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Abstract1—In today's algorithms for sound localization 

techniques, matrix calculations are ubiquitous. Therefore, this 

work deals with the analysis of matrix calculations and their 

possible realization on embedded systems. For this purpose, 

common acceleration technologies such as processors, GPU 

processing and acceleration with the help of FPGAs are 

compared. The results show that a graphics chip is capable to 

accelerate such a matrix vector multiplication compared to an 

implementation on a processor. Therefore a runtime of an 

implementation on an FPGA cannot be achieved by a GPU 

Keywords—hardware acceleration, matrix calculations, Cuda, 

OpenCL, embedded systems 

I.  INTRODUCTION  

Matrices are often used in computer science, for example as 

a storage structure for graphs or a matrix of coefficients for a 

filter. In a variety of application scenarios, the calculation with 

matrices is required. For example in computer graphics: 

Matrices are used to perform coordinate transformations [1]. In 

the field of optics, transfer matrices are used to analyse the 

alteration of light rays by optical components [2]. 

If very large matrices are multiplied with each other, an 

enormous computational power is required, because of the 

complexity of O(N²) of such a multiplication. So it can come to 

the fact that in a complex system, the matrix calculation 

becomes a bottleneck and then this needs to be accelerated. 

The trivial approach would be to use a more powerful 

processor. 

To apply this approach in embedded systems is not the best 

way, because of the restriction of power consumption, 

available space and weight of such a system. With an 

increasing number of matrix calculations, the computing power 
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of an embedded processor is often not sufficient. For this 

reason, other hardware acceleration methods are required. 

These acceleration methods can be specialized to the problem 

and thus generate a higher data throughput. 

Already for a long time quite popular and used as hardware 

accelerator, FPGAs are predestined for such a field of 

application. They are energy efficient and flexibly adaptable. 

Another acceleration technology, not yet used quiet often, is to 

program a graphics chip in the field of embedded systems. 

Graphics cards are and were mainly used for graphics 

applications. They are mostly used to display computer 

generated images on the screen. But by developing 

architectures and libraries, the graphics chip can also be used to 

accelerate applications that are not specialized in graphical 

operations. This makes them more flexible and relatively easy 

to use by the programmer. 

In fact that there are different acceleration methods and also 

different number formats, in which the matrix elements can be, 

it is the goal to find out which variant is used in which 

application area on the best. The runtimes are to be examined 

depending on the one hand on the number formats, but also the 

problem size. So in which respect the running times in 

comparison to the matrix size and number of calculations. In 

comparison are different variants on a GPU, one FPGA 

implementation and one variant on an embedded processor. 

II. STATE OF THE ART 

A. FPGAs as a hardware acceleration method 

FPGAs are used as an established method when it comes to 
hardware acceleration. An FPGA (Field Programmable Gate 
Array) offers the possibility to implement algorithms using 
hardware description languages like VHDL. This offers the 
advantage of great adaptability and versatility. 
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An FPGA generally consists of logic blocks which are 
connected to each other and to the I/O blocks. The switch 
matrices allow to change these connections. The logic blocks 
are again composed of several lookup tables and flipflops 
connected behind them. With the lookup tables it is possible to 
program logical operations. Thereby a truth table is realized. In 
such a table an output is defined for each variant of the bit 
inputs. Technically this is realized with several interconnected 
multiplexers. With four inputs of a lookup table it is possible to 
implement all boolean operations with four inputs (e.g. AND, 
OR...). Usually such lookup tables have four to six inputs. The 
output is then buffered in flip-flops if necessary [3]. 

B. An FPGA as an accelerator for a matrix vector 

calculation 

Matrix multiplications are often required for sound 
localization procedures. The algorithms need the matrices to 
calculate coefficients of the methods with actual sensor values. 
Beamforming is one such method. This algorithm is used for 
position detection to improve the quality of signals. Since this 
algorithm with a matrix vector multiplication requires a high 
computational effort, the implementation is a challenge for the 
world of embedded systems. 

The algorithm implemented in [4] uses complex numbers. 
The calculation consists of two parts. In the first step (see 
equation 1), a 1 x N vector is multiplied by an N x N matrix. 
The obtained 1 x N vector must now be multiplied by an N x 1 
vector in the second part (see equation 2). The size of the 
vectors and the matrix represents the number of sensors used 
for localization. In the following examples, N = 3, i.e. 3 
sensors, is selected. 

