
Embedded Self Organizing Systems (Vol 8. No 1. 2021) (pp.16-21)

~ 16 ~

Issue Topic: “Intelligent Approaches for Smart Cities“

Classification for Quality Assessment of the User

Interface and its Application in the Development of
Web-applications

Nikolai Gervas
Novosibirsk State Technical University

Department of Computer Science
nik.gervas@mail.ru

Evgeny Romanov
Novosibirsk State Technical University

Department of Computer Science
romanov@corp.nstu.ru

Wolfram Hardt
Technische Universität Chemnitz
Department of Computer Science

wolfram.hardt@informatik.tu-
chemnitz.de

Abstract1—The article considers a classification for

validation and quality assessment of the user interface (UI)
from the point of view of the main aspects of design and its
application in the development of web-applications. The
problem with inaccurately crafted user interface requirements
is relevant and as a result, developers often have to redesign
the interface and architecture of the application. The article
analyzes the role and place of UI in the architecture of client-
server applications, analyzes aspects of UI design, on the basis
of which the classification is formed. The classification is used
to analyze UI design oversights of the developed web-
applications for BPMS “Fireproof Corporation” company.
Based on the results of UI validation, a set of typical UI design
oversights has been added.

Keywords—user interface (UI); quality assessment of the UI;
UI design aspects; business process management system
(BPMS); client-server application (CSA).

I. INTRODUCTION
There is a problem with inaccurately crafted user

interface requirements according to business analytics data.
As a result, developers often have to redesign the interface
and architecture of the application. To make this process
manageable, it is logical to propose a classification of
common UI design oversights, on the basis of which the user
interface is validated, assessed the quality of the UI and to
anticipate design oversights at an early stage. The
classification is based on the main aspects [1, 6] of the user
interface design, it also determines the frequency of
occurrence of this oversight, the impact of the oversight on
the work with the system and the design phase at which this
oversight occurred.

1 Copyright © 2021 by ESS Journal

Using the developed classification, a set of typical UI
design oversights has been formed. For UI validation, a
specific aspect should be selected to validate the application's
user interface against a set of common user interface
oversights. In the future, the set of typical UI design
oversights should be expanded, which will allow better
checking the application interface for oversights.

II. THE ROLE OF UI IN THE ARCHITECTURE OF CLIENT-
SERVER APPLICATIONS

 The system of client-server applications can be described
as a distributed system, consisting of three main elements of
the architectural pattern MVC (MVP), but interpreted much
more broadly, as the main categories, which can include a
code component, design artifact and any other entity related
to the CSA [1, 2]:

• model - everything related to the presentation of data
and operations on them in the CSA: business entities
and connections between them, the server database,
business objects, local user data, the model of the
subject area of the CSA itself, means of access,
updates and synchronization. This also includes
atomic one-time operations on business entities;

• behavior - a description of the software system in the
form of elementary interactions - precedents and their
detailed interpretation - scenarios;

• view - components and processes of display and
interaction with the user or the external environment.
User interaction code (display, input / output) should
not be located in the components responsible for the
presentation and processing of data in the program.

Nikolai Gervas, et. al. ESS (Vol 8. No 1. 2021) (pp.16-21)

~ 17 ~

The model is a set of business entities (BS) and
relationships between them. There are two types of business
entities: basic (such as account, mail, address, profile, artifact
(file)) and domain business entities. Relationships between
business entities fall into two categories - structural
(associations) and behavioral (dependencies). Typically, a
business entity is accompanied by a state diagram describing
its life cycle in the system. States are integrated into business
entities.

There is the greatest uncertainty regarding the behavior
component, caused by the diversity of points of view on this
component and its implementations in different models and
patterns. Associated with it are terms such as use case,
controller, scenario, view model, which are related to both
architectural solutions and systems analytics. Behavior
should be understood as the implementation of a business
process in the form of a set of interacting scenarios (use
cases). The description of the behavior includes an abstract
component - a business scenario in the form of a business
process implementation and its concrete implementation in
the form of view scenarios. The business scenario exists
solely as a component of systems analytics, while view
scenarios are implemented in controllers, view models, and
other architectural components.

In relation to view layer, there is a unity of opinion.
However, view is not always clearly separated from behavior
both at the level of systems analytics and in architecture. It is
necessary to formulate the key properties of the view:

• the view cannot contain any component of the
behavior (scenario), for example, make a control
(button) visible, call an API function, etc.;

• the behavior, in turn, does not depend on the concrete
implementation of the view in the UI and the model
of the user interface (a single form "cockpit", a chain
of dialogs - "scenario driven by the UI"). View
scenarios are trajectories in the UI model, there can
be no one-to-one correspondence.

