
Embedded Self Organizing Systems (Vol 8. No 2.) (pp.15-19)

15

Issue Topic: “Towards Autonomous Driving Using Vision Based Intelligent Systems “

Traffic Light and Back-light Recognition using Deep

Learning and Image Processing with Raspberry Pi
Julkar Nine

Technische Universität Chemnitz
Department of Computer Engineering
julkar.nine@informatik.tu-chemnitz.de

Rahulganapathi Mathavan
Technische Universität Chemnitz

M.Sc. Embedded Systems
rahulganapathi.mathavan@s2019.tu-chemnitz.de

Abstract—Traffic light detection and back-light
recognition are essential research topics in the area of
intelligent vehicles because they avoid vehicle collision and
provide driver safety. Improved detection and semantic clarity
may aid in the prevention of traffic accidents by self-driving
cars at crowded junctions, thus improving overall driving
safety. Complex traffic situations, on the other hand, make it
more difficult for algorithms to identify and recognize objects.
The latest state-of-the-art algorithms based on Deep Learning
and Computer Vision are successfully addressing the majority
of real-time problems for autonomous driving, such as
detecting traffic signals, traffic signs, and pedestrians. We
propose a combination of deep learning and image processing
methods while using the MobileNetSSD (deep neural network
architecture) model with transfer learning for real-time
detection and identification of traffic lights and back-light.
This inference model is obtained from frameworks such as
Tensor-Flow and Tensor-Flow Lite which is trained on the
COCO data. This study investigates the feasibility of executing
object detection on the Raspberry Pi 3B+, a widely used
embedded computing board. The algorithm’s performance is
measured in terms of frames per second (FPS), accuracy, and
inference time.

Keywords— MobileNetSSD, Transfer Learning, Computer
Vision, Raspberry pi, Object detection.

I. INTRODUCTION
In recent years, intelligent vehicles and self-driving cars

have emerged as major research subjects, with the goal of
developing ways to improve traffic safety, which is of vital
significance in today’s world. One such area of research is
the detection of traffic signals and the identification of cars’
taillights.

Rear-light signal recognition is essential for a driver in
understanding the conduct and purpose of the vehicle ahead,
to alert drivers of possible hazards, to avoid rear-end

collisions and accidents that may result in human casualties
or significant property damage. At the present time, more
than one million people die every year in road accidents
across the globe.

The detection of traffic signals may assist in enhancing
driving safety and reducing the number of traffic accidents
that occur at junctions. Driving safety may be improved in
both self-driving cars and sophisticated driver assistance
systems by using an accurate traffic light detecting module.
When a self-driving car approaches an intersection, the
vehicle’s speed is reduced in accordance with safety
regulations. As a result, the precision of traffic light
detection and identification is essential in many situations.

For traffic light detection, the majority of currently
available algorithms use color, shape, and gradient
information; for taillight identification, however, the
majority of known methods rely on color thresholding and
symmetry assumptions. These techniques are ineffective and
unreliable in real-world traffic situations that include
complicated backdrops, multiple kinds of traffic signals,
varied illuminations, motion blur, changing weather
conditions, and color shifting. Because of these problems, it
is more difficult to analyze traffic lights and taillights.

In this project, we will develop an algorithm that uses
image processing and transfer learning to detect and
recognize the state of a traffic light and the back-light of a
car, analyze the result of the algorithm on the Raspberry Pi 3
B+ for real-time applications, and check and report the
algorithm’s performance, such as frames per second,
accuracy, and inference time.

Julkar Nine and Rahulganapathi Mathavan ESS (Vol 8. No 2. 2021) (pp.15-19)

16

II. LITERATURE REVIEW

A. Tailight Detection
For a long time, the majority of current techniques, such

as [1], [2], [3], [4], [5], were limited to simply detecting
taillights in nighttime situations. In recent years, additional
methods for detecting car taillights during the day have been
suggested. Because car rear lights are red, various color
spaces, such as YCrCb, L*a*b*, HSV, or Y’UV, are used to
identify red areas in those techniques.