 

The first part requires nine complex multiplications and six 
complex additions. With the three multiplications and two 
additions in the second part of the calculation, a total of twelve 
multiplications and eight additions of complex numbers are 
required. In general N² + N complex multiplications and N² - 1 
complex additions for the calculation are required. In order to 
guarantee a fast and efficient calculation, the calculation was 

implemented on a Xilinx Zynq SoC Board. This board 
combines an FPGA with an ARM processor and uses the 
standardized AXI interface for communication. The FPGA was 
selected because of its ability to parallelize and thus to handle 
the matrix vector multiplication. 

The calculation with N = 3 is divided into three parallel 
vector multiplications. These are performed independently of 
each other and their results are summed up at the end. In the 
design (see Figure 1), just as in the example for a vector size of 
N=3, the three parallel strands are easy to recognize. In the first 
step, each complex multiplier calculates three complex 

products in order to sum them up in the second step. In the 
third step, each multiplier calculates its part of the vector 
product. In the last step, the final result of the matrix vector 
multiplication can be calculated by summing up. The same 
number of complex multipliers are required for a certain 
number of sensors in the FPGA design. 

 

Due to the parallelization, the number of sensors used (and 
thus the size of the matrices) has no significant influence on the 
runtime, since correspondingly more hardware resources are 
used. Compared to an implementation on an ARM core, which 
is also available on the chip, a considerable speedup was 
achieved. This required an average of 500 ms for the 
calculation at a clock frequency of 700 MHz. The FPGA 
design, on the other hand, requires only 4 ms at a frequency of 
100 MHz. So the FPGA is much faster but also more efficient 
because it consumes less power at lower clock speeds. It can 
utilize each clock very efficiently and thus increase data 
throughput. Please note that in the actual design the calculation 
is not yet finished after the scalar product. In further steps, the 
absolute value is calculated and a maximum search is 
performed. However, these parts only have an influence of less 
than one microsecond and can therefore be neglected in 
comparison. 
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C. GPUs as a hardware acceleration method 

The graphics chip that is now available in every computer 
can serve a further possibility for accelerating applications. 
These chips provides enormous computing power2. Originally, 
the graphics cards were used to accelerate applications that 
relied on graphical operations. DirectX or OpenGL serves an 
interface for the programmer to access the graphics card. Thus 
applications can be developed, which execute graphic 
operations more efficiently on a graphic chip than a 
conventional processor. In most cases, the graphical operations 
are used to display two or three dimensional objects. Other 
operations, such as matrix multiplication, must be performed 
on the CPU. DirectX and OpenGL are fixed to predefined 
functions and offer little flexibility apart from graphical 
operations. But with the development of Cuda by Nvidia it is 
possible to program graphics cards more versatile. In 2006 
Nvidia released its "General Purpose Parallel Computing 
Architecure". With this programming model and tools provided 
by Nvidia, Nvidia GPUs can be used to create applications that 
use the GPU as a flexible accelerator [6]. 

But only the graphics chips from Nvidia support Cuda. 
Other graphics cards such as AMD cannot be programmed 
with Cuda. So the development of the OpenCL [7] standard 
started at the end of 2008. First developed by Apple, then by 
Khronos, the library is now available under version OpenCL 
2.2. In cooperation with AMD, IBM, Nvidia and Intel, a library 
has been created which makes it possible to use different 
graphics cards from Nvidia. Under OpenCL, not only graphics 
chips can accelerate applications, CPUs or cell processors can 
also be used. To run OpenCL, the hardware manufacturer must 
implement the OpenCL standard on his device. This means that 
there may be Nvidia chips that support both Cuda and 
OpenCL, only one of the two, or no support at all. It is also not 
necessary that every AMD graphics card offers the possibility 
to program them with OpenCL. 

III. INTRODUCTION  

The implementation and analysis presented in Section II 

serves as a reference, as the matrix vector multiplication takes 

up the most runtime. For comparison, a variant must be 

implemented on a CPU and a GPU. 

