
Embedded Self Organizing Systems (Vol 6. No 1. 2019) (pp. 9-17)

~ 9 ~

Issue Topic: “Hardware - Accelerators“

Comparison of acceleration methods of matrix

calculations in embedded systems

Johannes Götze

Technische Universität Chemnitz

Computer Engineering

johannes.goetze@s2015.tu-chemnitz.de

Rene Schmidt

Technische Universität Chemnitz

Computer Engineering

rene.schmidt@informatik.tu-chemnitz.de

Wolfram Hardt

Technische Universität Chemnitz

Computer Engineering

wolfram.hardt@informatik.tu-

chemnitz.de

Abstract1—In today's algorithms for sound localization

techniques, matrix calculations are ubiquitous. Therefore, this

work deals with the analysis of matrix calculations and their

possible realization on embedded systems. For this purpose,

common acceleration technologies such as processors, GPU

processing and acceleration with the help of FPGAs are

compared. The results show that a graphics chip is capable to

accelerate such a matrix vector multiplication compared to an

implementation on a processor. Therefore a runtime of an

implementation on an FPGA cannot be achieved by a GPU

Keywords—hardware acceleration, matrix calculations, Cuda,

OpenCL, embedded systems

I. INTRODUCTION

Matrices are often used in computer science, for example as

a storage structure for graphs or a matrix of coefficients for a

filter. In a variety of application scenarios, the calculation with

matrices is required. For example in computer graphics:

Matrices are used to perform coordinate transformations [1]. In

the field of optics, transfer matrices are used to analyse the

alteration of light rays by optical components [2].

If very large matrices are multiplied with each other, an

enormous computational power is required, because of the

complexity of O(N²) of such a multiplication. So it can come to

the fact that in a complex system, the matrix calculation

becomes a bottleneck and then this needs to be accelerated.

The trivial approach would be to use a more powerful

processor.

To apply this approach in embedded systems is not the best

way, because of the restriction of power consumption,

available space and weight of such a system. With an

increasing number of matrix calculations, the computing power

1 Copyright © 2019 by ESS Journal

of an embedded processor is often not sufficient. For this

reason, other hardware acceleration methods are required.

These acceleration methods can be specialized to the problem

and thus generate a higher data throughput.

Already for a long time quite popular and used as hardware

accelerator, FPGAs are predestined for such a field of

application. They are energy efficient and flexibly adaptable.

Another acceleration technology, not yet used quiet often, is to

program a graphics chip in the field of embedded systems.

Graphics cards are and were mainly used for graphics

applications. They are mostly used to display computer

generated images on the screen. But by developing

architectures and libraries, the graphics chip can also be used to

accelerate applications that are not specialized in graphical

operations. This makes them more flexible and relatively easy

to use by the programmer.

In fact that there are different acceleration methods and also

different number formats, in which the matrix elements can be,

it is the goal to find out which variant is used in which

application area on the best. The runtimes are to be examined

depending on the one hand on the number formats, but also the

problem size. So in which respect the running times in

comparison to the matrix size and number of calculations. In

comparison are different variants on a GPU, one FPGA

implementation and one variant on an embedded processor.

II. STATE OF THE ART

A. FPGAs as a hardware acceleration method

FPGAs are used as an established method when it comes to
hardware acceleration. An FPGA (Field Programmable Gate
Array) offers the possibility to implement algorithms using
hardware description languages like VHDL. This offers the
advantage of great adaptability and versatility.

mailto:johannes.goetze@s2015.tu-chemnitz.de
mailto:rene.schmidt@informatik.tu-chemnitz.de
mailto:wolfram.hardt@informatik.tu-chemnitz.de
mailto:wolfram.hardt@informatik.tu-chemnitz.de

Johannes Götze, et. al. ESS (Vol 6. No 1. 2019) (pp.9-17)

~ 10 ~

An FPGA generally consists of logic blocks which are
connected to each other and to the I/O blocks. The switch
matrices allow to change these connections. The logic blocks
are again composed of several lookup tables and flipflops
connected behind them. With the lookup tables it is possible to
program logical operations. Thereby a truth table is realized. In
such a table an output is defined for each variant of the bit
inputs. Technically this is realized with several interconnected
multiplexers. With four inputs of a lookup table it is possible to
implement all boolean operations with four inputs (e.g. AND,
OR...). Usually such lookup tables have four to six inputs. The
output is then buffered in flip-flops if necessary [3].

