint
E will be used (Fig. 4).

III. METHODOLOGY

The system architecture is mainly divided into two
sections: Tree Detection and Tree Localization (Fig. 3). Tree
Detection part is responsible for detecting the dead and dying
trees. It takes a video as input and saves the detection result as
an output file. The Tree Localization part receives the
detection file as input, as well as other required information to
calculate the geolocation of the detected trees. These two parts
will be explained in detail in following sub-chapters.

A. Tree Detection
1) Dataset preparation

Fig. 4 Forest inspection flight, key waypoints and path

G

S

H

E

Waypoints
G Ground
H Home Position
S Start Position
E End Position

Fig. 2 Frame taken from a video used as data input.

Fig. 3. Context diagram of the developed system.

A. Tree Detection

B. Tree Localization

Coordinates (.txt)

Video (.mp4)

CamPar (.txt) Detection (.csv)Sensor Data
(.str)

DEM (.tif)

Batbayar Battseren et. al. ESS (Vol 9. No 3. 2022) (pp.70-78)

75

In the last years, the computer vision field saw the
emergence of a new research trend focusing on optimizing the
quality of datasets for the model training. In fact, it is proven
that the dataset quality reflects on the model performance. This
is why, special attention has been given in this paper to the
dataset preparation.

The selected DL model was trained with a generated and
labelled dataset. A total of 401 frames, with a 4K resolution of
3840 × 2160, were taken from forest inspection videos
captured during the UAV flights. These frames were subject to
an annotation in order to label the different trees into two main
object classes: dying and dead. Since the chosen model is
based on the YOLO architecture, it requires a normalized
annotation for the different bounding boxes.

In order to distinguish the level of infection in the trees, the
color feature is considered such as that the dying trees are
characterized with a white crown top with yellowish leaves.
On the other hand, the dead trees are also characterized by a
white crown top with no leaves at all. Fig. 5 showcases a
sample from the dataset, where a dying tree (yellow) and few
dead trees (purple) are visualized within the bounding boxes.

To increase the number of images within the dataset and
also diversify the features representing the dying trees, the
current approach makes usage of data augmentation
techniques.

Since the YOLO models accept frames with a resolution of
multiples of 32, a Python script was developed to resize the
images from their original size to a lower resolution of
448 × 448, adding black padding on top and under the image
to keep the original image ratio. Additionally, the frames are
flipped horizontally and vertically, resulting in an augmented
dataset of 1552 labelled images, as depicted in Fig. 6(b).

As a final step, the dataset was then divided into a training
dataset, with 1076 images (70% of the whole dataset);
validation dataset, with 164 images (10% of the entire dataset);
and a test dataset, with 312 images (20% of the entire dataset).
In addition, the training dataset is further ordered in terms of
quality into negative, unsure, and positive. To achieve this, an
expert manual evaluation is done to distribute the frames into
the three pools. This is primordial for the active learning
approach used during the training. The details surrounding the
latter distribution are discussed in the next section.

2) Active learning approach
Since most DL solutions are based on a passive approach

for the training of the model, it becomes important to invest a
considerable amount of time on preparing large datasets. In the
case of small datasets, it is difficult to achieve satisfactory
performances. However, active learning techniques, or also

called query learning techniques, stand out to solve the issue
of data scarcity [8]. These methods are pool-based approaches,
where the dataset is organized in terms of pools and,
iteratively, samples of the pools are chosen following a query
strategy.

In the scope of this paper, a query pool-based batch
(QPBB) learning method was used to compare the model’s
performance against passive learning. The model was trained
with a number of images that were increased iteratively. This
means that the model was trained during every iteration with a
controlled number of frames (batches). After every iteration,
the Mean Average Precision (mAP) of the model is evaluated
again to check if any optimization has taken place. The
selection of the frames happens based on a query strategy,
which defines which instances are most informative for the
training [9].

The main purpose of the query approach is to test the
minimum number of images necessary to achieve a similar
precision result compared to using the entire training dataset.
Therefore, the query strategy adopted was based on the
identifiability of the objects. The training dataset samples
(Fig. 7(a)) were augmented differently, depending on how
easily recognizable the objects should be. The resulting
training dataset was divided randomly into three separate
pools. 35% of the training samples were placed in a pool called
“Positive”, 45% called “Unsure” and 20% called “Negative”.
The idea was to have clearly identifiable objects in the images
for the positive pool (Fig. 7(b)) and hardly identifiable objects
in the images for the negative pool (Fig. 7(d)). The frames in
the unsure pool are characterized by having identifiable objects
but were not as easily identifiable as the ones in the positive
pool (Fig. 7 (c)).