The big advantage of the graphics cards over the FPGA is 

their comparable ease of use with OpenCL or Cuda. On the one 

hand the programmer does not have to learn a completely new 

language, since Cuda/OpenCL can be used to program in a 

subset of C++. The integration of the program parts into the 

overall application is also very simple. In summary, a simpler 

development process makes you more flexible than with an 

FPGA implementation. 

A. Hardware accelerator 

Since the work involves embedded systems and in order to 
provide comparability to the FPGA, no normal graphics card as 
used in desktop/home computers can be used. These require 

                                                           
2 Current desktop graphics cards, such as the Nvidia RTX 

2080 TI, offer a theoretical computing performance of about 

14.2 TFlops [5] 

considerably more power than conventional embedded 
systems. According to [8], a standard AMD RX 5803 consumes 
about 200 watts under load alone. A technology must be used 
that can be embedded, but at the same time has a graphics chip 
that can provide enough computing power. Nvidia provides a 
good basis with its Jetsonboards. An ARM core with an 
integrated Nvidia graphics chip is installed on that boards. In 
March 2017 Nvidia brought an update to its Jetsonboards with 
the Jetson TX2. The Cortex-A57 got a slightly higher clock 
rate which is now 2 GHz, and it got 8 GB instead of only 4 GB 
of DDR4 RAM. But the big innovation is that the graphics chip 
consists of a total of 256 Cudacores of the Pascal architecture 
Nvidias. This also increased the clock rate of the graphics chip, 
but the overall power consumption of the system could be 
reduced again. According to Nvidia, the system typically 
consumes 7.5 watts under load. The Pascalchip of the board 
supports the CUDA architecture, which makes it easy to 
program. Thus the board is best suited for an implementation 
of the matrix vector calculation. It is designed for the 
embedded area and offers current hardware to compare it with 
the FPGA [9]. 

A limitation brings the Nvidia Board with it. The graphics 
chip must be programmed with CUDA. The alternative 
OpenCL is omitted because Nvidia does not support OpenCL 
for the board. Thus only a CUDA implementation and a pure 
CPU implementation can be realized in the context of this 
work. 

B. General Purpose Computing on Graphics Processing 

Units 

GPGPU (General Purpose Computing on Graphics 
Processing nits) is the general purpose calculation on graphics 
cards/processors. The graphics card can no longer only be used 
for graphical operations. With GPGPU it is possible to use 
graphics processors more versatile. Mathematically more 
complex problems can be solved more efficiently. Matrix 
multiplication is such a problem that can be solved by GPGPU 
[6].When programming the graphics chips, a concept is used 
which is known as Single Instruction, Multiple Data (SIMD). 
The advantage of a graphics chip over a normal CPU is that the 
same instructions, such as multiplications, are executed in 
parallel with different data. On the one hand, a graphics chip 
has several processor units on which instructions can be 
executed in parallel. On the other hand, each individual 
processor unit is able to execute several threads simultaneously 
[6]. 

In comparison to normal desktop CPUs, Graphics cards 
have a much larger number of processing units, which reaches 
into the three-digit range4 in current models. To use and control 
this set of processors effectively, graphic chips are divided into 
structure elements. A graphics card usually has several 
Graphical Processing Clusters (GPC). Similar to multi-core 
CPUs, each individual GPC has the full range of functions of a 
graphics card. A GPC consists of several stream 
multiprocessors (SM), which in turn contain the actual thread 

                                                           
3 Upper mid-range graphics card 

4 A Nvidia RTX 2080 TI, for example, has 4352 Cudacores. 

[10] 
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processors (TP). The thread processors are called Cuda cores at 
Nvidia and are the unit responsible for the execution of 
instructions [11]. 

 

A streaming multiprocessor, shown in Figure 3 of one of 
the GP104 GPUs from the Pascal architecture of Nvidia, 
basically consists of 128 Cudacores (TPs). 