B. An FPGA as an accelerator for a matrix vector

calculation

Matrix multiplications are often required for sound
localization procedures. The algorithms need the matrices to
calculate coefficients of the methods with actual sensor values.
Beamforming is one such method. This algorithm is used for
position detection to improve the quality of signals. Since this
algorithm with a matrix vector multiplication requires a high
computational effort, the implementation is a challenge for the
world of embedded systems.

The algorithm implemented in [4] uses complex numbers.
The calculation consists of two parts. In the first step (see
equation 1), a 1 x N vector is multiplied by an N x N matrix.
The obtained 1 x N vector must now be multiplied by an N x 1
vector in the second part (see equation 2). The size of the
vectors and the matrix represents the number of sensors used
for localization. In the following examples, N = 3, i.e. 3
sensors, is selected.

The first part requires nine complex multiplications and six
complex additions. With the three multiplications and two
additions in the second part of the calculation, a total of twelve
multiplications and eight additions of complex numbers are
required. In general N² + N complex multiplications and N² - 1
complex additions for the calculation are required. In order to
guarantee a fast and efficient calculation, the calculation was

implemented on a Xilinx Zynq SoC Board. This board
combines an FPGA with an ARM processor and uses the
standardized AXI interface for communication. The FPGA was
selected because of its ability to parallelize and thus to handle
the matrix vector multiplication.

The calculation with N = 3 is divided into three parallel
vector multiplications. These are performed independently of
each other and their results are summed up at the end. In the
design (see Figure 1), just as in the example for a vector size of
N=3, the three parallel strands are easy to recognize. In the first
step, each complex multiplier calculates three complex

products in order to sum them up in the second step. In the
third step, each multiplier calculates its part of the vector
product. In the last step, the final result of the matrix vector
multiplication can be calculated by summing up. The same
number of complex multipliers are required for a certain
number of sensors in the FPGA design.

Due to the parallelization, the number of sensors used (and
thus the size of the matrices) has no significant influence on the
runtime, since correspondingly more hardware resources are
used. Compared to an implementation on an ARM core, which
is also available on the chip, a considerable speedup was
achieved. This required an average of 500 ms for the
calculation at a clock frequency of 700 MHz. The FPGA
design, on the other hand, requires only 4 ms at a frequency of
100 MHz. So the FPGA is much faster but also more efficient
because it consumes less power at lower clock speeds. It can
utilize each clock very efficiently and thus increase data
throughput. Please note that in the actual design the calculation
is not yet finished after the scalar product. In further steps, the
absolute value is calculated and a maximum search is
performed. However, these parts only have an influence of less
than one microsecond and can therefore be neglected in
comparison.

Johannes Götze, et. al. ESS (Vol 6. No 1. 2019) (pp.9-17)

~ 11 ~

C. GPUs as a hardware acceleration method

The graphics chip that is now available in every computer
can serve a further possibility for accelerating applications.
These chips provides enormous computing power2. Originally,
the graphics cards were used to accelerate applications that
relied on graphical operations. DirectX or OpenGL serves an
interface for the programmer to access the graphics card. Thus
applications can be developed, which execute graphic
operations more efficiently on a graphic chip than a
conventional processor. In most cases, the graphical operations
are used to display two or three dimensional objects. Other
operations, such as matrix multiplication, must be performed
on the CPU. DirectX and OpenGL are fixed to predefined
functions and offer little flexibility apart from graphical
operations. But with the development of Cuda by Nvidia it is
possible to program graphics cards more versatile. In 2006
Nvidia released its "General Purpose Parallel Computing
Architecure". With this programming model and tools provided
by Nvidia, Nvidia GPUs can be used to create applications that
use the GPU as a flexible accelerator [6].