To force a high, medium and low score from the
“Positive”, “Unsure” and “Negative” evaluation of the images
respectively when feeding the prediction model, different
filters were applied to each folder using a developed Python
script using the library “imgaug” [10]. The following filters
were applied:

• Gamma Contrast and Multiply Saturation to the
images of the Positive folder.

• Laplacian Noise with a value of 0.06 to images in the
Unsure folder.

Fig. 6. Data set augmentation. (a) Original image. (b) Augmented images.

Fig. 7. Dataset for Query pool-based batch learning

(a) Original (b) Augmented

(a) Original (b) Positive (c) Unsure (d) Negative
Fig. 5. Example of labelled dying and dead trees

Batbayar Battseren et. al. ESS (Vol 9. No 3. 2022) (pp.70-78)

76

• Laplacian Noise with a value of 0.12 to images in the
Negative folder.

The application of the Gamma Contrast filter brightens the
image highlights whilst darkening shadows by scaling the
image pixel values. Meanwhile, Multiply Saturation increases
the difference between colors by transforming the image to
HSV color space and increasing the H channel value, to later
transforming it back to RGB. This makes it easier to perceive
object boundaries, increasing the chances of detecting the
white tree tops. Laplacian Noise add very high and low values
sampled from Laplace distributions to each pixel, making it
harder for the detector to determine the object’s presence in a
region of the image. The more outliers, the more difficult it is
to find it.

Additionally, the adopted approach was developed to
facilitate for each iteration the moving of images between the
pools and the final training dataset. It makes use of a JSON file
which acts as a log file or catalogue, allowing to track for each
image its initial folder, if it has been moved or not, and the
location of its labels file. This solution was based on three
function calls:

• “Replicate()”: Move images from the Pool folders to
the Training folder as specified in the catalogue.

• “Increment(int n)”: Move n% of images from the Pool
folders to the training folder. The images to be
relocated will be the first images found in the
catalogue that have not yet been moved. The
percentage is calculated from the total of the
remaining images in the Pool folders.

• “Summary()”: Print catalogue counters as summary.
This means, how many images are left in each of the
Pool folders and how many images from which Pool
folders have already been moved to the Training
dataset folder.

In what concerns the n percentage value for the increment
function, we opted for 15% in the first iteration. This means,
moving 15% of the images from each of the folders in the pool
dataset to the training folder. Afterwards, increments of 4% of
the pool dataset were used on each iteration. In every iteration,
the training of the model takes place and an evaluation of the
precision and loss function against the previous iteration is
performed. It is important to note that the 4% of the images to
be added to the training dataset, in each iteration, is calculated
from the remaining images in the Pool folders, and not from
the totality of the initial training dataset images. These results
are also compared to the results of the passive learning
approach. Fig. 8 illustrates the active learning approach used
in the scope of this thesis. The training continues until the
results stop changing between consecutive iterations.

3) Deep Learning Model
The selection of the right DL model for the detection of a

specific object is dependent on several factors. As a matter of
fact, it is necessary to take into account the quality-efficiency
tradeoff [11]. Because the presented solution was targeted for
running on an embedded device, the adopted approach opted
for prioritizing the efficiency factor, or in other terms the speed
of the model. Since most of two stage detectors are known for
their slow speeds [12], we decided to choose the single stage
detector from the YOLO family.

According to Fig. 9, which was published by Wang et al.
[6], the YOLO model in its fourth version demonstrated top
performance compared to other two-stage detectors. The main
difference between the normal YOLOv4 version and its
derivative Scaled YOLOv4 consists in the size of the model.
The second is a scaled version that maintains the higher speed
of detection while providing higher accuracy than the first.
Based on the aforementioned points, the decision to choose
Scaled YOLOv4 over YOLOv4 was supported by the desire to
have a lightweight model capable of running on the embedded
platform. As of the time of this research, Scaled YOLOv4 [6]
and YOLOv5 [13] were the latest models, but new versions of
the YOLO family have emerged this year (YOLOv6 [14] and
YOLOv7 [15]) with the ability to reach higher accuracies and
faster time performances.