 

Such a thread processor has an arithmetic logic unit 
(ALU) and a floating-point unit (FPU), which is divided into 
different pipeline levels. The execution of instructions in the 
smallest unit af an GPU, however, is subject to some 
restrictions that do not exist in a multi-core CPU with its 
individual processor cores. Only the same instruction can be 
executed on several TPs in parallel. However, this instruction is 
executed by each TP on different data, whereby the SIMD 
principle is executed. The warp scheduler is the unit that reads 
instructions, decodes them and then distributes them to the 
cores. With an operating system, this distribution is usually 
controlled in software, here it is realized in hardware. Such a 
distribution is called warp and always contains 32 threads. 
Thus a warp scheduler instructs 32 TPs with one instruction on 
different data. In reality, however, only 16 TPs, i.e. a Half-
Warp, are instructed to execute the same instruction. Later the 
other half of the warp is executed. However, in order for each 
of the 128 cores of the streaming multiprocessor to calculate 
simultaneously, a warp scheduler executes two half warps of 
different warps. In addition, there are not one but four warp 
schedulers per SM, each of which can instruct 32 TPs. The 
LD/ST units are used to execute one storage instruction per 
clock cycle. Thus a result can either be stored or a parameter 
can be loaded from an LD/ST unit. However, this memory 
addressing refers primarily to the L1 cache. The SFU - Special 
Function Unit is there to execute more complex instructions 
which the TPs do not support. These are instructions like sin(x) 
or exp(x). The register is available to the TPs as a fast memory 
and is divided among them. The shared memory is used to 
exchange data between the individual TPs [11]. 

IV. IMPLEMENTATION 

The evaluation program basically executes all the different 

variants one after the other in order to measure the runtime of 

each implementation for each execution. The variant for the 

CPU is executed first. But first the data of the matrix and the 

vectors have to be generated. The random data is stored in the 

vectors and the matrix. In the standard configuration, the 

matrix size is N x N N = 3. The individual vector and matrix 

entries are stored as complex numbers. The complex numbers 

are represented in the program by two double variables, one for 

the real part and one for the imaginary part. The various 

parameters (see Table 1) have been modified for the complete 

measurement series. 
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In order to be able to access the generated data from the 

GPU, it must be copied from the CPU into the memory of the 

GPU. In order to avoid time-consuming copying of the data, 

CUDA offers the possibility to request special memory from 

the CPU. This memory has the property that the host (i.e. the 

CPU) and the device (the GPU chip) have access. It is not 

necessary to explicitly send the data to the GPU. It is enough to 

copy the pointers to them into the memory of the GPU. This 

saves a lot of communication effort with large amounts of data 

and the programmer can leave the management of the memory 

to CUDA. After the CPU variant the GPU implementations are 

called. The host, the CPU, starts the kernel with the specified 

parameters for the number of threads per block and the number 

of blocks on the GPU. While the GPU executes the kernel, the 

CPU is able to perform calculations in parallel. However, if 

results from the GPU are required, a synchronization between 

processor and graphics card must be performed. In this paper, 

this synchronization is used to measure the execution times of 

the GPU. The CPU starts a kernel and does not process any 

commands until the graphics card has finished its calculation. 

Thus a time stamp is set directly before the kernel launch in 

order to form the difference with a second time stamp, which is 

set directly after the synchronization. With the CPU variant, the 

time stamps are set directly before and directly after the 

function is called. No communication is required here, as the 

CPU already has access to the data. In order to obtain 

representative measured values, each calculation is carried out 

250 times in order to calculate the mean value. The processor 

was clocked to a constant 2GHz by a setting in the operating 

system in order to prevent large deviations in the measured 

values. The clock frequency of the graphics chip is also fixed. 

It clocks constantly with 1300MHz. 

A. Variant 0 - CPU 

Figure 4 shows the implementation for the CPU. This 
variant always uses a thread of the CPU for execution, even if 
the number of calculations c or the matrix size N changes. 
Variant 0 is an implementation of the standard method to 
multiply matrices for the CPU. For the algorithm the matrix 
size n = N is given. The calculation is divided into three 
sections (S1-S3). In S1, the temporary memory for the result of 
S2 is initialized and set to zero. There must be memory for n 
results. In S2 the first part of the matrix vector calculation is 
executed. The vector v_1 is calculated with the matrix m in two 
interlaced loops. The n scale products from v_1 and the column 
vectors m_i of the matrix are stored temporarily in tmp. S3 is 
the section of the calculation where the scalar product tmp 

from S2 is scalar multiplied with the vector v_2. The result of 
the complete calculation is stored in r. 