Interaction of the view component and its scenario is
carried out through two interfaces - actions on the view
model and events of the view model. At any event or user
operation on the UI element, they are translated into the
functions of the event interface, the implementation of the
interface functions of actions on the model is translated into
actions on the UI elements.

Based on the above description, the place of the UI can
be determined as follows (Figure 1):

• the business scenario is implemented as a trajectory
(dotted lines on Figure 1) in the user interface of the
application (the sequence of opening forms and
actions with controls);

• the same component can participate in the
implementation of several scenarios - there is no one-
to-one correspondence between UI elements and
business scenarios;

• the components of the user interface in the form of
architectural classes do not contain elements of
behavior (scenario), are separated from the
components that determine the behavior, and interact
with them through the interfaces of events and actions
- the MVP pattern;

• the view scenario is implemented by a separate
component (controller, representative), has its own
state (behavior model) and uses business entities
(business objects) of the model in accordance with
their states.

Figure 1: The role of UI in the client-server architecture

III. ANALYSIS OF UI DESIGN ASPECTS
When assessing the quality of the UI, it is necessary to

understand how much it helps or hinders the user in
achieving goals while working with the system [3,6]. There
are a number of aspects from which UI should be considered.

A. Performance
The performance of the UI or the speed of working with

it is a comprehensive assessment of the entire process of the
user working with the system through the UI and includes
the following stages:

• purpose (deliberation);

• sequence of actions (deliberation);

• execution;

• perception;

• evaluation of the result.

A technique known as GOMS (Goals, Operators,
Methods, and Selection Rules) is used to assess UI
performance. The ways in which actions are performed also
affect performance (arranged in order of increasing):

• menu;

• hotkeys for advanced users;

• pictograms, their main drawback is the difficulty of
choosing a combination;

• an item in the picture with the action assigned to the
pictogram;

• direct manipulation.

In psychology is used the term focus of attention -
concentration of attention on a certain object, its behavior
and control. Restoring the focus of attention requires certain
time and psychological costs. In UI, focus refers to objects
on the screen that the user sees and can manipulate. If, in the
process of work, attention switches to another object, then in

Nikolai Gervas, et. al. ESS (Vol 8. No 1. 2021) (pp.16-21)

~ 18 ~

order to continue working with the first object, it is
necessary not only to appear on the screen, but also to
restore the context of the performed action when restoring
the focus of attention, which includes:

• the action to be performed;

• the step the user left off;

• entered parameters;

• the current input focus is the cursor position.

Duration of physical activities. Any action can be
either quick or precise [4,5]. The time to reach the target is
inversely proportional to the size of the target and the
distance to the target. The same is true when manipulating
any objects in the UI. Accordingly, the shorter the
manipulation movements, the higher the productivity.
Recommendations for using UI elements:

• context menu (minimum distance);

• dialog box in place of the control;

• screen border as a pseudo button. When the cursor is
"sticky", a large UI element appears at the edge of the
screen, which allows for fast positioning that does not
require precision.

The duration of the system reaction. If the operations
performed by the system lead to tangible delays, then a
correct estimate of their execution time is required, during
which no user intervention is required. Recommendations:

• before starting a long process, all data must be
received immediately, it is unacceptable to request
additional data after the start of the operation;

• setting a timeout for pop-up windows with
confirmation of the operation, after the expiration of
the time interval, a positive response is accepted by
default;

• implementation of a real progress indicator. A typical
mistake is to ignore the final operations when the
indicator with the value "0 seconds left" is displayed
for a long time.

B. Human errors
Humans tend to make mistakes. The user-friendly UI

suggests that the system is not a mentor, but offers options
for fixing it. Errors can be caused by various reasons:

• knowledge gaps in the subject area;

• typos;

• motor errors associated with inaccurate mouse
manipulation;

• decreased attention, skipping / ignoring warnings.

Error prevention measures:
• training of users in the process of work;

• reduced requirements for attentiveness;

• increasing the legibility and visibility of indicators;

• reducing the system's sensitivity to errors.

C. Memorization and screen space allocation
All information that the user receives from the system

passes through the graphical interface. And here it is very
important how it will be structured for presentation and in
what form it will be rendered. Formally, these questions are
not related to functionality, but they are extremely important
[7].

