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Abstract1— Smart components are increasingly of interest in    

research and industry due to their wide range of applications. An 

example of this is a current project of the Federal Excellence 

Cluster MERGE, which is concerned with the development of a 

center console that serves as a control element in an automobile 

and is executing actions by touching it. In order to facilitate this 

functionality, it is necessary to evaluate the electrical signals 

generated by piezoceramic sensors regarding to the localization 

of the impact. In this respect, various signal features are 

investigated for their suitability using a support vector machine. 

The results show that an impact localization can be realized by 

the energetic consideration of the signals but has limitations in 

the practical usability. 

Keywords—impact localization, piezoceramic sensors, centre 

console, support vector machine, MERGE. 

I.  INTRODUCTION  

The development of multifunctional lightweight 

components is becoming increasingly important, especially in 

the automotive industry. Through the low weight of the 

components reduces fuel consumption and emissions, while 

embedded systems are used to implement functions. 

A current research project of the Federal Cluster of 

Excellence MERGE is the development of an intelligent input 

system in form of a center console for an automobile, which is 

shown in figure 1 [1]. The operation of the system is similar to 

that of a touch display, with the touch of a finger on the 

                                                           
1 Copyright © 2019 by ESS Journal 

surface, which activates application-specific behaviour, such as 

opening windows or the trunk of a car [1]. For the 

implementation a signal processing system is required, which 

is able to determine the point of contact between finger and 

user interface and guarantees energy efficiency and real-time 

capability as an embedded system. 

 
Figure 1: center console with piezoceramic sensors. 

With the help of four piezoceramic sensors located on the 

center console, the mechanical pressure acting on the surface of 

the center console is converted into electrical analog signals 

[2]. These signals are digitized and then analyzed to find signal 

features that, in combination with a support-vector-machine, 

enable repeatable and intensity independent impact 

localization. 

The paper is structured as follows. The next section 

considers the related work. That is followed by a short chapter 

on data acquisition. Afterwards chapter IV describes signal 

analysis and feature extraction. Finally, in section V the 
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support vector machine is taught the signal features and the 

results are evaluated. 

II. RELATED WORK  

 In this chapter different possibilities are considered which 

can be used for impact localization. Thereby the number and 

arrangement of the piezoceramic sensors has a decisive 

influence because they enable longitudinal and transversal 

impact localization. For this reason, three of the four sensors 

are arranged centrally in a row. The fourth sensor is located 

decentralized, to the side of the sensor row. This is a fact 

considered for all subsequent research.  

 The most common method to determine the position of 

impacts is the use of machine learning algorithms and neural 

networks [3]. This has the advantage that the concrete structure 

of the object does not have to be known and if there are 

changes in the structure, a new learning of the algorithm is 

sufficient [1]. Another option is to use a model of the object to 

calculate the potential position of the impact based on various 

input patterns [4]. Regardless of which of the methods is used, 

signal features are required as inputs for the algorithms that 

provide information about the impact. 

 In a previous work, Schmidt et al. [2] use time differences 

between the single sensors, which were determined by 

thresholding, and evaluates the kernels of a support vector 

machine. With this feature, accuracies of up to 84 % are 

achieved to correctly detect the impact, however the intensity 

dependence is impractical for use as a center console [2]. 

Therefore, signal features that guarantee intensity 

independence are considered in the following. 

 The phase shift is a physical quantity that indicates the 

angle by which two waves are shifted in relation to each other 

[5]. When the impact occurs, a wave spreads in a circle over 

the surface of the centre console. The wave reaches the sensors 

at different times, which in turn means that the sensors measure 

different values at the same time. The resulting signals are 

similar and shifted to each other, since damping and possible 

interference occur under real conditions. The phase shift 

between the signals changes depending on the distance 

between the impact location and the sensors. This dependency 

allows conclusions to be drawn about the position of the impact 

and this feature to be used for localization. 