 

Figure 4 shows only one calculation c = 1. If c is increased 
by a multiple, variant 0 on the CPU is executed c times in 
succession. S2 has the most influence on the calculation, since 
the two nested loops have to be passed through n times. Thus, 
the implemented algorithm is in the complexity class of O(n²). 
If the number of calculations c is also considered, this has a 
linear influence on the runtime. When put together, the result is 
O(n² c). For all variants it is important to be noted that as soon 
as a calculation operation with complex numbers is executed, a 
library was used. Nvidia provides some libraries when using 
Cuda, so the cuComplex library could be used. This library 
offers the possibility to use a data structure which maps 
complex numbers to two double variables. Furthermore, 
functions for adding, subtracting, dividing, multiplying and 
forming the absolute value on this data structure are offered. In 
the individual variants, only adding and multiplying are used. 
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B. Variant 1 - GPU 

A variant without synchronization on the GPU is the same 
as on the CPU. A thread on the GPU processes a calculation as 
shown in Figure 4. The difference to the CPU variant only 
occurs when more than one calculation c > 1 is to be executed. 
One thread per calculation is created on the GPU, which 
processes the calculation without synchronization and 
independently of each other. The runtime complexity for one 
calculation does not change compared to the CPU, it is still 
O(n²). However, the runtime for c calculations changes. The 
number of threads scales linearly to the number of calculations 
c. If the hardware resources allow it and the scheduler can split 
the threads, the calculations can be executed in parallel on the 
TPs of the graphics chip. 

C. Variant 2 - GPU 

The difference to variant 1 occurs in S2. For A calculation 
with the matrix size N = 3 on the GPU is no longer only one 
thread but three responsible. First, the shared memory tmp 
must be initialized. This requires a memory of N • sizeof (used 
number format). The three threads all have the same 
instructions. In a loop, the scalar product is first calculated with 
the vector v1 and the column vector m1 – m3 belonging to the 
thread. Then the respective part of the second scalar product 
tmp - v2 can be calculated and stored by the threads in the 
respective shared memory. Then a synchronization of the 
threads must take place, since from this point the data 
parallelism is no longer given. For the sum formation, one of 
the threads goes through a further loop to obtain the result r. 
For several calculations the same applies as for variant 1. c 
times threads are created. However, unlike in variant 1, n 
threads are responsible for one calculation. This means that c • 
N threads are created if the matrix size N is variable and the 
number of calculations c is variable. The number of required 
threads thus scales linearly to both sizes. In so far as the 
scheduler has the resources available on the graphics card, part 
S2 on Figure 4 is no longer quadratic dependent. Therefore as 
long as the threads are executed in parallel on the TPs, there is 
a linear dependency. 

D. Variant 3 - GPU 

In order to calculate as much as possible in parallel, a 
further dimension has been added to the shared memory in 
variant 3. Its size with N² • sizeof (used number format) is now 
no longer linear but quadratic dependent on the matrix size N. 
For the first part of the calculation (see Figure 4 S2), N² threads 
are required in order to calculate the multiplications of the first 
part. These N² threads have to be synchronized a first time after 
storing their result in shared memory. Theoretically, it is 
sufficient for this part to synchronize the N threads involved in 
the same scalar product. But since the processing sequences 
merge later and there is no possibility to synchronize individual 
threads of a block in Cuda, all N² threads of the block involved 
in the calculation are synchronized. After the first 
synchronization, N threads calculate the sum and then form the 
product of this and the entries of the second vector. The results 
of these calculations can then be stored in the shared memory 
again. The threads must then be synchronized again in order to 
calculate the final result using one thread to sum up, as in 
variant 1. By parallelizing each individual multiplication, the 

first part of the calculation should be independent of the matrix 
size in its runtime. However, since only one thread can 
calculate the sum for the scalar product at a time, the runtime 
of the complete variant 3 should be linearly dependent on the 
matrix size N. However, in these linear sections, the processing 
is only adding and no multiplication, which could indicate a 
lower runtime compared to variant 2. With several calculations 
c the implementation is similar to variant 2, only that here per 
calculation N times threads more are generated. Thus a linear 
dependency of the runtime on the number of calculations c 
should also arise with variant 3, but only under the condition 
that the graphics card has correspondingly resources available. 

