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Abstract—In the last years, the insect infection is causing a 
massive impact on deforestation in Germany. The authorities 
attempt to fight back this rapidly spreading problem throughout 
the usage of conventional methods. These methods require forest 
patrolling routines in order to identify the infected trees. Due to 
the size and density of the forest, it is a time-consuming and labor-
intensive process that may result in an uninspected area. On the 
other hand, UAV-based inspections can cover large areas in a 
relatively short amount of time, and infected trees can be 
identified using aerial imagery. This paper addresses a remote 
sensing-based forest inspection solution for detecting and 
localizing the infected trees. The proposed approach is divided 
into two main phases: tree detection and tree localization. A deep 
learning-based approach is used for the tree detection. Due to the 
data scarcity, an active learning method is employed to train the 
AI model. The localization step maps the infected trees from the 
video frame to the real-world using the detection result and the 
UAV geodata. 

Keywords—remote sensing, forest inspection, bark beetle infection, 
object detection, geo-localization, GPS coordinate, UAV-based 
inspection 

I. INTRODUCTION 

Machine learning-based technologies have recently started 
to be used in agriculture to detect diseases and pests. Solutions 
like the one presented by Bagheri et al. opt to detect fire blight 
in infected pear trees [1], or even plant diseases identification 
using the trees leaves [2]. Plenty of these solutions have 
focused on solving agriculture problems [3] and multiple have 
made use of Convolutional Neural Networks (CNNs) as a base 
of their architecture. 

According to the Federal Statistics Office of Germany, the 
amount of wood that has been damaged by insects, namely the 
bark beetle, is rapidly increasing (Fig. 1). It can be noticed that 
bark beetles are responsible of 60.1 million cubic meters of 
damaged wood. In 2020, this accounts to 72% of the total 
amount of damaged wood in Germany [4]. Forestry services 
have encountered difficulties in finding dying and dead trees 
due to the large forest areas and limited accessibility. 
Normally, this task requires human intervention and is carried 
out manually. Foresters walk through the forests, inspect the 
trees, note the geolocation, and state of the suspicious trees. 
This allows them later they to perform the appropriate actions 

based on the health of the suspected trees. In case of a bark 
beetle infestation, the infected trees have to be cut down 
immediately in order to stop the contamination. This is why it 
is crucial to detect the infected trees at early stage of infection. 

 
Forest inspection can be carried out with help of 

Unmanned Aerial Vehicles (UAV). However, the collection of 
the aerial image is only one part of the task. The challenge 
remains in the inspection of this data and the accurate 
localization of the detected trees. 

It is possible to develop UAV-based fully autonomous 
systems, capable of performing the autonomous flight, data 
collection, and data processing for inspection routines [5]. This 
paper focuses on the aspect of data processing for the forest 
inspection routine, namely the detection and the geo-
localization of the infected trees. 

II. CONCEPT  

A. Research questions 
To tackle this inspection routine, few points have to be 

considered. First, a forest inspection routine must be achieved 
for the data collection. Second, an optimal image processing 
algorithm must be chosen for the tree detection. Finally, a geo 
localization algorithm should take care of finding the GPS 
coordinates of the detected objects. Therefore, these aspects 
have been formulated into research questions (RQ). 

 
Fig. 1 Timber logged because of damage, by cause [4] 
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RQ1: What data is needed for detecting the infected 
trees? Distinguishing between the dead and the 
dying trees? And finally localizing them? 

RQ2: What technology can satisfy the detection of bark 
beetle infection from aerial imagery? 

RQ3: How to map the detected object frame coordinates 
to their relevant geolocation? 

As a requirement from the forest services, the proposed 
approach is expected to provide an accurate GPS location for 
the suspected trees. The latter have to be classified based on 
the level of infection (dead or dying). 

B. Proposed solution 
Following are three steps that address the above-mentioned 

research questions:  

First, as questioned in the RQ1, several data are required to 
achieve all subtasks of this system. The drone flying over the 
forest records the forest with an onboard downward-pointing 
camera as shown in Fig. 2. This data is used for the detection 
and classification between dead and dying trees. During this 
flight, the drone also logs its position data in a fixed frequency, 
allowing to the track the movement of the drone and to localize 
the trees.  

Second, several approaches can tackle the RQ2. It is 
proven that Deep Learning (DL) approaches are more robust, 
when dealing with detecting objects under changing 
environments. Therefore, a CNN-based solution is used to 
provide the detection and classification of dying and dead trees 
in a video [6]. Furthermore, the dataset will be created entirely 
from scratch using videos from inspections of various forests 
in East-Germany.  