Almagambetov et al. [6] developed a method for
detecting vehicle rear lights that could be used both during
the day and at night. They begin by detecting areas that are
red and white, which are then used to extract potential
regions. In order to select pairings of candidate areas, a
symmetry test and 3-D histogram comparisons are performed
between the candidate regions. The Y-distance between two
regions is regarded to be smaller than the height of one area,
and their sizes are considered to be comparable. This test
involves calculating the Bhattacharyya coefficient for each
pair of histograms, and only those pairings with a
Bhattacharyya coefficient greater than a certain threshold
pass this test. A Kalman filter is used to monitor the
movement of each light.

The methods suggested in [7], [8], [9] utilize vehicle
detection and then search for lights inside the vehicle areas
that have been identified by the systems. Cui et al. [7]
{cui_vision-based_2015} utilized the HSV color space to
extract red pixels, followed by the OPTICS method to
extract the two biggest clusters, in order to select taillight
candidates for their study. According to [8], the method
presented in [6] makes use of the Y-distance test and then
chooses pairings by comparing the sizes and forms of the
candidate areas that have been obtained.

According to Chen et al. [9], they developed a technique
of detecting rear lights that involves calculating a lamp
response function in order to evaluate the intensity of each
pixel within a vehicle bounding box that has a red
component.

Deep learning methods have also been used to determine
whether or not brake lights are illuminated. J. G. Wang et al.
[10] describe how they fine-tuned an AlexNet model using a
dataset that they had gathered and labelled in order to
identify the status of brake lights. The dataset was created by
applying a vehicle detector to a collection of pictures and
manually labelling the identified cars as either” brake” or”
normal,” as determined by the authors.

[11] describes another deep learning method for detecting
brake lights in real-time. First, the authors used a rapid
region-based convolutional neural network (quick RCNN) to
identify automobiles, then used a fully convolutional
network (FCN) to separate the vehicle rear light areas, and
then used an SVM classifier to determine whether or not the
vehicle was breaking. Swathy S Pillai developed a system
detecting taillights for assessing traffic at night utilizing
different morphological procedures like thresholding,
filtering, extraction, etc. [15]. According to Zhenwei Shi,
adaptive background suppression filters provide a quick and
robust technique for traffic light recognition that may be
used in a variety of lighting situations

B. Traffic Light Detection
Methods for traffic light identification are often divided

into three categories: image processing-based methods,
machine learning-based techniques, and map-based
techniques [12]. Image processing is used to produce a
certain resultant where a single or multiple amount of actions
or operations are conducted on the image. Using Color
Segmentation and the Circle Hough Transform [13], Dwi H.
Widyantoro and Kevin I. Saputra were able to achieve traffic
light detection and recognition, whereas Guo Mu was able to
achieve the same with RGB to HSV conversion, filtering,
histogram of oriented gradients (HOG) features, and support
vector machine (SVM) [14].

Despite the fact that the image processing method is
straightforward and simple, it passes through crucial stages
such as thresholding and filtering. The smallest errors in
computations or minor departures from norms throughout
these stages may result in confusing results, which is very
undesirable in the highly sensitive field of traffic light
recognition. To avoid falling into this trap, machine learning-
based approaches and algorithms are being tested
individually and in combination with many processing
techniques in order to prune the incorrect paths. For
example, Keyu Lu presented a Convolution Neural Network
(CNN) based on the Generalised Haar Filter that may be
used for object identification in traffic scenes [17]. Seokwoo
Jung developed a CNN-based traffic sign identification
algorithm in which the extraction of traffic sign candidates is
done in the first stage, and the classification of traffic sign
candidates is performed in the second stage using the LeNet-
5 CNN architecture [18]. When Gwang-Gook. LEE and
Byung Kwan PARK combined a traditional method to image
processing with Deep Neural Network (DNN) as a potential
classifier [19], they were able to get accurate results for
traffic light identification. [20] R. Kulkarni, S. Dhavalikar,
and S. Bangar developed a deep learning model called Faster
Region-based Convolutional Neural Network (Faster R-
CNN) using Inception V2 for tackling traffic light detection,
with a focus on Indian cities, and applied it to traffic light
detection [21].

III. METHODOLOGY
The architecture of the approach (Fig. 1.) is composed of

two major components which are Deep Learning and Image
processing.

