
Embedded Self Organizing Systems (Vol 7. No 2. 2020) (pp. 8-12)

~ 8 ~

Issue Topic: “Towards Robust Situation Awareness in Autonomous Vehicles“

Towards Cloud-supported

Automotive Software Development and Test

René Bergelt

University of Technology Chemnitz

Professorship of Computer Engineering

E-mail: rene.bergelt@informatik.tu-chemnitz.de

Norbert Englisch

University of Technology Chemnitz

Professorship of Computer Engineering

E-mail: norbert.englisch@informatik.tu-chemnitz.de

Abstract1—The development of automotive software has been

an evolving process for the last decades. As a result, the paradigm

of software development which is independent of the target

hardware platform has been adopted in almost all parts of the

automotive industry. Deploying software to a hardware platform

is now controlled by an enormous parameter set stored in a

mapping configuration. This led to the creation of numerous

vendor-specific tools for electronic control unit (ECU)

development. While this approach simplifies and supports the re-

usability of vehicle functions it also increases the complexity as

well as the difficulty for integration tests and error localization. In

this paper, we present a conceptual platform which allows to

establish references between different development and test phase

items in a developer-friendly way. It revolves around two self-

developed tools supported by an extensive AUTOSAR knowledge

base. The system creates inter-connectivity so that it becomes

easier to locate the actual origin of a misbehavior or to find a test

error manifestation in the actual end system for developers and

testers alike.

Keywords— automotive, software development, software test,

cloud storage

I. INTRODUCTION

Automotive software development is an ever changing and

evolving process. As a result, nowadays vehicle functionalities

are developed based on the V-model, but in a hardware and

communication technology independent way [1].

Consequently, a configuration which consists of large

parameter sets defines the necessary constraints to deploy the

functionality to an actual target hardware platform. This

methodology resulted in a large number of diverse tools and a

fragmented development environment for electronic control

units (ECUs). In Europe, the de facto standard for platform-

independent automotive software development is AUTOSAR

[2], which in itself is a rather complex architecture and

platform. By adhering to this standard, the development of

reusable vehicle functions can be greatly improved both with

1 Copyright © 2020 by ESS Journal

regard to time and effort. However, this flexibility comes with

a cost, namely a much higher difficulty for testing as well as

major hurdles for error localization in the actual end system.

Furthermore, the rising number of ECUs and functionalities per

vehicle results in an increase of the number of communication

messages as well.

When developing complex systems, it is vital that both

functional and non-functional errors and their manifestation on

the actual target platform can be found as early as possible in

the development process or are prevented in the first place. This

also holds true for configuration errors [3]. Therefore, there is

a strong need to resolve behavioral relationships between the

functionality and the required communication data of a single

ECU under test as well as a large set of integrated ECUs in pre-

series vehicles to allow efficient testing and validation at any

stage of the development process.

II. RELATED WORK

The usage of cloud-based platforms in the Automotive industry

has seen a rising trend in the last years. In general, there are

three different areas where they are applied: market analysis,

cloud-based real-time driving services and product

development. While the first is mainly a business-related topic

and as such not in the scope of this paper, the last two are in fact

technological challenges. The research field of autonomous

driving has led to numerous approaches and use cases where

access to cloud platforms plays a central role in the customer’s

car [4], [5]. Moreover, it has been advised that big data and thus

cloud-based computing can also be applied as early as during

the development and test phases of automotive software [6]. A

number of commercial solutions has been devised in this

direction such as Elektrobit Assist Test Lab2. Mostly, such tools

focus on automating test recording and evaluation through a

cloud-computing platform. Unfortunately, no publicly

available tool is able to guide developers between code base and

2 https://www.elektrobit.com/products/automated-driving/eb-

assist/test-lab/

Bergelt, et. al. ESS (Vol 7. No 2. 2020) (pp. 8-12)

~ 9 ~

test assessment through sophisticated cross-references. This

means, that much effort has to be put into finding either the

actual location of an implementation problem which led to an

error in the actual end system or vice versa. Additionally, static

testing and validation results are not taken into account either.