Memorization. In reality, a person is able to effectively
manipulate only objects that are directly in the field of view.
The volume of short-term memory is limited to 7 ± 2 units
of unassociated data, i.e. data, the memorization of which
did not arise figurative associations. When designing a
graphical interface, it is necessary to minimize the need for
such memorization. In the structure of the graphical
interface, objects are divided according to their level of
accessibility and the need for the user to use short-term
memory:

• directly visible;

• directly accessible through visible associated
elements - bookmarks, icons;

• selectable through visible associated elements - drop-
down lists, pop-up windows;

• located in a chain of calls known to the user, for
example, opening a file in a dialog box via the File
menu;

• located in a chain of calls unknown to the user, for
example, a configuration method or parameter
unknown to the user.

The last point has to do with the learning factor. The rest
- to the factor of performance and to a certain focus of
attention in it.

Screen space allocation. For many applications, the
graphics screen space is a critical resource that must be
skillfully allocated between the displayed data. One of the
hard-to-solve problems is the elimination of unnecessary
information. Superfluous information can be understood as
unnecessary, obsolete or no longer used information found
during the search. Usually in the process of working with
the program, the number of active elements - open windows,
bookmarks, etc. is constantly increasing, and they have to be
closed or removed manually. There is usually no means of
collecting such interactive garbage - UI elements (windows,
bookmarks, icons) created in the course of work, but no
longer used.

• In the development system, open files are displayed
as bookmarks with the following rules:

• the number of visible bookmarks is within ten, the
size of the bookmark depends on the length of the
name;

• bookmarks are displayed in the order of opening files,
repeated access does not change their order in the list;

• to get a hidden bookmark, necessary to scroll through
the list in the bookmarks bar or open the full list with
a single click.

When constantly working with a large project, necessary
to periodically close unnecessary windows. Therefore, it

Nikolai Gervas, et. al. ESS (Vol 8. No 1. 2021) (pp.16-21)

~ 19 ~

would be logical to have tools that track and close long-
unused or once-used windows.

D. Subjective perception
This aspect relates to the actual appearance of the

interface, graphic design and the peculiarities of its
subjective perception by the user [8]. Aspect includes:

• socio-psychological perception - fashion, "beauty";

• technical design - a combination of aesthetics with
manufacturability;

• psychological feeling of comfort at work.

Socio-psychological aspects. The graphic design of
applications is highly fashionable, it can be focused on
certain social groups that make up a significant part of the
users, it often has to reflect the requirements of the brands
that it promotes, etc.

Principles of technical interface design. If the socio-
psychological factor uses the interface as an additional
factor in attracting attention, then the technical design
requires from it exactly the opposite [9] - it should be as
invisible as possible, transparent and subordinate to the
functional:

• the interface is not an end in itself, it is invisible;

• the interface is functional and informative;

• an interface is a subject of long-term use;

• the interface is technologically advanced, it provides
productive work, minimizes errors;

• the interface is harmonious - all elements are
commensurate, proportionate, made in the same style.

Subjective feeling of comfort. Not always the quality of
the graphical interface can be expressed by the measured
parameters. The subjective feeling of the friendliness of the
interface is formed, among other things, from a number of
psychological factors [10, 11]:

• subjective feeling of speed of work: filling pauses
with background actions, breaking actions into
smaller ones;

• a sense of control over the system;

• self-expression - the ability to personalize the
program;

• a reasonable system of identification and protection:
choosing a login instead of entering - cookies, a drop-
down list, entering a password in plain text,
remembering a password for a limited period.
Usually, protection systems bring significant
discomfort, because actions to prevent potential harm
are not perceived as necessary, complex passwords
must be memorized or stored separately, etc.

Satisfaction with the use of the system. Several
methods can measure the user satisfaction when working
with the system. For this, the structure-oriented evaluation
model (SURE model) defines several sub-goals [12,13]. The
sub-goals for user satisfaction can be:

• acceptance of user interface;

• design of the visualization (graphical user interface);

• clearness of terminology;

• learning environment.

IV. CLASSIFICATION OF UI DESIGN OVERSIGHTS
Based on the analyzed aspects of UI design, a

classification is proposed for assessing the quality and
validation of the user interface. This allows to analyze and
categorize user interface oversights, as well as get
recommendations for fixing.

The classification is made up of 4 main criteria:

• UI Aspects - a sign of classification "by type"

o performance;

o error protection;

o graphic design and perception, ergonomics;

o search and visualization;

o training, help;

o user needs, level of requirements;

o screen space as a resource, interactive garbage;

o UI responsiveness;

o mental model, subject area;

o navigation, trajectory, connectivity;

o context, focus of attention;

o information content (hierarchy, identification);

o UI model.

• Frequency of occurrence

o typical;

o periodic;

o separate project.

• Impact

o disadvantage;

o difficulty;

o impossibility of work.