But only the graphics chips from Nvidia support Cuda.
Other graphics cards such as AMD cannot be programmed
with Cuda. So the development of the OpenCL [7] standard
started at the end of 2008. First developed by Apple, then by
Khronos, the library is now available under version OpenCL
2.2. In cooperation with AMD, IBM, Nvidia and Intel, a library
has been created which makes it possible to use different
graphics cards from Nvidia. Under OpenCL, not only graphics
chips can accelerate applications, CPUs or cell processors can
also be used. To run OpenCL, the hardware manufacturer must
implement the OpenCL standard on his device. This means that
there may be Nvidia chips that support both Cuda and
OpenCL, only one of the two, or no support at all. It is also not
necessary that every AMD graphics card offers the possibility
to program them with OpenCL.

III. INTRODUCTION

The implementation and analysis presented in Section II

serves as a reference, as the matrix vector multiplication takes

up the most runtime. For comparison, a variant must be

implemented on a CPU and a GPU.

The big advantage of the graphics cards over the FPGA is

their comparable ease of use with OpenCL or Cuda. On the one

hand the programmer does not have to learn a completely new

language, since Cuda/OpenCL can be used to program in a

subset of C++. The integration of the program parts into the

overall application is also very simple. In summary, a simpler

development process makes you more flexible than with an

FPGA implementation.

A. Hardware accelerator

Since the work involves embedded systems and in order to
provide comparability to the FPGA, no normal graphics card as
used in desktop/home computers can be used. These require

2 Current desktop graphics cards, such as the Nvidia RTX

2080 TI, offer a theoretical computing performance of about

14.2 TFlops [5]

considerably more power than conventional embedded
systems. According to [8], a standard AMD RX 5803 consumes
about 200 watts under load alone. A technology must be used
that can be embedded, but at the same time has a graphics chip
that can provide enough computing power. Nvidia provides a
good basis with its Jetsonboards. An ARM core with an
integrated Nvidia graphics chip is installed on that boards. In
March 2017 Nvidia brought an update to its Jetsonboards with
the Jetson TX2. The Cortex-A57 got a slightly higher clock
rate which is now 2 GHz, and it got 8 GB instead of only 4 GB
of DDR4 RAM. But the big innovation is that the graphics chip
consists of a total of 256 Cudacores of the Pascal architecture
Nvidias. This also increased the clock rate of the graphics chip,
but the overall power consumption of the system could be
reduced again. According to Nvidia, the system typically
consumes 7.5 watts under load. The Pascalchip of the board
supports the CUDA architecture, which makes it easy to
program. Thus the board is best suited for an implementation
of the matrix vector calculation. It is designed for the
embedded area and offers current hardware to compare it with
the FPGA [9].

A limitation brings the Nvidia Board with it. The graphics
chip must be programmed with CUDA. The alternative
OpenCL is omitted because Nvidia does not support OpenCL
for the board. Thus only a CUDA implementation and a pure
CPU implementation can be realized in the context of this
work.

B. General Purpose Computing on Graphics Processing

Units

GPGPU (General Purpose Computing on Graphics
Processing nits) is the general purpose calculation on graphics
cards/processors. The graphics card can no longer only be used
for graphical operations. With GPGPU it is possible to use
graphics processors more versatile. Mathematically more
complex problems can be solved more efficiently. Matrix
multiplication is such a problem that can be solved by GPGPU
[6].When programming the graphics chips, a concept is used
which is known as Single Instruction, Multiple Data (SIMD).
The advantage of a graphics chip over a normal CPU is that the
same instructions, such as multiplications, are executed in
parallel with different data. On the one hand, a graphics chip
has several processor units on which instructions can be
executed in parallel. On the other hand, each individual
processor unit is able to execute several threads simultaneously
[6].

In comparison to normal desktop CPUs, Graphics cards
have a much larger number of processing units, which reaches
into the three-digit range4 in current models. To use and control
this set of processors effectively, graphic chips are divided into
structure elements. A graphics card usually has several
Graphical Processing Clusters (GPC). Similar to multi-core
CPUs, each individual GPC has the full range of functions of a
graphics card. A GPC consists of several stream
multiprocessors (SM), which in turn contain the actual thread

3 Upper mid-range graphics card

4 A Nvidia RTX 2080 TI, for example, has 4352 Cudacores.

[10]

Johannes Götze, et. al. ESS (Vol 6. No 1. 2019) (pp.9-17)

~ 12 ~

processors (TP). The thread processors are called Cuda cores at
Nvidia and are the unit responsible for the execution of
instructions [11].