Third, as asked in the RQ3, the geolocation (longitude, 
latitude) will be calculated based on the detected object 
coordinates on the video frame and drone flight coordinate 
information. Aside from those, only the technical 
specifications of the camera are required for the calculation. 
Finally, all calculated tree coordinates will be clustered to 
obtain the definitive coordinates of each detected tree. 

In general, the proposed system takes aerial video and 
drone flight coordinates as input and returns the detected tree 
geo-coordinates (GPS coordinates) as output. In order to keep 
the system architecture as modular as possible, all intermediate 
outputs will be stored as files. 

C. Inspection routine 
The UAV-based forest inspection process consists of two 

main steps: data collection and data processing. The data 
collection sub-process starts with a flight planning. Inspection 

coverage is determined by the copter flight time and range. In 
Central Europe, the average tree height is around 30 m [7] the 
accepted maximum drone flight altitude and in Germany is 
100 m. Therefore, the flight is performed across the selected 
area at 50 to 100 m above ground level altitude, with 70% 
overlapping view. An appropriate flight path has to be used in 
order to scan the area entirely. In this study, “Survey” is used 
as a flight mode, where the paths are parallel to each other 
across the selected field and the distance will be defined by the 
overlapping and flight altitude. Fig. 4 illustrates a basic flight 
path with key waypoints. 

 
Due to the fact that forested areas are commonly not flat, a 

“Terrain Follow” flight mode is used to avoid the potential 
crashes, caused by changing ground level altitudes. This flight 
mode maintains the drone altitude relative to the ground level. 
Another benefit of this mode is the recorded video will have a 
consistent field of view. Yuneec H520 drone is used in the 
forest inspection. This drone has a built-in “Survey” flight 
mode and “Terrain Follow” functionality. For the data 
processing step, video recording from waypoint S to waypoint 
E will be used (Fig. 4). 

III. METHODOLOGY 

The system architecture is mainly divided into two 
sections: Tree Detection and Tree Localization (Fig. 3). Tree 
Detection part is responsible for detecting the dead and dying 
trees. It takes a video as input and saves the detection result as 
an output file. The Tree Localization part receives the 
detection file as input, as well as other required information to 
calculate the geolocation of the detected trees. These two parts 
will be explained in detail in following sub-chapters. 

A. Tree Detection 
1) Dataset preparation 

 
Fig. 4 Forest inspection flight, key waypoints and path 
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Fig. 2 Frame taken from a video used as data input. 

 
Fig. 3. Context diagram of the developed system. 
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In the last years, the computer vision field saw the 
emergence of a new research trend focusing on optimizing the 
quality of datasets for the model training. In fact, it is proven 
that the dataset quality reflects on the model performance. This 
is why, special attention has been given in this paper to the 
dataset preparation.  

The selected DL model was trained with a generated and 
labelled dataset. A total of 401 frames, with a 4K resolution of 
3840 × 2160, were taken from forest inspection videos 
captured during the UAV flights. These frames were subject to 
an annotation in order to label the different trees into two main 
object classes: dying and dead. Since the chosen model is 
based on the YOLO architecture, it requires a normalized 
annotation for the different bounding boxes. 

In order to distinguish the level of infection in the trees, the 
color feature is considered such as that the dying trees are 
characterized with a white crown top with yellowish leaves. 
On the other hand, the dead trees are also characterized by a 
white crown top with no leaves at all. Fig. 5 showcases a 
sample from the dataset, where a dying tree (yellow) and few 
dead trees (purple) are visualized within the bounding boxes. 

To increase the number of images within the dataset and 
also diversify the features representing the dying trees, the 
current approach makes usage of data augmentation 
techniques. 

Since the YOLO models accept frames with a resolution of 
multiples of 32, a Python script was developed to resize the 
images from their original size to a lower resolution of 
448 × 448, adding black padding on top and under the image 
to keep the original image ratio. Additionally, the frames are 
flipped horizontally and vertically, resulting in an augmented 
dataset of 1552 labelled images, as depicted in Fig. 6(b). 

As a final step, the dataset was then divided into a training 
dataset, with 1076 images (70% of the whole dataset); 
validation dataset, with 164 images (10% of the entire dataset); 
and a test dataset, with 312 images (20% of the entire dataset). 
In addition, the training dataset is further ordered in terms of 
quality into negative, unsure, and positive. To achieve this, an 
expert manual evaluation is done to distribute the frames into 
the three pools. This is primordial for the active learning 
approach used during the training. The details surrounding the 
latter distribution are discussed in the next section.  