• Design phase

o business analytics;

o system analytics (requirements);

o architectural design;

o UI design;

o implementation (code, lack of design patterns).

Interface validation allows to more accurately determine
the type of design oversights (based on aspects), the
frequency of their occurrence, what consequences are
entailed by ignoring the oversight and the design stage of
the software product at which the oversight occurred. This
classification is not a full-fledged methodology that allows
to unambiguously correct oversights in architecture and
design at the level of system and business analytics. Using

Nikolai Gervas, et. al. ESS (Vol 8. No 1. 2021) (pp.16-21)

~ 20 ~

the classification, it is possible to more accurately determine
the nature of the oversight and in the future to foresee its
appearance at an early stage of the design.

V. ANALYSIS AND CLASSIFICATION OF UI DESIGN
OVERSIGHTS

To analyze and classify UI design oversights, it is
necessary to validate the user interface of web-applications
for BPMS “Fireproof Corporation” company using the
developed classification of UI design oversights. Based on
the results of validation, it is necessary to form a set of
typical UI design oversights with recommendations for
correction. Below is the result of the analysis and
classification of design oversights based on the experience
of developing web-applications.

A. UI oversight: data presentation hierarchy
Figure 2 shows an incorrect option for displaying detailed

information about an application - it is not possible to view
the “history” of an application, its parent and child
applications. Figure 3 shows a revised version of the dialog
box with the ability to view the “history” of the order.

Oversight classifications:

• Type: informativeness;

• Impact: difficulty in work;

• Oversight: lack of hierarchy of data presentation;

• Development stage: development project from a
business analyst;

• Solution: automatic disclosure of the "history" of the
application and the ability to hide the "history".

Figure 2: Incorrect design of the dialog box for viewing

detailed information about the application

Figure 3: Corrected design of the dialog box for viewing

detailed information about the application

B. UI oversight: no graphical editing when interacting with
the calendar-scheduler

Figure 4 on the left shows an incorrect design option for a
calendar-scheduler from a business analyst document - there
is no data on the time and duration of service (1), the
presence of shifts (2), the list of unassigned requests (3),
there is no possibility of assigning and editing via drag and
drop (4). It is also an oversight to move an order across the
scrolling screen and display narrow application elements
with the impossibility of manipulation. Figure 4 on the right
shows a revised version of the calendar-scheduler, which
contains a list of unallocated applications, the possibility of
assignment by moving the application element for a certain
time and “stretching” the application to the required
duration using the drag and drop mechanism. The items
being moved are close to the target area of movement, the
size of the ticket item is large enough for interaction.

Oversight classifications:

• Type: informativeness, performance;

• Frequency of occurrence: specific development
(BPMS);

• Impact: difficulty in work;

• Oversight: lack of data on the time and duration of
service (1), the presence of shifts (2), the list of
unassigned requests (3), assignment and editing via
drag and drop (4);

• Development stage: development project from a
business analyst;

• Solution: list of unallocated applications, destination
(time, duration) - drag and drop.

Figure 4: Interaction with the calendar-scheduler

C. UI oversight: screen space efficiency
Figure 5 in the background shows an incorrect design for

the object panel from a business analyst document. An
oversight is the display of the panel in a tabular form with a
limited set of visible data. Figure 5 in the foreground shows
a revised version of the object panel - all the necessary data
is displayed in one window without a “scroll”, filters are
implemented by the main business entities related to the
object (orders, contracts, contractors, technicians).

Oversight classifications:

• Type: informativeness (1), navigation (2), search (3);

• Impact: difficulty in work;

• Oversight: lack of hierarchy of data presentation, a
list of objects in a short form is not needed;

Nikolai Gervas, et. al. ESS (Vol 8. No 1. 2021) (pp.16-21)

~ 21 ~

• Development stage: development project from a
business analyst;

• Solution: implementation of a search (1), a filter of
applications (3), displaying the main characteristics of
the entity in question in a row, instead of a table
display.

Figure 5: Interaction with the object control panel

D. UI oversight: no preview of bulk changes
Figure 6 shows the accounting panel, with the block

responsible for the billing process highlighted. This process
is a massive change and cannot be incorrect. It is necessary
to have a mechanism to switch between preliminary and
final billing with an appropriate progress report.

Oversight classifications:

• Type: error protection;

• Impact: difficulty in work, subsequent errors;

• Oversight: the final execution of irreversible changes
without the ability to preview;

• Development stage: development project from a
business analyst, implementation;

• Solution: before performing an operation with a mass
data change, the user must receive a corresponding
report, on the basis of which he confirms the changes.