A streaming multiprocessor, shown in Figure 3 of one of
the GP104 GPUs from the Pascal architecture of Nvidia,
basically consists of 128 Cudacores (TPs).

Such a thread processor has an arithmetic logic unit
(ALU) and a floating-point unit (FPU), which is divided into
different pipeline levels. The execution of instructions in the
smallest unit af an GPU, however, is subject to some
restrictions that do not exist in a multi-core CPU with its
individual processor cores. Only the same instruction can be
executed on several TPs in parallel. However, this instruction is
executed by each TP on different data, whereby the SIMD
principle is executed. The warp scheduler is the unit that reads
instructions, decodes them and then distributes them to the
cores. With an operating system, this distribution is usually
controlled in software, here it is realized in hardware. Such a
distribution is called warp and always contains 32 threads.
Thus a warp scheduler instructs 32 TPs with one instruction on
different data. In reality, however, only 16 TPs, i.e. a Half-
Warp, are instructed to execute the same instruction. Later the
other half of the warp is executed. However, in order for each
of the 128 cores of the streaming multiprocessor to calculate
simultaneously, a warp scheduler executes two half warps of
different warps. In addition, there are not one but four warp
schedulers per SM, each of which can instruct 32 TPs. The
LD/ST units are used to execute one storage instruction per
clock cycle. Thus a result can either be stored or a parameter
can be loaded from an LD/ST unit. However, this memory
addressing refers primarily to the L1 cache. The SFU - Special
Function Unit is there to execute more complex instructions
which the TPs do not support. These are instructions like sin(x)
or exp(x). The register is available to the TPs as a fast memory
and is divided among them. The shared memory is used to
exchange data between the individual TPs [11].

IV. IMPLEMENTATION

The evaluation program basically executes all the different

variants one after the other in order to measure the runtime of

each implementation for each execution. The variant for the

CPU is executed first. But first the data of the matrix and the

vectors have to be generated. The random data is stored in the

vectors and the matrix. In the standard configuration, the

matrix size is N x N N = 3. The individual vector and matrix

entries are stored as complex numbers. The complex numbers

are represented in the program by two double variables, one for

the real part and one for the imaginary part. The various

parameters (see Table 1) have been modified for the complete

measurement series.

Johannes Götze, et. al. ESS (Vol 6. No 1. 2019) (pp.9-17)

~ 13 ~

In order to be able to access the generated data from the

GPU, it must be copied from the CPU into the memory of the

GPU. In order to avoid time-consuming copying of the data,

CUDA offers the possibility to request special memory from

the CPU. This memory has the property that the host (i.e. the

CPU) and the device (the GPU chip) have access. It is not

necessary to explicitly send the data to the GPU. It is enough to

copy the pointers to them into the memory of the GPU. This

saves a lot of communication effort with large amounts of data

and the programmer can leave the management of the memory

to CUDA. After the CPU variant the GPU implementations are

called. The host, the CPU, starts the kernel with the specified

parameters for the number of threads per block and the number

of blocks on the GPU. While the GPU executes the kernel, the

CPU is able to perform calculations in parallel. However, if

results from the GPU are required, a synchronization between

processor and graphics card must be performed. In this paper,

this synchronization is used to measure the execution times of

the GPU. The CPU starts a kernel and does not process any

commands until the graphics card has finished its calculation.

Thus a time stamp is set directly before the kernel launch in

order to form the difference with a second time stamp, which is

set directly after the synchronization. With the CPU variant, the

time stamps are set directly before and directly after the

function is called. No communication is required here, as the

CPU already has access to the data. In order to obtain

representative measured values, each calculation is carried out

250 times in order to calculate the mean value. The processor

was clocked to a constant 2GHz by a setting in the operating

system in order to prevent large deviations in the measured

values. The clock frequency of the graphics chip is also fixed.