Furthermore, much of the complexity of testing AUTOSAR-

compliant software stems from the fact that many parameters,

which would have been present directly in code in the past, are

now buried in a large number of configuration files - in

standard-compliant as well as vendor-specific file formats.

Thus, locating the actual origin of an error is a major problem.

This is further complicated by tool-specific differences as the

AUTOSAR standard explicitly encourages competition

between vendors with regards to the actual implementation.

Consequently, the research challenge considered in this paper

is to connect different development and test phases in the

automotive software development cycle by extended tooling

support. The main objective is to make it easier for developers

and testers to find problematic coding locations and test failures

or misbehavior caused by such code through cross-referencing

objects and test cases between different systems which are

usually used at different project stages.

III. CLOUD-SUPPORTED AUTOMOTIVE SOFTWARE TEST

This paper presents an approach to cloud-supported automotive
software test by coalescing the already existing, separate

systems ASTAS (application specific test of AUTOSAR
Systems) and TUC DriveCloud into a new, combined platform
which supports developers with automotive software
development and test at all stages of a project. The realization
is backed by an extensive AUTOSAR Knowledge Base. It helps
developers in testing complex AUTOSAR-driven software
architectures by cross-referencing source code origins, static and
dynamic test case failures or warnings and their manifestation in
recorded test drive data. Consequently, the platform attaches to
all phases of V-model based AUTOSAR-compliant
development. This encompasses system specification,
functional testing as well as system integration testing. The
targeted solution is shown in Figure 1. First and foremost, we
see the developer at the center of the process where they are able
to step into different stages of development and testing easily. It
can be seen that the output of each step serves as input to the
next step. The developer may assume any of the following roles
during a project step and is guided in a comprehensible way by
our platform:

 Software Engineer Implementation of AUTOSAR
compliant ECU software

 Test Engineer Setting up test requirements based on the
specification & test evaluation

Data Analyst Identifying unwanted behavior (i.e. error

manifestations) in data traces and finding the

corresponding origins in code

A major advantage is that our system is able to produce and

visualize results in different levels of detail, so that users can

focus on the information they need and which suits their

knowledge level of the target system.

The next section will give an overview of the actual

conceptional combination of the existing tools and the

requirements which have to be fulfilled.

IV. CONCEPTUAL CHALLENGES

This section lists the main research challenge to face during

realization and all subsequent challenges which have to be

solved with regard to the integration of the final platform. The

targeted architecture of the platform is shown in Figure 2. The

car for the test drive has a data recorder which is connected to

a bus system in the car, for example by OBD. A smartphone is

connected to this data recorder by a wireless connection and

enables the driver to label special events during the test drive.

The data recorder has a wireless connection to the network

Figure 2 Architectural overview of the proposed platform

Figure 1 Development process with ASTAS and TUC DriveCloud

connected

Bergelt, et. al. ESS (Vol 7. No 2. 2020) (pp. 8-12)

~ 10 ~

infrastructure which provides access to TUC DriveCloud as

well as the AUTOSAR Knowledge Base and the database for

ASTAS reports. ASTAS itself is executed on a Development

PC where the AUTOSAR toolchain for the development of

AUTOSAR ECUs is installed. It has to be ensured that

hardware and software for the recording of data in the test drive

car are able to record all data from the start to the end of a test

drive. The computing platform, memory and processor have to

be appropriately selected to be able to process the data. Because

of different data sources with different sample rates, the

recording needs to fuse the data within a common time stamp.

The recording of a test drive should not have any influence on

the behavior of the test object. The recorded data is transmitted

to the TUC DriveCloud in an online or offline manner. When

in online mode data is submitted during the test drive and can

be viewed as soon as it has been uploaded. Offline transmission

stores the data in local memory and submits it after end of a test

drive and when connectivity to the TUC DriveCloud is given,

e.g. when the test drive car enters a garage with wireless LAN

access. The following sections provide a more detailed look

into the different aspects of the platform.