Another feature is the cross correlation, which describes the 

similarity of two different signals [6]. Analogous to the phase 

shift, the wave created by the impact results in similar signals. 

Based on the similarity, the cross correlation function can be 

used to calculate the temporal shift of the signals, which 

corresponds to the propagation time between the two sensors 

[6]. Depending on the position of the sensors, the propagation 

time between them changes depending on the impact location. 

This context allows the cross correlation to be used for impact 

localization. 

 Finally, the possibility of detecting and locating impacts 

through the investigation of short-term energy is considered. It 

is exploited that the energy added to the system by the impact 

is transported from the resulting wave to the sensors. The 

amplitude of the generated signal reflects this energy. In 

general, the more energy added to the system, the greater the 

amplitude of the signal. From the signals, the mean time and 

the mean frequency can be calculated, which provide a 

measure of the time or frequency at which the signal energy is 

concentrated [7]. These differ for the four sensors, which is 

why the impact location can be deduced from the tuples of the 

mean times and frequencies. 

III. DATA ACQUISITION 

 To record the measured values, it must be ensured that the 

data is recorded at known points in time and that the time 

dependency of the sensors on each other is therefore given. For 

this reason, the Digilent Zybo Board is used for sampling, 

which has a Zynq-7000 System-on-Chip architecture that 

combines an ARM processor with an FPGA. This has the 

advantage that the processor can compute complex algorithms 

with low resource utilization, while the FPGA requires more 

resources as the computations become more complex but 

delivers a reliable result in a given time. The trade off between 

the performance of the hardware implementation and the 

flexibility of the software implementation makes it possible to 

meet the requirements of the signal processing system. The 

data transfer between FPGA and processor is done via an AXI 

interface, which provides fast and flexible communication 

methods with a high data throughput. This system also offers a 

good basis for the final implementation due to the guaranteed 

energy efficiency and the assurance of real-time capability. 

Furthermore, the same measurement method can be used to 

ensure reproducibility in the final implementation. 

 The evaluation data is generated by tapping the center 

console surface with the finger. In order to be able to assign the 

impacts correctly, the surface of the centre console was divided 

into 20 fields, whereby for the measured value recordings the 

centre of the respective field was always typed. When the 

finger hits the center console, a wave spreads over it, causing it 

to vibrate. As soon as the wave reaches the piezoceramic 

sensors, the piezo crystals undergo a structural change and thus 

generate a voltage [8]. The resulting analog signal is then 

converted into a digital signal by the integrated analog-to-

digital converter from XILINX. This so-called XADC is a 

multichannel analog-to-digital converter that samples the 

analog signals of the four sensors with a sample rate of 500 

ksps. This results in the size of the buffer in which the values 

are temporarily stored after digitization. The buffer is realized 

as AXI Data FIFO, that summarizes the values in blocks, 

whereby the size of the blocks is configurable. Finally, the 

blocks are written to the on-chip memory, which the processor 

accesses after the measurement has been completed, and a CSV 

file is created from the digital values stored there. The data of 

the CSV file are processed further with the help of Matlab and 

form the basis for the analysis of the signal features to 

determine the impact position. 
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IV. SIGNAL ANALYSIS 

 The impact localization is achieved by using a support 

vector machine, which is trained to the signal features. For this 

reason, it is important that the features form clusters, as these 

are used to determine the impact position. A high repeat 

accuracy is essential for reliable localization. In order to obtain 

a sufficiently large database for the analysis, 30 measured 

values were recorded for each field. When recording the 

measured values, an attempt was made to hit the same spot in 

the centres of the fields as far as possible, so that the area in 

which the impacts took place is as small as possible. 

Nevertheless, there are variances in the impact location and the 

intensity of the impact. The signals generated in this way 

correspond to the intended purpose and form a solid basis for 

the analysis of the signal features. 