Scaled YOLOv4 [6] comes in three different branches
which are: CSP-ized, tiny, and large. In fact, CSP stands for
Cross-Stage-Partial and refers to the CSPNet strategy, which
is used in the backbone of Scaled-YOLOv4 [6]. This strategy
aims at splitting the feature map of the base layer and merging
the two parts through cross-stage hierarchy. The Path
Aggregation Network (PAN) [17] makes use of the CSPNet
strategy [6] to reduce up to 40% of the calculations performed
at the level of the neck in YOLOv4 [16]. In addition, this
version of YOLO has CSPDarknet53 as the backbone with
bottleneck ratio 1, width growth ratio 2 and depth of 65. While
the large version is dedicated to cloud solutions, the tiny
version and the CSP-ized version are both suitable for low-end
GPU devices, making it suitable for the future scope of this
project.

Scaled-YOLOv4 takes an image as an input and uses the
backbone CNN to compress its features, then to draw the
bounding boxes. These features are subject to image
classification, where the feature layers from the backbone are

Fig. 9. Comparison of object detectors by Wang et al. [6]

Fig. 8. Query pool-based batch learning method

Satisfied

Complete
Dataset

Training
Pool

mAP
check

Not satisfied

Final
trained
model

Active Learning

Batbayar Battseren et. al. ESS (Vol 9. No 3. 2022) (pp.70-78)

77

connected to each other in the Model’s Neck. Feature layers
are mixed and visible to other layers to deal with the vanishing
gradient problem, boost feature reuse in the network, diminish
the network number of parameters, and to help feature
propagation. To combine the features obtained from the
backbone, Path Aggregation network (PAN) is used as a Neck
in addition to CSP, which later is used by the Head to detect
the objects. The Head is in reality three different heads based
on the architecture of Feature Pyramid Network (FPN), that
grant the detection of objects in different dimensions. This is
due to the difference in context size and resolution of the input
from the three detection blocks [18].

The hardware used for training was a Tesla T4 GPU. To
find the optimal hyper parameter configuration, the model was
trained using passive or conventional learning. Initially, the
model was trained for 100 and 400 epochs. These values were
chosen arbitrarily. The mAP at 0.5 (mAP@0.5) curve shown
in the Fig. 10(a) and (b) that training takes only 100 epochs to
reach its mAP@0.5 maxima. Furthermore, it can be seen that
the training with longer epochs reflects in a quick drop of the
classification error. This means that the use of 100 epochs for
the training provides the similar results to using 400 epochs.

The model training was, as well, tested using a batch size
of 20 and 40 with two datasets. On one hand the first dataset
version comes with only padding and flipping as augmentation
techniques. On the other hand, the second dataset version uses
the query pool-based distribution for active learning. As seen
in Fig. 11, although no difference is to be noticed for the
training with the first dataset version. The results of the
training showed a substantial drop in mAP@0.5 when using a
batch size of 20 (Fig. 11(c)), with QPBB strategy, compared to
using a batch size of 40 with the same dataset (Fig. 11(d)).
Therefore, a batch size of 40 was used for training the model.
A higher number of batches was not tested due to hardware
restrictions, where the system was already using more than
15GB of RAM when training with a batch number of 40 whilst
only having 16GB of RAM available for computations. Any
other hyper parameter was left as default by the developers of
Scaled YOLOv4 [6] CSP branch.

To identify the impact of the number of batches and filters
used in the training dataset, the model was trained with all
variations and the results compared (TABLE I). In the table,
Filter 1 refers to using contrast and Saturation filters (35% of
the Dataset), Filter 2 refers to the Laplacian Noise (0.06) (45%
of the Dataset) and Filter 3 refers to the Laplacian Noise (0.12)
(20% of the Dataset). The obtained results demonstrated that
the system performed its best at 40 batches with all image
filters applied (all pools used for active learning).