2) Active learning approach 
Since most DL solutions are based on a passive approach 

for the training of the model, it becomes important to invest a 
considerable amount of time on preparing large datasets. In the 
case of small datasets, it is difficult to achieve satisfactory 
performances. However, active learning techniques, or also 

called query learning techniques, stand out to solve the issue 
of data scarcity [8]. These methods are pool-based approaches, 
where the dataset is organized in terms of pools and, 
iteratively, samples of the pools are chosen following a query 
strategy.  

In the scope of this paper, a query pool-based batch 
(QPBB) learning method was used to compare the model’s 
performance against passive learning. The model was trained 
with a number of images that were increased iteratively. This 
means that the model was trained during every iteration with a 
controlled number of frames (batches). After every iteration, 
the Mean Average Precision (mAP) of the model is evaluated 
again to check if any optimization has taken place. The 
selection of the frames happens based on a query strategy, 
which defines which instances are most informative for the 
training [9]. 

The main purpose of the query approach is to test the 
minimum number of images necessary to achieve a similar 
precision result compared to using the entire training dataset. 
Therefore, the query strategy adopted was based on the 
identifiability of the objects. The training dataset samples 
(Fig. 7(a)) were augmented differently, depending on how 
easily recognizable the objects should be. The resulting 
training dataset was divided randomly into three separate 
pools. 35% of the training samples were placed in a pool called 
“Positive”, 45% called “Unsure” and 20% called “Negative”. 
The idea was to have clearly identifiable objects in the images 
for the positive pool (Fig. 7(b)) and hardly identifiable objects 
in the images for the negative pool (Fig. 7(d)). The frames in 
the unsure pool are characterized by having identifiable objects 
but were not as easily identifiable as the ones in the positive 
pool (Fig. 7 (c)). 

To force a high, medium and low score from the 
“Positive”, “Unsure” and “Negative” evaluation of the images 
respectively when feeding the prediction model, different 
filters were applied to each folder using a developed Python 
script using the library “imgaug” [10]. The following filters 
were applied: 

•  Gamma Contrast and Multiply Saturation to the 
images of the Positive folder. 

• Laplacian Noise with a value of 0.06 to images in the 
Unsure folder. 

  
Fig. 6. Data set augmentation. (a) Original image. (b) Augmented images. 

 
Fig. 7. Dataset for Query pool-based batch learning 

(a) Original (b) Augmented

(a) Original (b) Positive (c) Unsure (d) Negative 
Fig. 5. Example of labelled dying and dead trees 
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• Laplacian Noise with a value of 0.12 to images in the 
Negative folder. 

The application of the Gamma Contrast filter brightens the 
image highlights whilst darkening shadows by scaling the 
image pixel values. Meanwhile, Multiply Saturation increases 
the difference between colors by transforming the image to 
HSV color space and increasing the H channel value, to later 
transforming it back to RGB. This makes it easier to perceive 
object boundaries, increasing the chances of detecting the 
white tree tops. Laplacian Noise add very high and low values 
sampled from Laplace distributions to each pixel, making it 
harder for the detector to determine the object’s presence in a 
region of the image. The more outliers, the more difficult it is 
to find it.  

Additionally, the adopted approach was developed to 
facilitate for each iteration the moving of images between the 
pools and the final training dataset. It makes use of a JSON file 
which acts as a log file or catalogue, allowing to track for each 
image its initial folder, if it has been moved or not, and the 
location of its labels file. This solution was based on three 
function calls: 

• “Replicate()”: Move images from the Pool folders to 
the Training folder as specified in the catalogue. 

• “Increment(int n)”: Move n% of images from the Pool 
folders to the training folder. The images to be 
relocated will be the first images found in the 
catalogue that have not yet been moved. The 
percentage is calculated from the total of the 
remaining images in the Pool folders. 

• “Summary()”: Print catalogue counters as summary. 
This means, how many images are left in each of the 
Pool folders and how many images from which Pool 
folders have already been moved to the Training 
dataset folder. 

In what concerns the n percentage value for the increment 
function, we opted for 15% in the first iteration. This means, 
moving 15% of the images from each of the folders in the pool 
dataset to the training folder. Afterwards, increments of 4% of 
the pool dataset were used on each iteration. In every iteration, 
the training of the model takes place and an evaluation of the 
precision and loss function against the previous iteration is 
performed. It is important to note that the 4% of the images to 
be added to the training dataset, in each iteration, is calculated 
from the remaining images in the Pool folders, and not from 
the totality of the initial training dataset images. These results 
are also compared to the results of the passive learning 
approach. Fig. 8 illustrates the active learning approach used 
in the scope of this thesis. The training continues until the 
results stop changing between consecutive iterations. 