It clocks constantly with 1300MHz.

A. Variant 0 - CPU

Figure 4 shows the implementation for the CPU. This
variant always uses a thread of the CPU for execution, even if
the number of calculations c or the matrix size N changes.
Variant 0 is an implementation of the standard method to
multiply matrices for the CPU. For the algorithm the matrix
size n = N is given. The calculation is divided into three
sections (S1-S3). In S1, the temporary memory for the result of
S2 is initialized and set to zero. There must be memory for n
results. In S2 the first part of the matrix vector calculation is
executed. The vector v_1 is calculated with the matrix m in two
interlaced loops. The n scale products from v_1 and the column
vectors m_i of the matrix are stored temporarily in tmp. S3 is
the section of the calculation where the scalar product tmp

from S2 is scalar multiplied with the vector v_2. The result of
the complete calculation is stored in r.

Figure 4 shows only one calculation c = 1. If c is increased
by a multiple, variant 0 on the CPU is executed c times in
succession. S2 has the most influence on the calculation, since
the two nested loops have to be passed through n times. Thus,
the implemented algorithm is in the complexity class of O(n²).
If the number of calculations c is also considered, this has a
linear influence on the runtime. When put together, the result is
O(n² c). For all variants it is important to be noted that as soon
as a calculation operation with complex numbers is executed, a
library was used. Nvidia provides some libraries when using
Cuda, so the cuComplex library could be used. This library
offers the possibility to use a data structure which maps
complex numbers to two double variables. Furthermore,
functions for adding, subtracting, dividing, multiplying and
forming the absolute value on this data structure are offered. In
the individual variants, only adding and multiplying are used.

Johannes Götze, et. al. ESS (Vol 6. No 1. 2019) (pp.9-17)

~ 14 ~

B. Variant 1 - GPU

A variant without synchronization on the GPU is the same
as on the CPU. A thread on the GPU processes a calculation as
shown in Figure 4. The difference to the CPU variant only
occurs when more than one calculation c > 1 is to be executed.
One thread per calculation is created on the GPU, which
processes the calculation without synchronization and
independently of each other. The runtime complexity for one
calculation does not change compared to the CPU, it is still
O(n²). However, the runtime for c calculations changes. The
number of threads scales linearly to the number of calculations
c. If the hardware resources allow it and the scheduler can split
the threads, the calculations can be executed in parallel on the
TPs of the graphics chip.

C. Variant 2 - GPU

The difference to variant 1 occurs in S2. For A calculation
with the matrix size N = 3 on the GPU is no longer only one
thread but three responsible. First, the shared memory tmp
must be initialized. This requires a memory of N • sizeof (used
number format). The three threads all have the same
instructions. In a loop, the scalar product is first calculated with
the vector v1 and the column vector m1 – m3 belonging to the
thread. Then the respective part of the second scalar product
tmp - v2 can be calculated and stored by the threads in the
respective shared memory. Then a synchronization of the
threads must take place, since from this point the data
parallelism is no longer given. For the sum formation, one of
the threads goes through a further loop to obtain the result r.
For several calculations the same applies as for variant 1. c
times threads are created. However, unlike in variant 1, n
threads are responsible for one calculation. This means that c •
N threads are created if the matrix size N is variable and the
number of calculations c is variable. The number of required
threads thus scales linearly to both sizes. In so far as the
scheduler has the resources available on the graphics card, part
S2 on Figure 4 is no longer quadratic dependent. Therefore as
long as the threads are executed in parallel on the TPs, there is
a linear dependency.

