Embedded Selforganising Systems

Transactional Distributed 64-Bit Memory for PC-Clusters

Nico Kaemmer -

Michael Sonnenfroh .- Stefan Frenz -

Abstract The Rainbow operating system provides 64-
Bit transactional memory operation for PC-clusters.
Basic consistency of the distributed objects is guaran-
teed by an optimistic transactions scheme and weak-
ened consistency models are available for application
data structures. The Java-like language environment
allows for binary isolation, compiler-based OS security
and for clusterwide garbage collection. An optional page-
server will offer orthogonal persistence as well as sub-
second restart and recovery.

Keywords Transactional consistency, shared memory,
cluster operating system, compiler-based security, lean
systems technology

Nico Kaemmer

Ulm University

Distributed Systems

E-mail: nico.kaemmer@uni-ulm.de

Steffen Gerhold

Ulm University

Distributed Systems

E-mail: steffen.gerhold@uni-ulm.de

Patrick Schmidt

Ulm University

Distributed Systems

E-mail: patrick.schmidt@uni-ulm.de

Michael Sonnenfroh

Duesseldorf University

Operating Systems

E-mail: michael.sonnenfroh@uni-ulm.de

Stefan Frenz
Ulm University
E-mail: stefan.frenzQuni-ulm.de

Peter Schulthess

Ulm University

Distributed Systems

E-mail: peter.schulthess@uni-ulm.de

Steffen Gerhold - Patrick Schmidt -
Peter Schulthess

1 Introduction

We present the design concepts and preliminary imple-
mentation results for the Rainbow operating system.
Rainbow is based on earlier distributed shared memory
operating systems [13]. It adds 64-Bit addressing, mul-
tiple consistency models, a range of garbage collection
options, binary isolation and a layered security archi-
tecture. Our article is divided in the following sections:

Rainbow OS architecture

Transactional distributed memory management
— Reliability and persistence

Tools and Implementations

Perspective

— Related work

2 Rainbow OS architecture

Rainbow is a distributed operating system for a group of
clustered PCs. To simplify programming and to avoid
marshalling overhead distributed objects are allocated
in a very large memory partition shared by all nodes.
Figure 1 shows the partitioning of storage into a dis-
tributed memory partition and a local storage pool to
host the node specific objects, such as network drivers,
device buffers and page tables.

Only kernel programmers will have immediate access
to core objects. But the methods and classes associated
with these objects might well reside in shared memory.
In the case of a multi-core CPU each core will have
a separate set of core objects. Objects are allocated
according to their sharing characteristics whereas their
access privileges are governed by the compiler and the
associated class and package hierarchy.

11

application objects

system objects

distributed
memory

local core local memory

Fig. 1 Layers of Rainbow OS

Kernel programmers are allowed to use the pseudo-
class MAGIC which gives them access to all local hard-
ware. They are not constrained by the type system of
the implementation language. To make informal veri-
fication easy and to reduce the risk of errors the code
size of the kernel is kept to a minimum.

System programmers will implement mission crit-
ical algorithms both at the level of the local station
and at the global cluster level. Algorithms at this level
include logical storage management, clusterwide name
service, insertion and deletion of transactions and high-
level device control. However, they will access hardware
and devices only through a formal kernel interface class.
System-, kernel- and lowlevel device-programmers carry
full responsability for the correct operation of the clus-
ter, but to a certain extent they are protected from their
own errors by the language type system.

Application programmers work within a Java sand-
box and under no condtion they should be able to bring
down the local node or the cluster. The sandbox is en-
forced even though the compiler will generate machine
code instead of byte code. At some later stage of devel-
opment a quota system will be introduced for applica-
tion data storage.

The concept of binary isolation prevents the intro-
duction of manipulated binary code. There is no facility
to import binary code segments or object reference pat-
terns into a running Rainbow cluster. Only the compiler
is privileged to generate code segments for classes and
method. As a special privilege Kernel code segments
may use MAGIC and are only created if the invoking
programmer has kernel privileges.

3 Transactional distributed memory
management

Distributed memory management is a basic component
of any distributed operation system, providing extended
functionality compared to single system memory man-

agement. Rainbow OS essentially has two components
for memory allocation, one for the local memory, inte-
grated in the local core of Rainbow OS, and one for the
the distributed memory, as part of the distributed core,
which is shared by all nodes. The local memory man-
agement administrates the available physical memory,
the page tables for virtual memory and offers a sim-
plified memory allocation function for all objects of the
local core. The distributed core of Rainbow OS contains
an additional sophisticated separate memory manage-
ment for shared cluster objects and multiple consis-
tency models.