3) Deep Learning Model 
The selection of the right DL model for the detection of a 

specific object is dependent on several factors. As a matter of 
fact, it is necessary to take into account the quality-efficiency 
tradeoff [11]. Because the presented solution was targeted for 
running on an embedded device, the adopted approach opted 
for prioritizing the efficiency factor, or in other terms the speed 
of the model. Since most of two stage detectors are known for 
their slow speeds [12], we decided to choose the single stage 
detector from the YOLO family. 

According to Fig. 9, which was published by Wang et al. 
[6], the YOLO model in its fourth version demonstrated top 
performance compared to other two-stage detectors. The main 
difference between the normal YOLOv4 version and its 
derivative Scaled YOLOv4 consists in the size of the model. 
The second is a scaled version that maintains the higher speed 
of detection while providing higher accuracy than the first. 
Based on the aforementioned points, the decision to choose 
Scaled YOLOv4 over YOLOv4 was supported by the desire to 
have a lightweight model capable of running on the embedded 
platform. As of the time of this research, Scaled YOLOv4 [6] 
and YOLOv5 [13] were the latest models, but new versions of 
the YOLO family have emerged this year (YOLOv6 [14] and 
YOLOv7 [15]) with the ability to reach higher accuracies and 
faster time performances.  

Scaled YOLOv4 [6] comes in three different branches 
which are: CSP-ized, tiny, and large. In fact, CSP stands for 
Cross-Stage-Partial and refers to the CSPNet strategy, which 
is used in the backbone of Scaled-YOLOv4 [6]. This strategy 
aims at splitting the feature map of the base layer and merging 
the two parts through cross-stage hierarchy. The Path 
Aggregation Network (PAN) [17] makes use of the CSPNet 
strategy [6] to reduce up to 40% of the calculations performed 
at the level of the neck in YOLOv4 [16]. In addition, this 
version of YOLO has CSPDarknet53 as the backbone with 
bottleneck ratio 1, width growth ratio 2 and depth of 65. While 
the large version is dedicated to cloud solutions, the tiny 
version and the CSP-ized version are both suitable for low-end 
GPU devices, making it suitable for the future scope of this 
project. 

Scaled-YOLOv4 takes an image as an input and uses the 
backbone CNN to compress its features, then to draw the 
bounding boxes. These features are subject to image 
classification, where the feature layers from the backbone are 

 
Fig. 9. Comparison of object detectors by Wang et al. [6] 

 
Fig. 8. Query pool-based batch learning method  
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connected to each other in the Model’s Neck. Feature layers 
are mixed and visible to other layers to deal with the vanishing 
gradient problem, boost feature reuse in the network, diminish 
the network number of parameters, and to help feature 
propagation. To combine the features obtained from the 
backbone, Path Aggregation network (PAN) is used as a Neck 
in addition to CSP, which later is used by the Head to detect 
the objects. The Head is in reality three different heads based 
on the architecture of Feature Pyramid Network (FPN), that 
grant the detection of objects in different dimensions. This is 
due to the difference in context size and resolution of the input 
from the three detection blocks [18]. 

The hardware used for training was a Tesla T4 GPU. To 
find the optimal hyper parameter configuration, the model was 
trained using passive or conventional learning. Initially, the 
model was trained for 100 and 400 epochs. These values were 
chosen arbitrarily. The mAP at 0.5 (mAP@0.5) curve shown 
in the Fig. 10(a) and (b) that training takes only 100 epochs to 
reach its mAP@0.5 maxima. Furthermore, it can be seen that 
the training with longer epochs reflects in a quick drop of the 
classification error. This means that the use of 100 epochs for 
the training provides the similar results to using 400 epochs. 

The model training was, as well, tested using a batch size 
of 20 and 40 with two datasets. On one hand the first dataset 
version comes with only padding and flipping as augmentation 
techniques. On the other hand, the second dataset version uses 
the query pool-based distribution for active learning. As seen 
in Fig. 11, although no difference is to be noticed for the 
training with the first dataset version. The results of the 
training showed a substantial drop in mAP@0.5 when using a 
batch size of 20 (Fig. 11(c)), with QPBB strategy, compared to 
using a batch size of 40 with the same dataset (Fig. 11(d)). 
Therefore, a batch size of 40 was used for training the model. 
A higher number of batches was not tested due to hardware 
restrictions, where the system was already using more than 
15GB of RAM when training with a batch number of 40 whilst 
only having 16GB of RAM available for computations. Any 
other hyper parameter was left as default by the developers of 
Scaled YOLOv4 [6] CSP branch. 