D. Variant 3 - GPU

In order to calculate as much as possible in parallel, a
further dimension has been added to the shared memory in
variant 3. Its size with N² • sizeof (used number format) is now
no longer linear but quadratic dependent on the matrix size N.
For the first part of the calculation (see Figure 4 S2), N² threads
are required in order to calculate the multiplications of the first
part. These N² threads have to be synchronized a first time after
storing their result in shared memory. Theoretically, it is
sufficient for this part to synchronize the N threads involved in
the same scalar product. But since the processing sequences
merge later and there is no possibility to synchronize individual
threads of a block in Cuda, all N² threads of the block involved
in the calculation are synchronized. After the first
synchronization, N threads calculate the sum and then form the
product of this and the entries of the second vector. The results
of these calculations can then be stored in the shared memory
again. The threads must then be synchronized again in order to
calculate the final result using one thread to sum up, as in
variant 1. By parallelizing each individual multiplication, the

first part of the calculation should be independent of the matrix
size in its runtime. However, since only one thread can
calculate the sum for the scalar product at a time, the runtime
of the complete variant 3 should be linearly dependent on the
matrix size N. However, in these linear sections, the processing
is only adding and no multiplication, which could indicate a
lower runtime compared to variant 2. With several calculations
c the implementation is similar to variant 2, only that here per
calculation N times threads more are generated. Thus a linear
dependency of the runtime on the number of calculations c
should also arise with variant 3, but only under the condition
that the graphics card has correspondingly resources available.

E. Variant 4 - GPU

This variant is the same as variant 3, except that the two
synchronizations are omitted to measure the effect they have
on the runtime. Also in variant 4 the number of threads
depends on the matrix size and the number of calculations, as it
is the case in variant 3.

V. IMPLEMENTATION

Figure 5 shows the difference of the runtimes between the
variants of the GPU as a function of the number of calculations
with complex numbers. All variants have a staircase. This
means that for each variant, the runtime suddenly increases
sharply after a certain number of calculations. Jumps at a
certain multiple of c can be seen in the graphs. However, the
jump is different in strength and after a different number of
calculations, depending on which variant is considered.

In variant 1, which performs each individual calculation
sequentially, but the different calculations in parallel, a jump of
all 2048 calculations by about 0.4 ms can be seen. In between,
the runtime increases only slightly. The difference between
2064 and 4096 calculations is about 0.45 ms. This staircase
pattern can be traced back to the fact that the GPU can execute
a certain number of calculations in parallel on the TPs of the
graphics chip up to a certain number of calculations, which is
equal to the number of threads in variant 1. Once all of them

Johannes Götze, et. al. ESS (Vol 6. No 1. 2019) (pp.9-17)

~ 15 ~

are busy, a TP must perform two calculations, which results in
the jump. Between two jumps, however, the runtime does not
remain constant, because due to the larger number of
calculations, more threads have to be created and the number
of memory accesses increases, which cannot be completely
compensated by the warp scheduler. An irregularity can be
seen in the graph at c = 688, because there is also a jump of
about 0.18ms. Since this is not a multiple of 256, which would
indicate a utilization of the GPU, which has 256 TPs, it can be
that another resource is utilized on the GPU. Possibly the
LD/ST units of the GPU are the limiting factor, which is not
very important for more of the incoming calculations, because
the warp scheduler can execute another instruction as soon as a
memory access has to wait for data. The interval c =
[2048..4096] shows a much larger increase after about c =
2048+688 = 2736, which is due to the same problem as the
jump at c = 688, only that this delay can be better compensated
by more calculations. In variant 2, which uses one
synchronization and in this case three threads per calculation,
jumps and thus the staircase pattern can also be recognized.
However, these jumps are closer to each other, because all 256
calculations increase the runtime by about 0.18 ms. The
distances are therefore narrower because more threads are
needed per calculation. In contrast to variant 1, there is no
noticeable increase between the jumps. In the interval c =
[256..512] only a difference of about 0.02 ms was measured.
Thus variant 2 does not have the problem that the TPs are not
utilized and another resource is the limiting factor. The graph
of variant 3 shows an atypical trend. The staircase pattern is
hardly recognizable. Only a jump at c = 448 of about 0.1 ms
has occurred. This is repeated with twice the number of
calculations c = 896 with approx. 0.08ms. Otherwise the course
of the graph is approximately linear, since the jumps occur
with increasing number of calculations in a minimum size or
not at all. Figure 6 below illustrates the difference between the
number formats used. The runtime of variant 2 can be seen as a
function of the matrix size for one calculation. As expected, the
runtime with complex numbers is significantly higher than with
the simple data types integer, float and double. With a matrix
size of N = 16, the calculation with complex numbers requires
5.9 times as much time as with integers. This is due to the more
complex operations with complex numbers, where an addition
does not consist of an addition of two numbers, but of the
addition of imaginary parts and real parts. Likewise a complex
multiplication is more complex, which consists of several
multiplications and additions. However, no difference could be
found between the use of integer and float numbers. The
runtimes between these variants are almost identical. This fact
can be traced back to the structure of the TPs. They have an
arithmetic unit for integer and float numbers and can perform
operations for both formats at the same speed. A calculation
with double values needs on average 1.3 times as much time as
with integers. Since a TP is only equipped with a 32 Bit
floating point unit, the compiler either converts the 64 Bit
Double values or uses two of the TPs to perform an operation
with 64 Bit Double values.