E. Variant 4 - GPU 

This variant is the same as variant 3, except that the two 
synchronizations are omitted to measure the effect they have 
on the runtime. Also in variant 4 the number of threads 
depends on the matrix size and the number of calculations, as it 
is the case in variant 3. 

V. IMPLEMENTATION 

Figure 5 shows the difference of the runtimes between the 
variants of the GPU as a function of the number of calculations 
with complex numbers.  All variants have a staircase. This 
means that for each variant, the runtime suddenly increases 
sharply after a certain number of calculations. Jumps at a 
certain multiple of c can be seen in the graphs. However, the 
jump is different in strength and after a different number of 
calculations, depending on which variant is considered. 

 

In variant 1, which performs each individual calculation 
sequentially, but the different calculations in parallel, a jump of 
all 2048 calculations by about 0.4 ms can be seen. In between, 
the runtime increases only slightly. The difference between 
2064 and 4096 calculations is about 0.45 ms. This staircase 
pattern can be traced back to the fact that the GPU can execute 
a certain number of calculations in parallel on the TPs of the 
graphics chip up to a certain number of calculations, which is 
equal to the number of threads in variant 1. Once all of them 
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are busy, a TP must perform two calculations, which results in 
the jump. Between two jumps, however, the runtime does not 
remain constant, because due to the larger number of 
calculations, more threads have to be created and the number 
of memory accesses increases, which cannot be completely 
compensated by the warp scheduler. An irregularity can be 
seen in the graph at c = 688, because there is also a jump of 
about 0.18ms. Since this is not a multiple of 256, which would 
indicate a utilization of the GPU, which has 256 TPs, it can be 
that another resource is utilized on the GPU. Possibly the 
LD/ST units of the GPU are the limiting factor, which is not 
very important for more of the incoming calculations, because 
the warp scheduler can execute another instruction as soon as a 
memory access has to wait for data. The interval c = 
[2048..4096] shows a much larger increase after about c = 
2048+688 = 2736, which is due to the same problem as the 
jump at c = 688, only that this delay can be better compensated 
by more calculations. In variant 2, which uses one 
synchronization and in this case three threads per calculation, 
jumps and thus the staircase pattern can also be recognized. 
However, these jumps are closer to each other, because all 256 
calculations increase the runtime by about 0.18 ms. The 
distances are therefore narrower because more threads are 
needed per calculation. In contrast to variant 1, there is no 
noticeable increase between the jumps. In the interval c = 
[256..512] only a difference of about 0.02 ms was measured. 
Thus variant 2 does not have the problem that the TPs are not 
utilized and another resource is the limiting factor. The graph 
of variant 3 shows an atypical trend. The staircase pattern is 
hardly recognizable. Only a jump at c = 448 of about 0.1 ms 
has occurred. This is repeated with twice the number of 
calculations c = 896 with approx. 0.08ms. Otherwise the course 
of the graph is approximately linear, since the jumps occur 
with increasing number of calculations in a minimum size or 
not at all. Figure 6 below illustrates the difference between the 
number formats used. The runtime of variant 2 can be seen as a 
function of the matrix size for one calculation. As expected, the 
runtime with complex numbers is significantly higher than with 
the simple data types integer, float and double. With a matrix 
size of N = 16, the calculation with complex numbers requires 
5.9 times as much time as with integers. This is due to the more 
complex operations with complex numbers, where an addition 
does not consist of an addition of two numbers, but of the 
addition of imaginary parts and real parts. Likewise a complex 
multiplication is more complex, which consists of several 
multiplications and additions. However, no difference could be 
found between the use of integer and float numbers. The 
runtimes between these variants are almost identical. This fact 
can be traced back to the structure of the TPs. They have an 
arithmetic unit for integer and float numbers and can perform 
operations for both formats at the same speed. A calculation 
with double values needs on average 1.3 times as much time as 
with integers. Since a TP is only equipped with a 32 Bit 
floating point unit, the compiler either converts the 64 Bit 
Double values or uses two of the TPs to perform an operation 
with 64 Bit Double values. 

 

Figure 5 clearly shows that as the number calculations 
increases, the CPU takes considerably more time than the GPU 
variants. 