To identify the impact of the number of batches and filters 
used in the training dataset, the model was trained with all 
variations and the results compared (TABLE I). In the table, 
Filter 1 refers to using contrast and Saturation filters (35% of 
the Dataset), Filter 2 refers to the Laplacian Noise (0.06) (45% 
of the Dataset) and Filter 3 refers to the Laplacian Noise (0.12) 
(20% of the Dataset). The obtained results demonstrated that 
the system performed its best at 40 batches with all image 
filters applied (all pools used for active learning).  

TABLE I. INFLUENCE OF FILTERS AND BATCH SIZE IN TRAINING 

Filter 1 Filter 2 Filter 3 Batches Precision Recall mAP 
@0.5 

mAP 
@0.5-0.95 

Yes Yes Yes 20 21.0% 23.7% 21.7% 8.57% 
Yes Yes No 20 42.9% 71.9% 61.8% 26.0% 
Yes No No 20 43.7% 70.1% 59.4% 23.4% 
No No No 20 43.3% 68.6% 59.0% 22.8% 
Yes Yes Yes 40 44.7% 73.7% 62.7% 24.4% 
Yes Yes No 40 45.2% 69.6% 61.7% 22.9% 
Yes No No 40 44.5% 68.1% 57.7% 21.2% 
No No No 40 45.2% 68.3% 58.4% 20.9% 

B. Tree Localization 
The main concept of tree localization is based on current 

position of the drone (Fig. 12(b), O´), which is also the center 
of the frame (Fig. 12(a), O). The tree detection is stored as 
bounding box (x, y, width, height) in a CSV file. Each line 
represents single frame of a video. For the localization, the 
center of the bounding box (Fig. 12(a), T) is used.  

It is represented in Cartesian coordinates (xT, yT), that must 
be converted first into an angle α and a distance d (Fig. 12(a)). 
The angle α refers to the angular difference between the frame 
vertical axis and the ray, from the frame center to the bounding 
box center. The distance d is the distance from the frame center 
to the bounding box center in pixels. Equation (1) showcases 
how the angle α is calculated. 

 α = tan−1 𝑥𝑥T 𝑦𝑦T�  (1) 

A distance between two points (the drone, and the detected 
tree) can be calculated with the trigonometric function (2). 
Here, the height h is the drone height above the ground level, 
and the angle β is the angular difference between the rays from 
the camera position to the frame center, and to the detected tree 
(Fig. 12(a)). 

 𝑑𝑑´ = tan β ∙ ℎ (2) 

Angle β can be found based on the T coordinate, video 
frame width (vwidth), height (vheight), and camera diagonal field 
of view (dFoV). The video width and height are in pixel values, 
and the diagonal field of view is in degrees. 

 β = �𝑥𝑥´2 + 𝑦𝑦´2

⎝

⎛ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

�𝑣𝑣width2 + 𝑣𝑣height2⎠

⎞ (3) 

After the angle α and the distance d are found, the only 
parameter left is the angle between the North and the tree 
position from the drone position. This can be calculated using 
the following equation (4) based on the drone yaw angle γ and 
the angle α in the frame. 

 𝛿𝛿 =  α −  𝛾𝛾 (4) 

 
Fig. 10. Comparison between training the model with 100 (a) and 400 
epochs (b) 

 
Fig. 11. Comparison of passive and active learning with respect to the batch 
size 

(a) mAP@0.5, loss function for 
100 epochs

(b) mAP@0.5, loss function for 
400 epochs.

(a) batch size 20 
Passive Learning 

(b) batch size 40
Passive Learning 

(c) batch size 20
Active Learning

(d) batch size 40
Active Learning
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A new GPS coordinate (latitude ϕ2, longitude λ2) can be 
defined by the following equations (5) and (6), which are based 
on the distance d´ and the angle δ from the starting point 
(latitude ϕ1, longitude λ1). 

𝜑𝜑2 = arcsin (sin𝜑𝜑1 cos
𝑑𝑑´
𝑟𝑟

+ cos𝜑𝜑1 sin
𝑑𝑑´
𝑟𝑟

cos 𝛿𝛿) (5) 

λ2 = λ1 + atan2(sin 𝛿𝛿 sin
𝑑𝑑´
𝑟𝑟

cos𝜑𝜑1 , cos
𝑑𝑑´
𝑟𝑟

− sin𝜑𝜑1 sin𝜑𝜑2) 
(6) 

The starting point refers to the drone position (ϕ1, λ1) and 
the calculated coordinate is the tree position (ϕ2, λ2).  