A. The ASTAS platform

The testing tool ASTAS supports AUTOSAR specific static

analysis for the three main horizontal architecture layers –

application, Runtime Environment (RTE) and basic software.

Moreover, it generates application specific test cases for basic

software modules or clusters and RTE functions. The static

analysis and dynamic tests are executed during a test run, which

generates test reports, as shown in Figure 3. Before the test run,

the test preparation phase processes the source code files as well

as the configuration files of the given AUTOSAR project. Each

test run can be defined by a set of different test modules,

realizing a specific test aspect [7]. Each test module defines its

compliance to a set of AUTOSAR versions. By that, ASTAS

test reports represent results of static analysis [8] and dynamic

test from AUTOSAR components [9]. ASTAS was mainly

developed to improve the quality of software projects in the

automotive domain. By that, the ASTAS test report can contain:

Violation of AUTOSAR code compliance given by

standard or extra guidelines (static test)

Misconfigured architecture on any architectural layer

(static test)

Incorrect functionality of AUTOSAR software modules in

the basic software or RTE (dynamic test)

Timing information of AUTOSAR software modules [9]

for application specific values on the target platform

(dynamic test)

 To be able to map these results to data from test drives, these

test results should have some relation to data which can be

measured in a test drive. This leads to a relation of an ASTAS

test result to bus messages or I/O data. This relation can be

evaluated by the data stored in the AUTOSAR configuration of

a project. For that, official file formats as defined by the

AUTOSAR consortium have to be analyzed, as well as product

specific configuration files.

For each change in an AUTOSAR project which is flashed to

the car used in the test drive, a new ASTAS test report needs to

be generated. This enables to focus on the correct bus messages

or I/O information for the test drive.

To be able to localize problems in the huge number of

parameters in an AUTOSAR project, each single test result

should contain a link to a software module within the

AUTOSAR architecture. This can be determined during the test

case generation which accesses the AUTOSAR Knowledge

Base [10]. By that, a set of sensor data from a test drive can be

associated to a set of AUTOSAR software modules.

The AUTOSAR Knowledge Base is the major database for the

test generation and test execution in ASTAS. It contains

information for each AUTOSAR version combined with the

tool environment and the hardware platform. This enables data

handling independent of the tool provider. Internally, the

Knowledge Base handles a set of items. For example, such an

item can represent a basic software module, a function of a basic

software module or a layer of the basic software. Additionally,

each item can represent a test object for the dynamic test or

static analysis in ASTAS.

Currently, the ASTAS platform controls three different

AUTOSAR versions and various tools. However, in our

laboratory the most used version up to now is the toolchain of

AUTOSAR version 3.2. As shown in Figure 4 this toolchain

contains the tool dSpace System Desk for development of an

AUTOSAR application. This application can be tested in the

environment of dSpace VEOS. After that, tresos AutoCore,

which is a product from Elektrobit can be configured by tresos

Studio. Additionally, tresos generates the RTE, the middleware

between application and basic software. The source code of our

AUTOSAR projects is compiled by the Diab compiler of

WindRiver and flashed to our hardware platform STM SPC560.

Figure 3 Abstract Workflow of ASTAS

Figure 4 Integrated AUTOSAR Toolchain

Bergelt, et. al. ESS (Vol 7. No 2. 2020) (pp. 8-12)

~ 11 ~

B. TUC DriveCloud

TUC DriveCloud is an online, big data storage platform for

automotive test drive data. Basically, it serves as a structured

data container which can only be assessed through a single,

standardized API. This ensures data consistency and integrity

across all connected devices. Additionally, it allows to enforce

security features at a single gateway. This basic structure is

shown in Figure 5. One main feature of TUC DriveCloud is that

metadata storage is completely separated from the storage of

the actual sensor measurement recordings (persistence layer).