A. MobileNetSSD
A lightweight deep neural network architecture for

mobile devices and embedded vision applications. In many
real-world applications, such as a self-driving vehicle, the
identification tasks must be completed in a timely manner on
a device with limited computing capabilities. MobileNet [22]
was built in 2017 to meet this need. The depth-wise
separable filters that form the foundation of MobileNet are
used to construct the core layers. Single Shot Detector (SSD)
[23] was also developed by the Google Research team
around the same time (2016) to meet the demand for models
that can run in real time on embedded devices without a
significant trade-off in accuracy. Multiple objects within an
image are detected by SSD in a single shot.

Julkar Nine and Rahulganapathi Mathavan ESS (Vol 8. No 2. 2021) (pp.15-19)

17

Fig. 1. Flowchart of the proposed approach

(ⅰ) MobileNet: makes advantage of depth wise separable
convolutions to get its results. When compared to the
network with normal convolutions with the same depth in the
nets, it substantially lowers the number of parameters. As a
consequence of this, we obtain lightweight deep neural
networks.

(ⅱ) SSD: seems to remove the proposal step that is
common in other methods. Instead, a set of preset bounding
boxes is employed, which come in a variety of sizes and
aspect ratios. The classifier predicts the presence of an object
within those bounding boxes, as well as changes to the
bounding box to better match the object's shape. The
removal of the region proposal phase and the integration of
the complete object identification process into a single
network is said to result in a significant speed boost.

B. Hardware
The Raspberry Pi 3 model B+ computer, which is part of

a series of tiny single-board computers, was utilized for this
project. Among its many features are a 64-bit four-core CPU
operating at 1.4GHz, dual-band wireless LAN (2.4GHz and
5GHz), Bluetooth 4.2, a speedier Ethernet connection, and
1GB of LPDDR2 SDRAM. It supports the Micro SD card
format for loading the operating system and storing data.

C. COCO Dataset
COCO stands for Common Items in Context, and it is a

dataset that is intended to represent a wide variety of objects
from 80 various categories that we meet on a regular basis in
our daily lives.

The COCO dataset has been labelled, and the data it
contains may be used to train supervised computer vision
models that are capable of identifying the common items.
Though these models are still far from perfect, the COCO
dataset serves as a baseline for assessing the periodic
improvement of these models that occurs as a result of
ongoing computer vision research.

The COCO dataset, which is sponsored by Microsoft,
may be utilized for a variety of applications and includes
characteristics such as:

(ⅰ) A Checkpoint for Transfer Learning: It is made
available as a starting point for the training of computer
vision models. It is possible to refine the model once it has
been trained on the COCO dataset in order for it to learn
additional tasks using a custom dataset.

(ⅱ) Object identification, semantic segmentation, key
point detection, captioning and other computer vision tasks
are some of the tasks that it is used for.

(ⅲ) There are 118,287 train pictures, 40,670 test images,
and 5000 validation images in the dataset.

D. Model Optimization
The Raspberry Pi has a limited amount of available

memory and processing capacity. Deep learning models may
be optimized in a variety of ways so that they can be run
within the limitations of their environment. Model
optimization aids in the reduction of model size, resulting in
reduced memory consumption when the model is installed
on the Raspberry Pi and lowers latency, which reduces the
amount of computation needed to perform inference using a
model. The TensorFlow Lite library includes a number of
optimization methods for models that will be executed on
edge devices. These include quantization, pruning, and
clustering. We choose pre-trained models from TensorFlow
Lite that have been optimized via quantization.

IV. IMPLEMENTATION

A. Pre-trained model
 There are numerous pre-trained models to choose from.
If the job necessitates a high level of precision, we may need
a big and complicated model. The usage of a smaller model
is recommended for jobs requiring less accuracy since they
not only take up less disc space and memory but are also
usually quicker and more energy-efficient.

B. Detection of traffic light and car with model tuning
 An object detection model is trained to identify the
presence and position of several kinds of items. When an
image or a video stream is later given to the model, it will
return a list of the items it identifies, the position of a
bounding box that includes each object, and a score that
reflects the confidence that detection was accurate.

(ⅰ) Input to the model: The model accepts an image or video
stream as input. Let us suppose the anticipated picture is
300x300 pixels, with three channels (red, blue, and green)
for each pixel. This should be given to the model as a
flattened buffer of 270,000 byte values (300x300x3)
(300x300x3). If the model is quantized, each value should be
a single byte indicating a value between 0 and 255.

(ⅱ) Output of the model:

Classes: Array of N numbers (output as floating-point
values, each representing the index of a class label from the
labels file, which corresponds to the object that the model
was trained to recognize.