As described above, the tree localization process aims at 
mapping the detected trees from the pixel context to the real 
world. In general, the pixel coordinate of the detected object 
on the frame and the GPS coordinate of the referred frame are 
required for the geo-localization process. However, other 
parameters are also required to achieve this. 

The implementation consists of 4 main steps. All steps 
were developed as independent components. Each of them 
reads an input file and generates an output file with processed 
data. Finally, it returns a list of detections with their 
geographical coordinates as an output. Fig. 13 illustrates the 
overall dataflow diagram of tree localization process.  

 
1) Data Consolidation 

Yuneec E90 camera is used for the data collection (for 
object detector training dataset) and forest inspection. The 
inspection video is recorded in 4K resolution with 30 fps. The 
recorded video also contains the geolocation of the flight path. 
However, this information is updated every 200 milliseconds. 
The first step, Data Consolidation addresses this aspect by 
linking the sensor data (GPS coordinates) to the detection data. 

This step loads a subtitle SRT file containing the GPS 
coordinates, and an object detection CSV file containing the 
bounding boxes of the detected objects. Afterwards, it assigns 
the corresponding coordinates to the respected frames, 
according to the timestamps. As a result, a JSON file is 
generated. 

2) Height Calculation 
According to Equation (2), the drone height above the 

ground level is required to find the distance d´ between the 
drone and the detected tree. However, the height information 
that have been collected from the drone correspond to the 
height above mean sea level. In order to find the height above 
ground level, the Digital Elevation Model (DEM) is used. The 
DEM is a graphical representation of terrain surface elevation, 
often rendered as an image file. The dataset used in our study 
is encoded as GeoTIFF format and represented in terms of 
raster tiles. Each pixel value of the TIFF image represents a 
ground height of 25 × 25 m area. 

The second component loads the TIFF files in a given 
folder, and expects them as DEM raster tiles. It also loads the 
JSON file, given as an output of the previous step, and loops 
through all its objects. For every object in the file, it reads the 
ground altitude from the corresponding pixel in the 
corresponding tile, based on the GPS coordinate of the frame. 
In case of not finding a corresponding tile, or not finding the 
frame coordinates, the frame is then ignored. The obtained 
height values are appended to the JSON file. 

3) Geo-localization 
To geo-locate the bounding boxes, this step performs the 

proposed localization calculations (Equation (1) - (6)). It loads 
all the data structures containing the bounding boxes, sensor 
data and height above ground level. In addition, some camera 
parameters are required in Equation (3). These parameters are 
the frame width, height and camera diagonal field of view. 

The implemented process loops over each bounding box 
and calculates the geo-location following the above steps: 

1. Calculate the drone height with respect to the 
coordinate for each frame 

 
Fig. 13. Data flow diagram for the Object Localization step 

B. Tree Localization

DEM
(.tif)

Height 
Calculation

+ Ground Elevation
(.json)

CamPar
(.txt)

Geo-
Localization

+ Coordinates of 
Detection (.json)

Coordinates
(.txt)

ClusteringData 
Consolidation

Detection + Sensor
(.json)

Sensor Data
(.srt)

Detection
(.csv)
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2. Reverse the normalization of the bounding box 
centroid using the height and width of the image 

3. Get the x and y Cartesian’s coordinates of the centroid 
of the bounding box in the image with respect to the 
calculated Cartesian’s image center 

4. Calculate the angle (β) between the ray to center of the 
frame and ray to bounding box center using 
Equation (3) 

5. Calculate the distance d´ between drone and bounding 
box center in meters using Equation (2). The average 
height of the tree is given as an input argument to 
calculate the position correctly, because the DEM’s 
height value includes the height of the tree 

6. Calculate the angle α using Equation (1) 

7. Calculate the angle δ to obtain the direction of the 
bounding box centroid with respect to the north 

8. Calculate the bounding box GPS coordinates using 
Equation (5) and (6) 

In order to guarantee accurate geo-localization, the camera 
needs to be pointing downwards. This was achieved by setting 
a threshold value on the Gimbal Pitch angle (-90±1 degrees of 
offset). The frames that are out of bounds are ignored. 

4)  Clustering 
The last step reads the data structure from the latest 

outputted JSON file. Due to the sequential capture of frames, 
multiple detections of the same tree exist within the file. In 
order to generalize these detections, DBSCAN clustering 
algorithm is applied on the all calculated coordinates [19]. 
DBSCAN was selected as the clustering approach since it 
performs well for density group points. 