Figure 6: Billing process

VI. RESULTS AND CONCLUSION
The developed classification is not a full-fledged

methodology that allows to unambiguously correct errors in
architecture, design at the level of system and business
analytics. But when assessing the quality of the user
interface, the methodology is not needed as a tool. The
validation of the application interface is performed in
accordance with the selected aspects and the typical design
oversights corresponding to the aspects. The article
discusses several typical design oversights based on
experience in developing web applications. For a wider use
of the classification, it is necessary to replenish the set of
typical UI design mistakes.

REFERENCES
[1] E.L.Romanov, “Software engineering”: study guide /

E.L.Romanov. - Novosibirsk : NSTU publishing, 2017. - 407
p. - (NSTU textbooks). - ISBN 978-5-7782-3455-0.

[2] E.L.Romanov, “Client-server application framework based on
an object-oriented network model” / E.L.Romanov,
G.V.Troshina, S.A.Menzhulin // IOP Conference Series:
Materials Science and Engineering. - 2020. - Vol. 919, № 5 :
Advances in Material Science and Technology : intern. sci.
conf. CAMSTech-2020, Krasnoyarsk. - Art. 052014 (9 p.) -
DOI: 10.1088/1757-899X/919/5/052014.

[3] E.L.Romanov, “Software engineering. Beyond the intuitive
interface”. Accessed: April 19. 2021. Available online at
https://dispace.edu.nstu.ru/didesk/course/show/5164/3

[4] E.L.Romanov, “Software engineering. Unified Process -
Work Tool or Unattainable Ideal”. Accessed: May 3. 2021.
Available online at
https://dispace.edu.nstu.ru/didesk/course/show/5164/3

[5] N.V.Gervas, “Analysis of user interface design methods”
[Electronic resource] / N.V.Gervas ; [sci. ed. E.L.Romanov] //
International symposium on computer science, computer
engineering and educational technologies (ISCSET-2020),
Mongolia, Ulaanbaatar, 21–23 Oct. 2020. – Chemnitz :
TUDpress, 2020. – P. 57-60. – (IBS Scientific Workshop
Proceedings ; bd.10). - Mode of access:
http://www.mier.mn/iscest/Proceedings.html. - Title from
screen - ISBN 978-3-95908-223-5.

[6] V.V.Golovach, “User interface design”, 2000, vol.1.2 pp. 89-
104.

[7] S.Krug, “Don't make me think. Web usability and common
sense”, Eksmo, 2014, pp.45-67.

[8] T.P.Brusentsova, “User interface design”, manual for students
of specialty 1-47 01 02 "Design of electronic and web
publications", 2019, pp. 103 - ISBN 978-985-530-799-1.

[9] E.Volchenkov, “User interface standartization”. Accessed:
May 9. 2021. Available online at
https://www.osp.ru/os/2002/04/181312

[10] A.Anatolyev, “Design of human-machine interfaces”.
Accessed: June 2. 2021. Available online at
http://www.4stud.info/user-interfaces/

[11] Qubstudio, Design Agency, “How to Design Products with
Goal-Centered Design”. Accessed: June 4. 2021. Available
online at https://qubstudio.com/blog/how-to-design-useful-
products-with-goal-centered-design/

[12] E.Norbert, J.Tonndorf-Martini, A.Heller, L.Gaitzsch,
U.Tudevdagva, W.Hardt. "Adaptive learning system in
automotive software engineering." In 2019 International
Conference on Software, Telecommunications and Computer
Networks (SoftCOM), pp. 1-5. IEEE, 2019.

[13] U.Tudevdagva, “Structure-oriented evaluation: An Evaluation
Approach for Complex Processes and Systems”. SPRINGER,
2020.

https://dispace.edu.nstu.ru/didesk/course/show/5164/3
https://dispace.edu.nstu.ru/didesk/course/show/5164/3
https://www.osp.ru/os/2002/04/181312
http://www.4stud.info/user-interfaces/
https://qubstudio.com/blog/how-to-design-useful-products-with-goal-centered-design/
https://qubstudio.com/blog/how-to-design-useful-products-with-goal-centered-design/

	I. Introduction
	II. The role of UI in the architecture of client-server applications
	III. Analysis of UI design aspects
	A. Performance
	B. Human errors
	C. Memorization and screen space allocation
	D. Subjective perception

	IV. Classification of UI design oversights
	V. Analysis and classification of UI design oversights
	A. UI oversight: data presentation hierarchy
	B. UI oversight: no graphical editing when interacting with the calendar-scheduler
	C. UI oversight: screen space efficiency
	D. UI oversight: no preview of bulk changes

	VI. Results and conclusion
	References