Figure 5 clearly shows that as the number calculations
increases, the CPU takes considerably more time than the GPU
variants.

With the fastest variant of the GPU, a speedup of ~5.1
could be achieved with c = 8132 calculations. The GPU is not
only faster in the absolute runtime, with ~4.1 Mrd required
clock cycles, the GPU also needs considerably less than the
CPU with ~32.4 Mrd clock cycles. This results in a speedup of
~7.9. By executing instructions in parallel, the GPU can
execute more instructions per clock cycle than the CPU, but
only if the instructions contain the same operations but are to
be executed on different data. However, enough data must be
available for the GPU to take advantage of the parallelism of its
architecture (see Figure 5). The CPU has up to c < 144 a faster
runtime than variant 3 and is up to c < 160 faster than variant 2
of the GPU. Only from c > 336 variant 1 of the GPU is faster
than variant 1 of the CPU. So for small amounts of data the
CPU should be used instead of the GPU for this calculation.
However, if the amount of data is large enough for the GPU to
calculate efficiently in parallel, the GPU in all variants is faster
than the CPU (c > 336). Since the change of the matrix size in
the FPGA implementation has only a negligible small influence
on the runtime, the GPU is clearly worse than the FPGA in this
aspect. However, the GPU can reduce from a quadratic
dependency to a linear dependency at runtime by
parallelization. The FPGA has a runtime of ~2.1 ms at c =
92160 calculations, whereas the GPU at c = 8132 needs
~3.1ms. With an regression via the measured data, for variant
1, the runtime can be expressed by the following formula:

Johannes Götze, et. al. ESS (Vol 6. No 1. 2019) (pp.9-17)

~ 16 ~

This results in a speedup for the FPGA design compared to
the fastest variant on the GPU of ~ 17.8. The FPGA achieves
this speed factor through pipelining, which means that the data
throughput is extremely high despite the low clock rate. The
GPU, which calculates with 13 times the clock frequency,
needs considerably more time. Only a certain number of TPs
are available for the calculation and the parallel calculation of
these cannot make up the time as the pipeline effect that occurs
in the FPGA. As mentioned above with regression via the
measured data and with eliminating the frequency for each
architecture, the CPU, the GPU and the FPGA, a formula,
which represents the runtime t dependent on the number of
calculations c and a used frequency f can be formed.

With a speedup of ~17.8 the FPGA is faster than the GPU.
As expected, a runtime with an FPGA cannot be achieved by a
software solution. However, it should be noted that the
development of a hardware solution requires more time and
knowledge about the technology used. An already ~5.1 times
faster solution than a processor, however, provides an
implementation with a GPU which scales linear via the
problem size by executing instructions on the TPs in parallel. A
GPU can thus be used as a hardware accelerator, but only
under a certain class of problems. These should be
parallelizable by using the SIMD principle. Only then the
threads can created for the GPU to execute in parallel. The

parallelization of the problem should therefore be as data-
independent as possible. A hardware acceleration by an FPGA
is more independent of the type of problem. Using hardware
description languages, an FPGA design can be perfectly
configured to a problem. Thus, an FPGA is not only faster in
absolute runtime, an FPGA implementation is also more
efficient because it requires fewer clock cycles. From this it can
be concluded that when it comes to meeting extremely tight
deadlines, as it is often the case in real-time systems, the FPGA
should be used as a hardware accelerator. If, however, the goal
is to accelerate a problem with as little development effort as
possible and to reduce the load on the main processor, a GPU
solution can significantly reduce the runtime of a problem
caused by data parallelism. If, however, only a few data (here
calculations) are to be processed, a solution by the CPU is
usually the fastest and in view of the development time the best
solution.