TABLE I. INFLUENCE OF FILTERS AND BATCH SIZE IN TRAINING

Filter 1 Filter 2 Filter 3 Batches Precision Recall mAP
@0.5

mAP
@0.5-0.95

Yes Yes Yes 20 21.0% 23.7% 21.7% 8.57%
Yes Yes No 20 42.9% 71.9% 61.8% 26.0%
Yes No No 20 43.7% 70.1% 59.4% 23.4%
No No No 20 43.3% 68.6% 59.0% 22.8%
Yes Yes Yes 40 44.7% 73.7% 62.7% 24.4%
Yes Yes No 40 45.2% 69.6% 61.7% 22.9%
Yes No No 40 44.5% 68.1% 57.7% 21.2%
No No No 40 45.2% 68.3% 58.4% 20.9%

B. Tree Localization
The main concept of tree localization is based on current

position of the drone (Fig. 12(b), O´), which is also the center
of the frame (Fig. 12(a), O). The tree detection is stored as
bounding box (x, y, width, height) in a CSV file. Each line
represents single frame of a video. For the localization, the
center of the bounding box (Fig. 12(a), T) is used.

It is represented in Cartesian coordinates (xT, yT), that must
be converted first into an angle α and a distance d (Fig. 12(a)).
The angle α refers to the angular difference between the frame
vertical axis and the ray, from the frame center to the bounding
box center. The distance d is the distance from the frame center
to the bounding box center in pixels. Equation (1) showcases
how the angle α is calculated.

 α = tan−1 𝑥𝑥T 𝑦𝑦T� (1)

A distance between two points (the drone, and the detected
tree) can be calculated with the trigonometric function (2).
Here, the height h is the drone height above the ground level,
and the angle β is the angular difference between the rays from
the camera position to the frame center, and to the detected tree
(Fig. 12(a)).

 𝑑𝑑´ = tan β ∙ ℎ (2)

Angle β can be found based on the T coordinate, video
frame width (vwidth), height (vheight), and camera diagonal field
of view (dFoV). The video width and height are in pixel values,
and the diagonal field of view is in degrees.

 β = �𝑥𝑥´2 + 𝑦𝑦´2

⎝

⎛ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

�𝑣𝑣width2 + 𝑣𝑣height2⎠

⎞ (3)

After the angle α and the distance d are found, the only
parameter left is the angle between the North and the tree
position from the drone position. This can be calculated using
the following equation (4) based on the drone yaw angle γ and
the angle α in the frame.

 𝛿𝛿 = α − 𝛾𝛾 (4)

Fig. 10. Comparison between training the model with 100 (a) and 400
epochs (b)

Fig. 11. Comparison of passive and active learning with respect to the batch
size

(a) mAP@0.5, loss function for
100 epochs

(b) mAP@0.5, loss function for
400 epochs.

(a) batch size 20
Passive Learning

(b) batch size 40
Passive Learning

(c) batch size 20
Active Learning

(d) batch size 40
Active Learning

Batbayar Battseren et. al. ESS (Vol 9. No 3. 2022) (pp.70-78)

78

A new GPS coordinate (latitude ϕ2, longitude λ2) can be
defined by the following equations (5) and (6), which are based
on the distance d´ and the angle δ from the starting point
(latitude ϕ1, longitude λ1).

𝜑𝜑2 = arcsin (sin𝜑𝜑1 cos
𝑑𝑑´
𝑟𝑟

+ cos𝜑𝜑1 sin
𝑑𝑑´
𝑟𝑟

cos 𝛿𝛿) (5)

λ2 = λ1 + atan2(sin 𝛿𝛿 sin
𝑑𝑑´
𝑟𝑟

cos 𝜑𝜑1 , cos
𝑑𝑑´
𝑟𝑟

− sin𝜑𝜑1 sin𝜑𝜑2)
(6)

The starting point refers to the drone position (ϕ1, λ1) and
the calculated coordinate is the tree position (ϕ2, λ2).

As described above, the tree localization process aims at
mapping the detected trees from the pixel context to the real
world. In general, the pixel coordinate of the detected object
on the frame and the GPS coordinate of the referred frame are
required for the geo-localization process. However, other
parameters are also required to achieve this.

The implementation consists of 4 main steps. All steps
were developed as independent components. Each of them
reads an input file and generates an output file with processed
data. Finally, it returns a list of detections with their
geographical coordinates as an output. Fig. 13 illustrates the
overall dataflow diagram of tree localization process.

1) Data Consolidation

Yuneec E90 camera is used for the data collection (for
object detector training dataset) and forest inspection. The
inspection video is recorded in 4K resolution with 30 fps. The
recorded video also contains the geolocation of the flight path.
However, this information is updated every 200 milliseconds.
The first step, Data Consolidation addresses this aspect by
linking the sensor data (GPS coordinates) to the detection data.