 

With the fastest variant of the GPU, a speedup of ~5.1 
could be achieved with c = 8132 calculations. The GPU is not 
only faster in the absolute runtime, with ~4.1 Mrd required 
clock cycles, the GPU also needs considerably less than the 
CPU with ~32.4 Mrd clock cycles. This results in a speedup of 
~7.9. By executing instructions in parallel, the GPU can 
execute more instructions per clock cycle than the CPU, but 
only if the instructions contain the same operations but are to 
be executed on different data. However, enough data must be 
available for the GPU to take advantage of the parallelism of its 
architecture (see Figure 5). The CPU has up to c < 144 a faster 
runtime than variant 3 and is up to c < 160 faster than variant 2 
of the GPU. Only from c > 336 variant 1 of the GPU is faster 
than variant 1 of the CPU. So for small amounts of data the 
CPU should be used instead of the GPU for this calculation. 
However, if the amount of data is large enough for the GPU to 
calculate efficiently in parallel, the GPU in all variants is faster 
than the CPU (c > 336). Since the change of the matrix size in 
the FPGA implementation has only a negligible small influence 
on the runtime, the GPU is clearly worse than the FPGA in this 
aspect. However, the GPU can reduce from a quadratic 
dependency to a linear dependency at runtime by 
parallelization. The FPGA has a runtime of ~2.1 ms at c = 
92160 calculations, whereas the GPU at c = 8132 needs 
~3.1ms. With an regression via the measured data, for variant 
1, the runtime can be expressed by the following formula: 
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This results in a speedup for the FPGA design compared to 
the fastest variant on the GPU of ~ 17.8. The FPGA achieves 
this speed factor through pipelining, which means that the data 
throughput is extremely high despite the low clock rate. The 
GPU, which calculates with 13 times the clock frequency, 
needs considerably more time. Only a certain number of TPs 
are available for the calculation and the parallel calculation of 
these cannot make up the time as the pipeline effect that occurs 
in the FPGA. As mentioned above with regression via the 
measured data and with eliminating the frequency for each 
architecture, the CPU, the GPU and the FPGA, a formula, 
which represents the runtime t dependent on the number of 
calculations c and a used frequency f can be formed. 

 

 

With a speedup of ~17.8 the FPGA is faster than the GPU. 
As expected, a runtime with an FPGA cannot be achieved by a 
software solution. However, it should be noted that the 
development of a hardware solution requires more time and 
knowledge about the technology used. An already ~5.1 times 
faster solution than a processor, however, provides an 
implementation with a GPU which scales linear via the 
problem size by executing instructions on the TPs in parallel. A 
GPU can thus be used as a hardware accelerator, but only 
under a certain class of problems. These should be 
parallelizable by using the SIMD principle. Only then the 
threads can created for the GPU to execute in parallel. The 

parallelization of the problem should therefore be as data-
independent as possible. A hardware acceleration by an FPGA 
is more independent of the type of problem. Using hardware 
description languages, an FPGA design can be perfectly 
configured to a problem. Thus, an FPGA is not only faster in 
absolute runtime, an FPGA implementation is also more 
efficient because it requires fewer clock cycles. From this it can 
be concluded that when it comes to meeting extremely tight 
deadlines, as it is often the case in real-time systems, the FPGA 
should be used as a hardware accelerator. If, however, the goal 
is to accelerate a problem with as little development effort as 
possible and to reduce the load on the main processor, a GPU 
solution can significantly reduce the runtime of a problem 
caused by data parallelism. If, however, only a few data (here 
calculations) are to be processed, a solution by the CPU is 
usually the fastest and in view of the development time the best 
solution. 

VI. FUTURE WORK 

Since only the Nvidia Jetson TX2 board with 256 TPs was 
used for evaluation, the GPU variants could be tested on 
different graphics processors. Thus it can be determined what 
effects the number of SMs per GPU and TPs per SM has on the 
implementations. A possible option would be the Jetson AGX 
Xavier Board [13] which was released in September 2018. The 
number of graphic cores as well as the number of CPU cores 
and the main memory were doubled compared to the Jetson 
TX2. Published by Nvidia, a Deep Learning algorithm 
executed on the module had a maximum power consumption of 
46 watts [14]. Furthermore, it can be investigated what 
influence the kernel size setting has on the runtime. This means 
that runtimes with different block and grid sizes could be 
measured and investigated. 
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