VI. FUTURE WORK

Since only the Nvidia Jetson TX2 board with 256 TPs was
used for evaluation, the GPU variants could be tested on
different graphics processors. Thus it can be determined what
effects the number of SMs per GPU and TPs per SM has on the
implementations. A possible option would be the Jetson AGX
Xavier Board [13] which was released in September 2018. The
number of graphic cores as well as the number of CPU cores
and the main memory were doubled compared to the Jetson
TX2. Published by Nvidia, a Deep Learning algorithm
executed on the module had a maximum power consumption of
46 watts [14]. Furthermore, it can be investigated what
influence the kernel size setting has on the runtime. This means
that runtimes with different block and grid sizes could be
measured and investigated.

REFERENCES

[1] Basiswechsel und Koordinatentransformation,
https://elearning.\\physik.uni-frankfurt.de/data/FB13-
PhysikOnline/lm_data/lm_8699/daten/ana2_la4.html.

 [2] Matrizenoptik – Physik-Schule, https://physik.cosmos-
indirekt.de/Physik-Schule/Matrizenoptik

[3] FPGA – Mikrocontroller.net,\\
https://www.mikrocontroller.net/articles/FPGA

[4] R. Schmidt, S. Blokzyl, W. Hardt: Hardware Acceleration for
Beamforming Algorithms based on Optimized Hardware-
/Software Partitioning (2018), https://www.ama-
science.org/doi/10.5162/ettc2018/4.1

[5] Nvidia GeForce RTX 2070, 2080, 2080 Ti: Raytracing-
Beschleuniger zu stolzen Preisen,
https://www.heise.de/newsticker/meldung/Nvidia-GeFo
 rce-RTX-2070-2080-2080-Ti-Raytracing-Beschleuniger-
zu-stolzen-Preisen-4142119.html

[6] CUDA – Thomas-Krenn-Wiki, https://www.thomas-
krenn.com/de/wiki/CUDA

[7] OpenCL - Open Computing Language, https://www.uni-
regensburg.de/EDV/kurs_info/brf09510/hpc/opencl/opencl.html

[8] Leerlauf runter, Last hoch - Radeon RX 580 und RX 570 im
Test: AMDs Grafikkarten sind schneller und sparsamer -
Golem.de, https://www.golem.de/news/radeon-rx-580-und-rx-
570-im-test-amds-grafikkarten-sind-schneller-und-sparsamer-
1704-127204-5.html

[9] NVIDIA Jetson TX2 Delivers Twice the Intelligence to the Edge
(Mar2017), https://devblogs.nvidia.com/jetson-tx2-delivers-
twice-intelligence-edge/

Johannes Götze, et. al. ESS (Vol 6. No 1. 2019) (pp.9-17)

~ 17 ~

[10] Nvidia GeForce RTX 2070, 2080, 2080 Ti: Raytracing-
Beschleuniger zu stolzen Preisen,
https://www.heise.de/newsticker/meldung/Nvidia-GeFo
 rce-RTX-2070-2080-2080-Ti-Raytracing-Beschleuniger-
zu-stolzen-Preisen-4142119.html

[11] Gipp, M.: Online- und Offline-Prozessierung von biologischen
Zellbildern auf FPGAs und GPUs (2012), http://archiv.ub.uni-
heidelberg.de/volltex tserver/13349/

[12] GeForce GTX 1080 Whitepaper p. 52

[13] NVIDIA jetson AGX xavier developer kit now available,
https://news.developer.nvidia.com/nvidia-jetson-agx_xavier-
developer-kit-now-available/

[14] Jetson AGX xavier: Deep learning inference benchmarks,
https://developer.nvidia.com/embedded/jetson-agx-xavier-dl-
inference-benchmarks