This step loads a subtitle SRT file containing the GPS
coordinates, and an object detection CSV file containing the
bounding boxes of the detected objects. Afterwards, it assigns
the corresponding coordinates to the respected frames,
according to the timestamps. As a result, a JSON file is
generated.

2) Height Calculation
According to Equation (2), the drone height above the

ground level is required to find the distance d´ between the
drone and the detected tree. However, the height information
that have been collected from the drone correspond to the
height above mean sea level. In order to find the height above
ground level, the Digital Elevation Model (DEM) is used. The
DEM is a graphical representation of terrain surface elevation,
often rendered as an image file. The dataset used in our study
is encoded as GeoTIFF format and represented in terms of
raster tiles. Each pixel value of the TIFF image represents a
ground height of 25 × 25 m area.

The second component loads the TIFF files in a given
folder, and expects them as DEM raster tiles. It also loads the
JSON file, given as an output of the previous step, and loops
through all its objects. For every object in the file, it reads the
ground altitude from the corresponding pixel in the
corresponding tile, based on the GPS coordinate of the frame.
In case of not finding a corresponding tile, or not finding the
frame coordinates, the frame is then ignored. The obtained
height values are appended to the JSON file.

3) Geo-localization
To geo-locate the bounding boxes, this step performs the

proposed localization calculations (Equation (1) - (6)). It loads
all the data structures containing the bounding boxes, sensor
data and height above ground level. In addition, some camera
parameters are required in Equation (3). These parameters are
the frame width, height and camera diagonal field of view.

The implemented process loops over each bounding box
and calculates the geo-location following the above steps:

1. Calculate the drone height with respect to the
coordinate for each frame

Fig. 13. Data flow diagram for the Object Localization step

B. Tree Localization

DEM
(.tif)

Height
Calculation

+ Ground Elevation
(.json)

CamPar
(.txt)

Geo-
Localization

+ Coordinates of
Detection (.json)

Coordinates
(.txt)

ClusteringData
Consolidation

Detection + Sensor
(.json)

Sensor Data
(.srt)

Detection
(.csv)

Fig. 12 Tree geo-localization calculation. (a) Frame level calculation, (b)
Video frame mapping to real-world

(a)

(b)

Batbayar Battseren et. al. ESS (Vol 9. No 3. 2022) (pp.70-78)

79

2. Reverse the normalization of the bounding box
centroid using the height and width of the image

3. Get the x and y Cartesian’s coordinates of the centroid
of the bounding box in the image with respect to the
calculated Cartesian’s image center

4. Calculate the angle (β) between the ray to center of the
frame and ray to bounding box center using
Equation (3)

5. Calculate the distance d´ between drone and bounding
box center in meters using Equation (2). The average
height of the tree is given as an input argument to
calculate the position correctly, because the DEM’s
height value includes the height of the tree

6. Calculate the angle α using Equation (1)

7. Calculate the angle δ to obtain the direction of the
bounding box centroid with respect to the north

8. Calculate the bounding box GPS coordinates using
Equation (5) and (6)

In order to guarantee accurate geo-localization, the camera
needs to be pointing downwards. This was achieved by setting
a threshold value on the Gimbal Pitch angle (-90±1 degrees of
offset). The frames that are out of bounds are ignored.

4) Clustering
The last step reads the data structure from the latest

outputted JSON file. Due to the sequential capture of frames,
multiple detections of the same tree exist within the file. In
order to generalize these detections, DBSCAN clustering
algorithm is applied on the all calculated coordinates [19].
DBSCAN was selected as the clustering approach since it
performs well for density group points.

IV. EVALUATION

A. Tree Detection
While the active learning strategy aims at reaching similar

accuracies to the conventional learning strategies, it tries to
achieve this by the usage of a minimal set of training data.
Therefore, the proposed model was evaluated in relation to a
conventional model. The evaluation was based on the mAP
metric and the classification loss score. In fact, the mAP was
calculated taking into account an Intersection over Union
(IoU) threshold of 0.5. As shown in Fig. 14, the test scenarios
differ in the number of training data used for the training.

While the conventional model used the full training
dataset, the active learning strategy opted at using initially 15%
of images from the pool dataset, and then incrementing it by
4% with every iteration. The following table (TABLE II)
shows the results of training the model with a Tesla T4 GPU.