Consequently, the platform is easily scalable in choosing the

right storage technology based on the sensor data format. For

example, basic single value measurements can be stored in a

traditional database system for fast access, but complex sensor

values such as image sequences, point clouds or audio data can

be stored in more appropriate formats, such as HDF5. However,

this is completely transparent for users or services due to the

standardized API. Sensor data is always uploaded and retrieved

in the same way, independent of its actual storage technology

and location. In order for meaningful references to be created

between different systems TUC DriveCloud stores a large set

of metadata associated with test drives and vehicles, where each

dataset is associated with a globally unique identifier (UUID,

Universally Unique Identifier). This enables a high level of

non-conflicting parallel processing and distributed storage as

the probability for identifier collisions is neglectable [11]. Thus,

different datasets can be created by concurrent systems at the

same time and later be merged easily. Furthermore, stable

cross-references with ASTAS can be created based on these

unique identifiers. Currently, the main meta data entities stored

in TUC DriveCloud are:

Vehicle Definition of an object for which sensor data can be

recorded (e.g. a real car, a virtual car)

Sensor Definition of a measurement object which delivers

timestamped data values as part of a vehicle

Stream Metadata for an actual, recorded sequence of sensor

values

Test Drive Information about a test drive, such as start and

end time, recorded streams

Label Keywords which can be added to a test drive

(manually or automatically)

In general, the TUC DriveCloud provides functionality to map

test drive data to vehicles, which are or contain the test objects

[12]. Due to different development levels and debugging loops,

multiple sets of functionalities are definable for a vehicle.

Furthermore, the automatic detection of critical or erroneous

situations based on the input data from ASTAS is a vital feature

to support developers and testers.

C. Mapping of Test Drive and Test Reports

A huge improvement potential for debugging and optimization

is held by the connection of results from ASTAS test reports

and test drive reports from the TUC DriveCloud through cross-

references. As shown in Figure 6 an ASTAS Test Report

contains a set of Test Results and each of these results has a

reference to the Knowledge Base. For example, a Test Result

can indicate a misconfiguration of a basic software module or a

timing problem of the whole communication stack. In contrast

to this, a Test Drive Report from the TUC DriveCloud contains

a set of bus messages and sensor values. Usually, the main

challenge and most time-consuming activity during the

evaluation of data from a test drive is the localization of the

implementation problem and deciding on the necessary changes

in configuration or programming. The time needed for the

localization can be greatly improved by using cross-references.

For communication processes based on the AUTOSAR

configuration, the mapping can be realized as analyzed by

ASTAS. As a result, each test object from ASTAS is associated

with concrete bus signals inside the configuration. In the case

of a failed test, this bus signal can be linked to the bus messages

in the Test Drive Report by referring to the Knowledge Base.

Furthermore, a cloud-supported test platform, such as realized

by the connection of ASTAS and TUC DriveCloud, is capable

to improve the efficiency of automotive development cycles in

many more aspects. For example, TUC DriveCloud can

automatically identify signals which are most likely relevant to

the test case, by observing bus traffic and sensor data

fluctuation over time. If ASTAS detects fundamental problems

in a project under test, TUC DriveCloud can inform test

engineers and drivers that the test drive should probably be

postponed. Additionally, when misbehaviors or errors are

detected during a test drive, a corresponding test module for

ASTAS can be generated through TUC DriveCloud. The

Figure 5 Architectural overview of TUC DriveCloud

Figure 6 Mapping between a set of test results and events from

test drive

Bergelt, et. al. ESS (Vol 7. No 2. 2020) (pp. 8-12)

~ 12 ~

module will check for the existence of exactly this fault in

future versions of the software project. This poses an effective

way at supporting automatic regression testing, once the actual

error has been fixed in the future.

D. Smartphone integration

As an optional setup, a smartphone can be integrated with the

data recording system in the car. During test drives, the driver

should be able to label a situation, i.e. define keywords which

briefly describe the driving situation. Doing this through a

touchscreen or similar interface which needs to be controlled by

the driver’s hands either requires the test driver to stop the car

beforehand or imposes an additional safety risk. Due to this we

suggest a speech-controlled solution by using the microphone

of a smartphone which allows the driver to give instructions by

voice. The smartphone app can then be used to start and stop

the recording of a test drive and to add labels to the recording.