Location: For each identified item, the model will
provide an array of four integers indicating a bounding
rectangle that surrounds its location.

Julkar Nine and Rahulganapathi Mathavan ESS (Vol 8. No 2. 2021) (pp.15-19)

18

Confidence score: A score is a number between 0 and 1
that shows confidence that the item was really identified. The
closer the number is to 1, the more confident the model is.
Depending on the application, a cut-off level is specified
below, which you will reject detections. Here we set the cut-
off to 0.5 (meaning a 50 percent probability that the
detection is valid) then the detections with a confidence
score below 0.5 are ignored. With the selection of right cut-
off, the false positives (objects that are wrongly identified or
areas of the image that are erroneously identified as objects
when they are not) are rejected by the model.

The model MobileNet V1 is capable of recognizing items of
90 classes as it is trained using the COCO dataset. Each item
is assigned an ID which is specified in the COCO label map
file. As we are interested here just in identifying vehicle and
traffic light labels, appropriate IDs are given to the model,
and the classification head of the model is modified to
recognize only these two items.

C. Recognition of the state of traffic light signals
The output of the model after the traffic light has been

recognized is with the bounding box rectangle. The
dimensions of this bounding box is obtained to crop the
region of the detected traffic light. Color thresholding is
applied after converting the RGB image frame to HSV color
space to identify red, green or yellow signal state of traffic
light. A message of ‘Stop’ is displayed when red or yellow
signal and ‘Go’ is displayed when the signal is green as
shown in the Fig 2.

Fig. 2. Recognizing the state of traffic light signals

D. Back-light Recognition

Fig. 3. The bounding boxes of back-light drawn on the

video frame are out of place using Approach 1

(ⅰ) Approach 1: The bounding box dimensions from the
model output is obtained to crop the detected region of the
car. Color thresholding is performed on the cropped region

after converting the frame to HSV color space to detect the
red regions of back light. Contour detection method is
applied using OpenCV library to get the boundary region
dimensions of the back-light and using the dimensions of the
boundary region a bounding box rectangle around the back-
light of the car is drawn. With this approach the bounding
box drawn on the image frames were out of place rather than
being correctly mapped onto the backlight when the video
stream was run as shown in Fig. 3. Hence approach 2 as
described below was taken into consideration.

Fig. 4. Detection of Back-light with Approach 2

(ⅱ) Approach 2: Area of Interest(ROI) is obtained, which is
the bottom half of the frame since most of the vehicles with
backlight appear in that region. Color thresholding is done by
translating the RGB frame to HSV color space to detect the
red color backlight areas. Thereafter contour detection is
done to get the border areas of the backlight on which
bounding boxes are drawn as shown in Fig. 4.

V. RESULTS

Fig. 5. Output of the proposed algorithm on raspberry pi

3B+ with the quantized model

 The TensorFlow model of MobileNetSSD along with the
image processing algorithm is evaluated both on Raspberry
Pi 3B+ and on a laptop with Intel i7 processor. The
comparison is drawn and the performance is evaluated with
FPS, inference time and accuracy of the model as shown in
Fig. 6. As the deep learning model requires good computing
resources which is limited and constrained in Raspberry Pi
3B+ we observe a high inference time and low FPS. Hence a

Julkar Nine and Rahulganapathi Mathavan ESS (Vol 8. No 2. 2021) (pp.15-19)

19

quantized TensorFlow Lite model is used to provide an
optimal performance on Raspberry Pi 3B+ and the output
parameters are reported in the Fig. 6. It can be observed from
the results that due to the low computing power of Raspberry
we obtain low FPS and inference time though we see a
betterment of these parameters with the quantized model.
The output of the proposed algorithm on a Raspberry Pi 3B+
with the quantized model is shown in Fig. 7.

Fig. 6. Results of model evaluation

 The drawback of using color thresholding to detect back-
light is if there is any red object apart from back-light within
the ROI then a bounding box is drawn around it generating a
false positive. As shown in the Fig. 5. an orange bounding
rectangle is drawn across the red car instead of red back-light
region.