TABLE II. COMPARISON OF TRAINING THE MODEL USING ACTIVE LEARNING

Used
Dataset

Used
Dataset [%] Precision Recall mAP

@0.5
mAP

@0.5-0.95

161 15% 0.317 0.324 0.201 0.0633
197 18% 0.140 0.603 0.332 0.107
232 22% 0.120 0.730 0.363 0.112
266 25% 0.179 0.688 0.421 0.146
298 28% 0.232 0.622 0.421 0.138
329 31% 0.370 0.547 0.444 0.148
358 33% 0.34 0.536 0.430 0.164
387 36% 0.226 0.752 0.515 0.197
415 39% 0.251 0.679 0.448 0.147
441 41% 0.367 0.613 0.490 0.179
466 43% 0.353 0.659 0.537 0.202
491 46% 0.381 0.654 0.561 0.206
515 48% 0.298 0.730 0.553 0.197
537 50% 0.412 0.676 0.574 0.220
559 52% 0.468 0.623 0.555 0.199
579 54% 0.400 0.686 0.565 0.189
599 56% 0.293 0.790 0.635 0.231
619 58% 0.369 0.692 0.566 0.198
637 59% 0.428 0.639 0.571 0.213

1076 100% 0.440 0.737 0.627 0.244

The results from TABLE II show that after 17 iterations,
using 56% of the original training dataset (599 images), the
model can already show a mAP score of 63.5, compared to
62.7 from the conventional model (TABLE I). Furthermore,
the loss curve from the active learning strategy shows similar
results to the loss curve of the passive approach, concluding
that the active learning approach is optimal for the scope of
this project.

B. Tree Localization
According to the carried-out tests, the found coordinate

accuracy is depending on the tree height and the drone height
above ground level. From an aerial view, trees can be projected
with different length to the side of the frame (shown as black
points in Fig. 15). This means that the localized coordinates do
not represent the tree root (Fig. 15, diamond marks). Instead,
they represent the ground hidden behind the tree top (Fig. 15,
round marks). Furthermore, the system is affected by different
height of trees. In addition, the DEM tile represents a certain
area with one average value; however, the actual ground level
can vary a lot in that area. As a result, these aforementioned
issues cause inaccurate localization.

For test purpose, different offset values were used for
representing the tree height. Fig. 16 illustrates the object
localization results with three different offset values. From
these offsets, the value that caused the lowest object drifting
was -15 (Fig. 16(b)). After comparing offset 0 with -30

Fig. 14. mAP@0.5 and Loss function when using 56% and 100% of the Pool
dataset for training

(a) Loss function
with 56% of

dataset

(b) mAP@0.5
with 56% of

dataset

(c) Loss function
with 100% of

dataset

(d) mAP@0.5
with 100% of

dataset

Fig. 15. Height error source of the tree detection

 Frame center

Tree root

Detection

Batbayar Battseren et. al. ESS (Vol 9. No 3. 2022) (pp.70-78)

80

(Fig. 16(a) and (c)), it becomes clear that the bigger the offset
is, the detections will drift further.

Finally, the calculated coordinates were clustered with the
DBSCAN. It requires two values to cluster the given input,
which are the epsilon and the minimum number of items. The
minimum number of the items was arbitrarily set as 3, due to
the nature of the problem, where if an object was detected in
more than 3 frames, then will be considered as a detected dying
or dead tree.

On the other hand, the epsilon (ε) value defines the distance
between the neighbor items. To find the correct value, the
found coordinates were clustered with different epsilon values
and compared (TABLE III) against the ground truth. The test
video had 44 trees to detect (ground truth), and in total 153 516
objects were detected. The epsilon values 0.1, 0.06 and 0.07
had the closest resulting group, while the value 0.7 returned
only 3 clusters (too low) and the value 0.01 returned 319
clusters (too high). Based on the minimum number of items
and distance values, some items were considered as outliers
and discarded. Fig. 17 illustrates the clustering result in
different colors under three different epsilon value. Each color
represents individual clusters.

TABLE III. CLUSTERING WITH DIFFERENT EPSILON VALUES

Epsilon (ε) Discarded Clusters
0.70 0 3
0.50 1 7
0.30 3 13
0.10 24 45
0.07 39 66
0.06 53 84
0.05 71 133
0.02 287 218
0.01 859 319

Finally, the median values of each cluster’s longitude and
latitude are calculated to obtain a single coordinate

representing each cluster. The result is illustrated in the
Fig. 18.