IV. EVALUATION 

A. Tree Detection 
While the active learning strategy aims at reaching similar 

accuracies to the conventional learning strategies, it tries to 
achieve this by the usage of a minimal set of training data. 
Therefore, the proposed model was evaluated in relation to a 
conventional model. The evaluation was based on the mAP 
metric and the classification loss score. In fact, the mAP was 
calculated taking into account an Intersection over Union 
(IoU) threshold of 0.5. As shown in Fig. 14, the test scenarios 
differ in the number of training data used for the training. 

While the conventional model used the full training 
dataset, the active learning strategy opted at using initially 15% 
of images from the pool dataset, and then incrementing it by 
4% with every iteration. The following table (TABLE II) 
shows the results of training the model with a Tesla T4 GPU. 

TABLE II. COMPARISON OF TRAINING THE MODEL USING ACTIVE LEARNING 

Used 
Dataset 

Used  
Dataset [%] Precision Recall mAP 

@0.5 
mAP 

@0.5-0.95 

161 15% 0.317 0.324 0.201 0.0633 
197 18% 0.140 0.603 0.332 0.107 
232 22% 0.120 0.730 0.363 0.112 
266 25% 0.179 0.688 0.421 0.146 
298 28% 0.232 0.622 0.421 0.138 
329 31% 0.370 0.547 0.444 0.148 
358 33% 0.34 0.536 0.430 0.164 
387 36% 0.226 0.752 0.515 0.197 
415 39% 0.251 0.679 0.448 0.147 
441 41% 0.367 0.613 0.490 0.179 
466 43% 0.353 0.659 0.537 0.202 
491 46% 0.381 0.654 0.561 0.206 
515 48% 0.298 0.730 0.553 0.197 
537 50% 0.412 0.676 0.574 0.220 
559 52% 0.468 0.623 0.555 0.199 
579 54% 0.400 0.686 0.565 0.189 
599 56% 0.293 0.790 0.635 0.231 
619 58% 0.369 0.692 0.566 0.198 
637 59% 0.428 0.639 0.571 0.213 

1076 100% 0.440 0.737 0.627 0.244 
 

The results from TABLE II show that after 17 iterations, 
using 56% of the original training dataset (599 images), the 
model can already show a mAP score of 63.5, compared to 
62.7 from the conventional model (TABLE I). Furthermore, 
the loss curve from the active learning strategy shows similar 
results to the loss curve of the passive approach, concluding 
that the active learning approach is optimal for the scope of 
this project. 

B. Tree Localization 
According to the carried-out tests, the found coordinate 

accuracy is depending on the tree height and the drone height 
above ground level. From an aerial view, trees can be projected 
with different length to the side of the frame (shown as black 
points in Fig. 15). This means that the localized coordinates do 
not represent the tree root (Fig. 15, diamond marks). Instead, 
they represent the ground hidden behind the tree top (Fig. 15, 
round marks). Furthermore, the system is affected by different 
height of trees. In addition, the DEM tile represents a certain 
area with one average value; however, the actual ground level 
can vary a lot in that area. As a result, these aforementioned 
issues cause inaccurate localization.  

For test purpose, different offset values were used for 
representing the tree height. Fig. 16 illustrates the object 
localization results with three different offset values. From 
these offsets, the value that caused the lowest object drifting 
was -15 (Fig. 16(b)). After comparing offset 0 with -30 

 
Fig. 14. mAP@0.5 and Loss function when using 56% and 100% of the Pool 
dataset for training 

(a) Loss function 
with 56% of 

dataset

(b) mAP@0.5 
with 56% of

dataset

(c) Loss function 
with 100% of 

dataset

(d) mAP@0.5 
with 100% of 

dataset
 

Fig. 15. Height error source of the tree detection 
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(Fig. 16(a) and (c)), it becomes clear that the bigger the offset 
is, the detections will drift further. 

Finally, the calculated coordinates were clustered with the 
DBSCAN. It requires two values to cluster the given input, 
which are the epsilon and the minimum number of items. The 
minimum number of the items was arbitrarily set as 3, due to 
the nature of the problem, where if an object was detected in 
more than 3 frames, then will be considered as a detected dying 
or dead tree.  

On the other hand, the epsilon (ε) value defines the distance 
between the neighbor items. To find the correct value, the 
found coordinates were clustered with different epsilon values 
and compared (TABLE III) against the ground truth. The test 
video had 44 trees to detect (ground truth), and in total 153 516 
objects were detected. The epsilon values 0.1, 0.06 and 0.07 
had the closest resulting group, while the value 0.7 returned 
only 3 clusters (too low) and the value 0.01 returned 319 
clusters (too high). Based on the minimum number of items 
and distance values, some items were considered as outliers 
and discarded. Fig. 17 illustrates the clustering result in 
different colors under three different epsilon value. Each color 
represents individual clusters. 