Additionally, it can visualize important data in an abstract way.

By that, the driver can be informed whether the recording works

or if there are problems. As visible in Figure 7, we establish a

Bluetooth connection between our Data Recorder and the

smartphone. Consequently, the Data Recording Unit now needs

to fuse the oral information from the driver with the data

recorded from the bus system of the car.

V. CONCLUSION

When developing algorithms for autonomous driving and as

such situation awareness, it is vital that developers and testers

can quickly cross-reference actions and behaviors between

different stages of the development process. Accordingly, this

paper has presented the major challenges for a cloud-based

system which enables just this by storing data from

development, test and test drives in a structured way. We have

introduced our technical realization, consisting of a testing

environment for AUTOSAR systems and a cloud-based

platform for storing and referencing test drive data.

The system facilitates common debugging scenarios by

providing a way to move between architectural definition,

implementation and manifestation in the integrated system on

one platform. Additionally, it helps with the validation of

functions as well as the reproducibility of test cases since the

relationship between code, found errors and corresponding test

data is stored in one place. This allows developers and testers

to concentrate on the task at hand and relieves them of most of

the management overhead which is usually needed to keep an

overview of test protocols, test data and tested code version.

This holds the potential of increased productivity and an

improved communication between testers and developers alike.

REFERENCES

[1] S. Mathur and S. Malik, "Advancements in the V-

Model," International Journal of Computer

Applications, no. 12, 2010.

[2] AUTOSAR GbR, "AUTOSAR," [Online]. Available:

www.autosar.org. [Accessed 20 07 2020].

[3] T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin and S.

Pasupathy, "Early Detection of Configuration Errors to

Reduce Failure Damage," in Proceedings of the 12th

USENIX Conference on Operating Systems Design and

Implementation, 2016.

[4] Z. Wang, X. Liao, X. Zhao, K. Han, P. Tiwari, M. J.

Barth and G. Wu, "A Digital Twin Paradigm: Vehicle-

to-Cloud Based Advanced Driver Assistance Systems,"

in IEEE 91st Vehicular Technology Conference,

Antwerp, Belgium, 2020.

[5] L. Gu, D. Zeng and S. Guo, "Vehicular cloud

computing: A survey," in IEEE Globecom Workshops,

Atlanta, USA, 2013.

[6] M. Johanson, S. Belenki, J. Jalminger, M. Fant and M.

Gjertz, "Big Automotive Data: Leveraging large

volumes of data for knowledge-driven product

development," in IEEE International Conference on Big

Data, Washington, DC, USA, 2014.

[7] D. Markert, "Entwicklung einer generischen

Testumgebung für Automotive Software Systems,"

2017.

[8] R. Mittag, "Entwicklung Statischer Analysen für

AUTOSAR Steuergerätesoftware," 2017.

[9] N. Englisch, F. Hähnchen, F. Ullmann, A. Masrur and

W. Hardt, "Application-Driven Evaluation of

AUTOSAR Basic Software on Modern ECUs," in

Proceedings of the 13th IEEE/IFIP International

Conference on Embedded and Ubiquitous Computing

(EUC), 2015.

[10] N. Englisch, R. Mittag, F. Hähnchen, O. Khan, A.

Masrur and W. Hardt, "Efficient Static Testing of

AUTOSAR Software supported by an automatically

created Knowledge Base," in Proceedings of the 7th

Conference on Simulation and Testing for Vehicle

Technology, 2016.

[11] M. Mealling and R. Salz, "A Universally Unique

IDentifier (UUID) URN Namespace," The Internet

Society, 2005.

[12] I. Mühlmann, "Generische Anbindung von

Testfahrtdatenquellen an ein Automotive-Cloud-

System," 2019.

Figure 7 Smartphone Integration