Based on the clustering comparison, the results from
epsilon value 0.1, 0.07 and 0.06 were evaluated in TABLE IV.
Result of ε = 0.1 had 44 clusters, but only 27 (61.36%) of them
were correct. In other hand result from ε = 0.07 has 66 clusters,
but 38 (86.36%) of them were correct. Finally, the result
obtained from ε = 0.06 had 84 clusters, and 41 (93.18%) of
them were correct.

The geo-localization average error rate varies slightly
depending on the clustering. The minimum localization error
was 0.93 meters, while maximum error was 13.89 meters.
However, the overall average localization error was 4.59
meters.

TABLE IV DETECTION AND LOCALIZATION RESULT COMPARISON BASED
ON EPSILON VALUE

Epsilon (ε) Clusters True-
Positive

True-
Negative

False-
Positive

Avr. Err.
[m]

Det. Rate
[%]

0.06 84 41 3 43 4.90 93.18
0.07 66 38 6 28 4.52 86.36
0.10 45 27 17 21 4.35 61.36

V. CONCLUSION AND FUTURE SCOPE

In order to decrease the insect caused deforestation,
foresters must identify the bark beetle-infected trees
immediately and cut them down before further contamination.
However, it is a challenging task to identify them without
technical support. UAV-based solution can ease the inspection
process. It saves time, increases the coverage and could return
accurate GPS coordinates of the suspicious trees.

The proposed solution uses DL-based object detector and
geo-localization algorithm to find the GPS coordinates of the
dying and deed trees from aerial video. This paper covers the
data processing step of the UAV-based forest inspection,
which consist of two sub-steps. Implemented system uses
separate stand-alone components to process the data to keep

Fig. 18 Localization result, final coordinates (points) and the flight path
(lines) at ε = 0.06

Fig. 16. Object geo-localization using different offset tree height

Fig. 17. Clustered objects with different epsilon values

(a) Offset = 0 (b) Offset = -15 (c) Offset = -30

(a) ε = 0.50 (b) ε = 0.06 (c) ε = 0.01

Batbayar Battseren et. al. ESS (Vol 9. No 3. 2022) (pp.70-78)

81

the system modularity. Each script reads the input as a file and
outputs the result as an output file.

Tree detection step applied the Scaled-YOLOv4 object
detector. Training dataset has been prepared from real forest
inspection which is carried out in East-Germany. Due to the
limitations encountered during the collection of the dataset, the
training strategy was based on an active learning method,
which solved the data scarcity problem. The study achieved
promising results in detecting infected trees with a small image
dataset. In fact, the developed tree detector is a tentative
approach and is still subject to optimization. As a result of the
detection, the location of the detected trees in the frame are
stored in a file and passed to the coming step.

The tree geo-localization step reads the detection output
and returns the GPS coordinate list of all detected suspicious
trees. This phase consists of 4 main steps, namely data
consolidation, height calculation, geo-localization, and
clustering.

To conclude the study, the proposed system is able to
detect the dying and dead trees from aerial inspection and it is
capable of geo-localizing them with an average error rate of
4.59 m. Forestry services would greatly benefit from this
system since it is inspecting the forest from above with UAV,
instead of directly patrolling through the forest by foot.

As it is presented in the Evaluation chapter, the localization
error source must be addressed within the further study. Also,
the dying tree detection model has to be trained further with
different datasets from different place under different weather
and light conditions.

REFERENCES
[1] N. Bagheri, “Application of aerial remote sensing technology for

detection of fire blight infected pear trees” Computers and Electronics
in Agriculture, vol. 168, p. 105147, 01 2020

[2] S. Sladojevic, M. Arsenovic, A. Anderla, and D. Stefanovi ć, “Deep
neural networks based recognition of plant diseases by leaf image
classification,” Computational Intelligence and Neuroscience, vol.
2016, pp. 1–11, 06 2016

[3] A. Kamilaris and F. X. Prenafeta-Bold ú, “Deep learning in
agriculture: A survey,” Computers and Electronics in Agriculture, vol.
147, pp. 70-
90,2018.[Online].Available:https://www.sciencedirect.com/science/art
icle/pii/S0168169917308803

[4] Destatis, “Forest damage: logging of timber damaged by insect
infestation grew more than tenfold within five years,” Federal Statistical
Office.
https://www.destatis.de/EN/Press/2021/08/PE21_N050_41.html
(accessed Nov. 22, 2022).