A. phase difference 

First, the phase difference is considered, for the calculation 

of which the phases of two signals are subtracted from each 

other, whereby the phase of the signal from sensor 1 always 

serves as minuend. Since the phases of the signals are 

equivalent in the time domain and frequency domain, they are 

analyzed in the frequency domain, due to the better 

representation possibility. The Fast Fourier Transform is used 

to transfer signals from the time domain to the frequency 

domain. Through the complex representation, it is now possible 

to determine the phase as the angle between the imaginary part 

and the real part. However, the Fast Fourier Transform 

assumes that the signal can be continued periodically. Since 

this is not the case, all signals must first be weighted with a 

window function. 

The expectation that the phase within a signal changes in 

time in the same way, resulting in a constant phase difference 

between two signals each, was not fulfilled. Instead, the phase 

difference change within the signal path can be described by a 

global/local minimum directly followed by a global/local 

maximum, as shown in figure 2. Due to the changes in the 

phase differences, it is no longer possible to assign the impact 

location unambiguously, which means that impact localization 

cannot be realized with this feature. However, the phase shift 

pattern can be used to limit the signals to the portions 

containing the information regarding the impact, since the 

phase shift pattern always occurs when the impact is detectable 

in the signal. To limit the signal to the meaningful windows, a 

trigger is calculated. For this purpose, the mean value of the 

gradients of the phase differences per window is calculated in 

order to be able to determine the gradient again. The point at 

which the minimum occurs corresponds to the index value of 

the window with the most information about the impact. Even 

if the phase difference is not suitable for impact localization, it 

can be used in the analysis of the following signal features by 

limiting the number of windows to be viewed with the trigger 

found. 

B. cross-correlation 

The cross-correlation is the next signal feature to be 

investigated that is used to determine the point in time at 

which two signals are most similar. Analogous to the phase 

difference, in this case the signal of sensor 1 is also selected as 

reference point and the correlation between this and the other 

three signals is calculated. For the calculations, the functions 

”xcorr” and ”normxcorr2” provided in Matlab were used, 

which return the correlation values and normalized correlation 

values as results. The positions of the maxima in the 

correlation functions correspond to the time at which the 

signals are most similar. When looking at them, it is noticeable 

that the maxima are all at zero time. Furthermore, the use of 

other signals instead of the signal of sensor 1 as a reference 

point has no influence on the results of the cross correlation. 

Since all correlation functions assume the largest value at time 

zero, a formation of clusters is not possible and the impact 

localization cannot be realized by calculating the temporal 

shift of the signals to each other. 

C. energy density 

Finally, the energetic investigation of the signals takes 

place. The signal energy is reflected in the square of the 

absolute value of the amplitude and changes depending on the 

intensity of the impact. Since the goal is to find intensity 

independent features for the impact localization, 

standardizations for the energy calculations will be carried out 

in the following or the ratio of the results will be formed in 

order to guarantee intensity independence. 

First, the mean time is considered, which provides the 

point of time at which the signal energy is concentrated. The 

mean time is calculated using formula 1 for each signal from 

the centre console. 

 

 

 
Figure 2: phase difference of a single measurement. 

 

(1) 
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Basically, the four results obtained are sufficient for each 

experiment and for all fields to generate a data set for training 

the support vector machine and to test the mean time for its 

suitability for impact localisation. However, at this point the 

ratio of the mean times of the other three signals to signal 1 is 

formed in order to achieve better comparability.  

The next feature to be considered is the mean frequency, 

which is a measure of the frequency by which the signal 

energy is concentrated. The equation 2 is used for its 

calculation. 

 

For this purpose, the signals are windowed with a subsequent 

Fast Fourier Transform. Analogous to the mean time, the 

ratios of the mean frequencies are also formed here, which are 

used to train the support vector machine. Figure 3.a and 3.b, in 

which the resulting clusters for four fields of the center 

console are shown, illustrate once again that the mean time 

and the mean frequency are suitable features for training the 

support vector machine for impact localization. 