Fig. 7. Drawback of color thresholding for back-light

VI. CONCLUSION
In this project we proposed a method for recognizing the

traffic light and the back-light of the car. The proposed
method involves deep learning and image processing. Deep
learning used for detecting the car and traffic light and image
processing used for recognizing the state of the signal. The
algorithm was implemented on the different hardware own
laptop (Intel i7 processor,16 RAM) and Raspberry pi 3B+.
Further the algorithm was optimized by quantization method
and evaluated on the Raspberry Pi 3B+. The result was
increased in 3-4 times of FPS, model size was decreased by
4 times and also inference time of model decreased
compared to unquantized model but at the cost of 2% loss in
accuracy. By performing this experiment, it was observed
that there is trade-off between accuracy and inference time.
For real-time application of this algorithm FPS and accuracy
need to be improved.

VII. FUTURE SCOPE
The research work can be extended to better the FPS and
inference time for the real time recognition of back-light and

traffic light on an edge device like Raspberry Pi for which
the following points can be considered:

(ⅰ) Increased speed and FPS can be achieved with Raspberry
Pi 3B+ when combined with the hardware accelerators like
Edge TPU and USB Coral.

(ⅱ) Optimization techniques like frame skipping and
threading can be implemented on video streams to increase
FPS.

(ⅲ) To reduce the false positive rate caused by using color
thresholding for back-light recognition we can use transfer
learning for the MobileNetSSD model using a custom
dataset of back-lights.

(ⅳ) The YOLO model can be tested out as it is said to
provide faster inference time with good accuracy.

(ⅴ) Real time detection could be possible to achieve with
Raspberry Pi 4 along with hardware accelerators.

REFERENCES
[1] J. F. Krems, M. R. K. Baumann, "Driving and Situation

Awareness: A Cognitive Model of Memory-Update
Processes," International Conference on Human Centered
Design, HCD 2009: Human Centered Design, pp. 986-994.

[2] M. R. Endsley, “Situation Awareness in Future Autonomous
Vehicles: Beware of the Unexpected,” Congress of the
International Ergonomics Association IEA 2018: Proceedings
of the 20th Congress of the International Ergonomics
Association (IEA 2018), August 2018, pp 303-309.

[3] Y. Kumar , Y. Jain, “Research Aspects of Expert System”,
International Journal of Computing \& Business Research,
ISSN (Online): 2229-6166, 2012.

[4] M. R. Endsley, “Toward a Theory of Situation Awareness in
Dynamic Systems,” Human Factors The Journal of the
Human Factors and Ergonomics Society37(1), March 1995,
pp. 32-64.

[5] R. E. T. Jones, E. S. Connors, and M. R. Endsley,
“Incorporating the Human Analyst into the Data Fusion
Process by Modeling Situation Awareness Using Fuzzy
Cognitive Maps,” 12th International Conference on
Information Fusion Seattle, WA, USA, July 6-9, 2009, pp.
1265-1271.

[6] A. Niehaus ; R.F. Stengel, “An expert system for automated
highway driving,” IEEE Control Systems Magazine (
Volume: 11 , Issue: 3 , April 1991), pp. 53-61.

[7] C. L. Forgy , “Rete: A Fast Algorithm for the Many Pattern /
Many Object Pattern Match Problem,” Department of
Computer Science, Carnegie-Mellon University, Pittsburgh,
PA 15213, U.S.A, pp. 17-37.

[8] Julkar Nine, Wolfram Hardt, Shanmugapriyan Manoharan,
“Concept of the Comprehension Level of Situation
Awareness using an Expert System,” 14th International
Forum on Strategic Technology (IFOST), IEEE Computer
Society, 978-5-4387-0906-0, October, 2019, pp. 284-288.

[9] Julkar Nine, Shadi Saleh, Owes Khan, Wolfram Hardt,
“Traffic Light Sign Recognition for Situation Awareness
using Monocular Camera,” Symposium International
Symposium on Computer Science, Computer Engineering and
Educational Technology(ISCSET), Laubusch, Germany,
(2019).

	I. Introduction
	II. Literature Review
	A. Tailight Detection
	B. Traffic Light Detection

	III. Methodology
	A. MobileNetSSD
	B. Hardware
	C. COCO Dataset
	D. Model Optimization

	IV. Implementation
	A. Pre-trained model
	B. Detection of traffic light and car with model tuning
	C. Recognition of the state of traffic light signals
	D. Back-light Recognition

	V. Results
	VI. Conclusion
	VII. Future Scope
	References