[5] U. Tudevdagva, B. Batbayar, W. Hardt, S. Blokzyl and M. Lippmann,
“UAV-based fully automated inspection system for high voltage
transmission lines,” in Proc. 12th IFOST Conf., Ulsan, South Korea,
Jun. 2017.

[6] C. Wang, A. Bochkovskiy, and H. M. Liao, “Scaled-yolov4: Scaling
cross stage partial network,” CoRR, vol. abs/2011.08036, 2020.
[Online]. Available: https://arxiv.org/abs/2011.08036

[7] “Bäume,” ForstBW. [Online]. Available: https://www.forstbw.de/wald-
im-land/lebensraum/pflanzen/baeume/. [Accessed: 15-Nov-2022].

[8] S. Zhang, J. Yin, and W. Guo, “Pool-based active learning with query
construction,” in Foundations of Intelligent Systems, Y. Wang and T.
Li, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 13–
22.

[9] B. Settles, “Active learning: Active learning Survey,” San Rafael,
UNITED STATES: Morgan & Claypool Publishers, 2012

[10] A. B. Jung, “imgaug: Image augmentation for machine learning
experiments.” GITHUB. https://github.com/aleju/imgaug [accessed 17-
Oct-2021]

[11] R. Baeza-Yates and Z. Liaghat, “Quality-efficiency trade-offs in
machine learning for text processing,” in 2017 IEEE International
Conference on Big Data (Big Data), 2017, pp. 897–904

[12] P. Soviany and R. T. Ionescu, "Optimizing the Trade-Off between
Single-Stage and Two-Stage Deep Object Detectors using Image
Difficulty Prediction," 2018 20th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC), 2018, pp. 209-214, doi: 10.1109/SYNASC.2018.00041

[13] G. Jocher, A. Stoken, A. Chaurasia, J. Borovec, NanoCode012, TaoXie,
Y. Kwon, K. Michael, L. Changyu, J. Fang, A. V, Laughing, tkianai,
yxNONG, P. Skalski, A. Hogan, J. Nadar, imyhxy, L. Mammana,
AlexWang1900, C. Fati, D. Montes, J. Hajek, L. Diaconu, M. T. Minh,
Marc, albinxavi, fatih, oleg, and wanghaoyang0106,
“ultralytics/yolov5: v6.0 - YOLOv5n ’Nano’ models, Roboflow
integration, TensorFlow export, OpenCV DNN support,” Oct. 2021.
[Online]. Available: https://doi.org/10.5281/zenodo.5563715

[14] C. Li, L. Li, H. Jiang, K. Weng, Y. Geng, L. Li, Z. Ke, Q. Li, M. Cheng,
W. Nie, Y. Li, B. Zhang, Y. Liang, L. Zhou, X. Xu, X. Chu, X. Wei,
and X. Wei, “Yolov6: A single-stage object detection framework for
industrial applications,” 2022. [Online]. Available:
https://arxiv.org/abs/2209.02976

[15] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Yolov7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,”
2022. [Online]. Available: https://arxiv.org/abs/2207.02696

[16] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal
speed and accuracy of object detection,” 2020. [Online]. Available:
https://arxiv.org/abs/2004.10934

[17] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network for
instance segmentation,” 2018. [Online]. Available:
https://arxiv.org/abs/1803.01534

[18] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
2018. [Online]. Available: https://arxiv.org/abs/1804.02767

[19] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise”, in Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining, ser. KDD’96. AAAI Press,
1996, p. 226–2

https://arxiv.org/abs/2011.08036
https://github.com/aleju/imgaug
https://arxiv.org/abs/2209.02976
https://arxiv.org/abs/1804.02767

	I. INTRODUCTION
	II. CONCEPT
	A. Research questions
	B. Proposed solution
	C. Inspection routine

	III. METHODOLOGY
	A. Tree Detection
	1) Dataset preparation
	2) Active learning approach
	3) Deep Learning Model

	B. Tree Localization
	1) Data Consolidation
	2) Height Calculation
	3) Geo-localization
	4) Clustering

	IV. EVALUATION
	A. Tree Detection
	B. Tree Localization

	V. CONCLUSION AND FUTURE SCOPE
	REFERENCES