Finally, the ratios of the signal energies of the windows, 

which were determined with the help of the trigger over the 

phase differences, are analysed. The index windows represent 

the energy of the impact, which differs depending on the 

impact location between the signals of the four sensors. With 

the calculation of the ratios of the signal energies, an intensity-

independent consideration is made possible. As already 

described, the index windows for the calculations are 

determined via the phase shift trigger. The energy is then 

determined using these windows by adding up the square of 

the absolute value of the individual values. At the end the 

relations between the energies are calculated, whereby the 

energy from the index window of the signal of sensor 1 serves 

again as reference point. For the ratios of the signal energies of 

the index windows in the time domain, as well as in the 

frequency domain, cluster formations are recognizable, which 

were illustrated by four fields of the center console in figures 

4.a and 4.b. Therefore two further features have been found, 

which are suitable for training the support vector machine. 

V. RESULTS 

 In this chapter, the evaluation of the cluster forming signal 

features is performed using the support vector machine from 

the ”LIBSVM” [9] library to evaluate their accuracy in impact 

localization. First, the use of the signal features for different 

kernel types of the support vector machine is investigated. 

These are the polynomial kernel, the radial kernel and the 

sigmoid kernel. In addition, the ”LIBSVM” [9] library offers a 

scaling function that allows the training and test data to be 

scaled to any value range. In this case, scaling to the value 

range from -1 to 1 takes place. In order to be able to assess the 

influence of scaling, each signal characteristic is considered 

with and without scaling. The results of the calculations for the 

respective signal features of all tests for all fields of the centre 

console serve as test data for training the support vector 

machine. 

TABLE I 

RESULTS OF THE SUPPORT VECTOR MACHINE REGARDING 

DIFFERENT KERNELS 

Signal feature Scaling Accuracy 

(polynomial 

kernel) 

Accuracy 

(radial 

kernel) 

Accuracy 

(sigmoid 

kernel) 

Ratio of mean 

time 

+ 43.0 % 63.4 % 48.2 % 

- 25.0 % 29.6 % 19.9 % 

Ratio of the mean 

frequency 

+ 19.8 % 21.1 % 11.8 % 

- 27.2 % 35.4 % 9.7 % 

Ratio of the 
energy of the 

index windows in 

the time domain 

+ 61.4 % 65.8 % 61.6 % 

- 68.8 % 69.4 % 44.2 % 

Ratio of the 
spectral energy of 

the index 

windows 

+ 65.1 % 68.7 % 61.0 % 

- 70.2 % 72.4 % 46.1 % 

 

 The results obtained are shown in table 1. This shows that 

the sigmoid kernel is by far the worst performer and provides 

the lowest accuracy of all tested signal features. On the other 

hand, the generated accuracies of the polynomial kernel and the 

 
(a) ratios of the mean times        (b) ratios of the mean frequencies 

Figure 3: ratios of mean time and mean frequency for four 

fields of the center console. 

 

(2) 

 
(a) ratios of energies in the time         (b) ratios of energies in the  
      domain                   frequency domain 

 

Figure 4: ratios of energies for four fields of the center 

console. 
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radial kernel are approximately equal, whereby the radial 

kernel always has the higher accuracy of both. The scaling of 

the data results in a deterioration of 5 % to 10 % of the 

accuracy of all signal properties, except for the ratio of the 

mean time, for the polynomial kernel and the radial kernel. The 

sigmoid kernel benefits from the scaling of the values with a 

significant improvement in the accuracy of all signal features, 

but its generated accuracy is still much lower than that of the 

other two kernels. The best results with an accuracy of 

approximately 70 % are provided by the ratios of the energies 

of the index windows in the time domain and frequency 

domain. Followed by the mean time ratios using scaling and 

the radial kernel with an accuracy of 63 %. These three signal 

features generated distinguishable clusters with a low 

dispersion during their analysis and thus achieved the highest 

accuracies. For the calculation of the mean frequencies, it turns 

out that they are not suitable for impact localization with an 

accuracy of only 20 %. This can be explained by the strong 

overlap of the clusters, which means that when subdividing the 

data in the support vector machine, parts of the clusters were 

assigned to other classes. 