TABLE III. CLUSTERING WITH DIFFERENT EPSILON VALUES 

Epsilon (ε) Discarded Clusters 
0.70 0 3 
0.50 1 7 
0.30 3 13 
0.10 24 45 
0.07 39 66 
0.06 53 84 
0.05 71 133 
0.02 287 218 
0.01 859 319 

 

Finally, the median values of each cluster’s longitude and 
latitude are calculated to obtain a single coordinate 

representing each cluster. The result is illustrated in the 
Fig. 18. 

Based on the clustering comparison, the results from 
epsilon value 0.1, 0.07 and 0.06 were evaluated in TABLE IV. 
Result of ε = 0.1 had 44 clusters, but only 27 (61.36%) of them 
were correct. In other hand result from ε = 0.07 has 66 clusters, 
but 38 (86.36%) of them were correct. Finally, the result 
obtained from ε = 0.06 had 84 clusters, and 41 (93.18%) of 
them were correct. 

The geo-localization average error rate varies slightly 
depending on the clustering. The minimum localization error 
was 0.93 meters, while maximum error was 13.89 meters. 
However, the overall average localization error was 4.59 
meters. 

 

TABLE IV DETECTION AND LOCALIZATION RESULT COMPARISON BASED 
ON EPSILON VALUE 

Epsilon (ε) Clusters True-
Positive 

True-
Negative 

False-
Positive 

Avr. Err. 
[m] 

Det. Rate 
[%] 

0.06 84 41 3 43 4.90 93.18 
0.07 66 38 6 28 4.52 86.36 
0.10 45 27 17 21 4.35 61.36 
 

V. CONCLUSION AND FUTURE SCOPE 

In order to decrease the insect caused deforestation, 
foresters must identify the bark beetle-infected trees 
immediately and cut them down before further contamination. 
However, it is a challenging task to identify them without 
technical support. UAV-based solution can ease the inspection 
process. It saves time, increases the coverage and could return 
accurate GPS coordinates of the suspicious trees. 

The proposed solution uses DL-based object detector and 
geo-localization algorithm to find the GPS coordinates of the 
dying and deed trees from aerial video. This paper covers the 
data processing step of the UAV-based forest inspection, 
which consist of two sub-steps. Implemented system uses 
separate stand-alone components to process the data to keep 

 
Fig. 18 Localization result, final coordinates (points) and the flight path 
(lines) at ε = 0.06 

 
Fig. 16. Object geo-localization using different offset tree height 
 

 
Fig. 17. Clustered objects with different epsilon values 

(a) Offset = 0 (b) Offset = -15 (c) Offset = -30

(a) ε = 0.50 (b) ε = 0.06 (c) ε = 0.01
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the system modularity. Each script reads the input as a file and 
outputs the result as an output file. 

Tree detection step applied the Scaled-YOLOv4 object 
detector. Training dataset has been prepared from real forest 
inspection which is carried out in East-Germany. Due to the 
limitations encountered during the collection of the dataset, the 
training strategy was based on an active learning method, 
which solved the data scarcity problem. The study achieved 
promising results in detecting infected trees with a small image 
dataset. In fact, the developed tree detector is a tentative 
approach and is still subject to optimization. As a result of the 
detection, the location of the detected trees in the frame are 
stored in a file and passed to the coming step. 

The tree geo-localization step reads the detection output 
and returns the GPS coordinate list of all detected suspicious 
trees. This phase consists of 4 main steps, namely data 
consolidation, height calculation, geo-localization, and 
clustering. 

To conclude the study, the proposed system is able to 
detect the dying and dead trees from aerial inspection and it is 
capable of geo-localizing them with an average error rate of 
4.59 m. Forestry services would greatly benefit from this 
system since it is inspecting the forest from above with UAV, 
instead of directly patrolling through the forest by foot.  

As it is presented in the Evaluation chapter, the localization 
error source must be addressed within the further study. Also, 
the dying tree detection model has to be trained further with 
different datasets from different place under different weather 
and light conditions. 
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neural networks based recognition of plant diseases by leaf image 
classification,” Computational Intelligence and Neuroscience, vol. 
2016, pp. 1–11, 06 2016 

[3] A. Kamilaris and F. X. Prenafeta-Bold ú, “Deep learning in 
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