 In overall terms, the results are not satisfactory. Based on 

the intended use of the centre console as a control unit in an 

automobile, it must be regarded as a safety-critical system, 

which is why a probability of success of 70 % does not meet 

the requirements. In order to do justice to the use of the centre 

console, accuracies of 90 % and more are desirable. An 

improvement can be achieved by looking at a smaller number 

of fields on the center console. 

 The following investigation compares the use of the signal 

features of four fields and all fields of the center console. The 

four fields considered are the fields of the first row of the 

centre console. For the calculation, the support vector machine 

is used with the radial kernel, as this provides the best results 

and the calculated signal features of all experiments serve as 

training data and test data. The result is shown in table 2. 

TABLE II 

RESULTS OF THE SUPPORT VECTOR MACHINE REGARDING 

DIFFERENT FIELDS OF THE CENTER CONSOLE 

 
Signal feature Scaling Accuracy  

(4 fields) 

Accuracy  

(all fields) 

Ratio of mean time + 93.0 % 63.4 % 

- 72.4 % 29.6 % 

Ratio of the mean frequency + 64.3 % 21.1 % 

- 64.6 % 35.4 % 

Ratio of the energy of the 

index windows in the time 

domain 

+ 91.0 % 65.8 % 

- 88.3 % 69.4 % 

Ratio of the spectral energy 
of the index windows 

+ 91.0 % 68.7 % 

- 90.0 % 72.4 % 

 

According to the initial assertion, table 2 shows that the 

accuracy of the signal features is significantly higher for only 

four considered fields than for all fields. In addition, the ratios 

of the energies of the index windows, as well as the ratio of 

the mean time reach an accuracy of over 90 %. This shows, on 

the one hand, that the three signal properties are suitable for 

impact localization, but their accuracies strongly depend on 

the number of fields observed, and on the other hand, that 

transverse impact localization is possible because the four 

fields examined are horizontally in a row and the sensor row is 

perpendicular to these. In this case, even the scaling of these 

three signal features results in a slight improvement in 

accuracy. The research shows that impact localization is 

possible with the ratios of the energies of the index windows 

and the ratio of the mean time of the signals, but their practical 

use depends strongly on the number of fields used. 

VI. FUTURE WORK 

 The results of the research show that it is possible to 

localize the impacts for a small number of fields of the center 

console with a high probability by energetic observation of the 

signals. However, the accuracy decreases as more fields are 

included in the calculations. In this respect, in order to improve 

the results, impact localisation could be implemented in several 

stages. Therefore several fields of the center console are 

combined to a new, larger field. Then the impact is first 

assigned to a large field and then another calculation, which 

considers the subfields of the large field, is used to assign the 

impact to the original field. The advantage of this is that fewer 

clusters are used for the respective calculations, which means 

that there are less overlaps. However, this goes hand in hand 

with a trade off between usage and resource utilization, 

because depending on the number of levels at least two support 

vector machines have to be trained with regard to different data 

sets. 

 With an accuracy of 70 %, the energy ratios of the index 

windows already provide a good basis for impact localization. 

This accuracy was achieved using a support vector machine, 

which was trained on the data of 30 impacts per field of the 

center console. The size of the data set is decisive for the 

creation of the support vector machine classes to which the test 

data is assigned. Since the training data is a relatively small 

amount of data, the same research should be repeated with a 

larger data set to provide more accurate information about the 

detection rate. 

 With the listed results a basis for the impact localisation 

concerning the centre console is created, but there is also room 

for further investigations, which was clarified by the 

possibilities just described. 
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