3.1 Local Memory Management

Memory management of the local core offers two mem-
ory pools for object allocation: a directly mapped pool,
in which corresponding physical and logical addresses
are equal and a normal pool, that maps physical pages
on demand. Both pools are placed logically between
the local and the distributed core and can be used by
drivers and system functions to allocate local objects.

8.1.1 Object Design and Allocation

The interface for object allocation for developers or pro-
grammers is the well-known invocation of New in Java,
which is mapped by the compiler [6] to a method call to
the runtime environment of Rainbow OS. This method
allocates a corresponding area of memory and initial-
izes the object itself. The internal object structure in
Rainbow OS deviates from the Sun JVM object struc-
tures. Rainbow OS and the compiler divide objects di-
vided in two parts, one containing the references and
the other the scalars. References to object are point-
ing to the separation line between the two parts, whilst
references to other objects are stored below and scalars
above this pointer (see Figure 2). In contrast to other
operating systems and Sun Java, Rainbow OS offers
the possibility to store scalars of an object at a distant
position in memory. These scalars are called indirect
scalars and are managed with an additional reference
in the corresponding object. This potential separation
of object scalars allows Rainbow OS to support multi-
ple and weakened consistency models without putting
the type system at risk. In the local memory manage-
ment of Rainbow OS these indirect scalars are unused,
because the local core and its objects are locally con-
sistent and have to be as simple as possible avoiding
unnecessary complexity and extensive structures.

12

reference
-

- -

= =
@ @ S 5
- w - w = =
@ [} (0] (0]
3 5 3 B qQ 2
3 o > Q (2] [72]
2 E 3 3 8 8
w (2]) ©
7} 3

object 1 object 2 object 1 object 2

Fig. 2 Object structure

8.1.2 Local Consistency

The local core of Rainbow OS and its objects are sub-
ject to a simple local consistency model comparable to
a normal singleuser system. Any read to a memory lo-
cation returns the most recent write operation to this
location. No other node in the cluster can manipulate
or access this part of local memory, it is not shared and
only accessible to kernel or system programmers.

3.2 Distributed Memory Management

As mentioned earlier Rainbow OS is divided in a local
and a distributed memory, with separate management
components. The distributed memory management in-
cludes all shared memory pools (so-called allocators)
and several consistency models. Due to the existence
of two cores, a local and a distributed one, and the
fact that not every driver or system component can be
shared by all nodes, an additional communication facil-
ity between both cores is necessary. Therefore Rainbow
OS offers a simple Integer- Interface with proprietary
data buffers to communicate between the distributed
and the local core widening the scope in which code can
be shared. Drivers for example can be implemented in
the distributed core of Rainbow OS too.

8.2.1 Logical Address Space

Rainbow OS identifies and separates several consistency
models by inspecting their logical addresses. Each con-
sistency pool spans a logical address space of 512 GB, so
that the upper 25 address bits specify the consistency,
which is equivalent with the upper hierarchical level of
page tables in our hardware (AMDG64). This implemen-
tation offers a fast consistency classification at runtime,
without complex lookup operations or algorithms. By
default Rainbow OS uses a Transactional Consistency
Model [13] for distributed core, shared system functions
and all user applications. By default object references

are under the control of Transactional Consistency to
guarantee the safety of the type system. Programmers
may optionally use a weaker consistency only for scalars
variables and arrays. Future research will show how to
relax this requirement without putting the runtime sys-
tem at risk.

ko Transactional Consistency distributed l
-
references . any
d. core & scalars ind. scalars MMIO consistency
512 GB 1024 GB 1536 GB 2048 GB

Fig. 3 Logical address space

3.2.2 Object Design and Object Allocation

Inside a consistency pool so-called allocators manage
the memory allocation and object creation. These allo-
cators are objects themselves and properly partitionned
into direct and indirect object fields (see Figure 4). A
descriptor part contains references and direct scalars
and the other one contains all indirect scalars. For ex-
plicit management of the memory model a programmer
can create his own allocator with weaker consistency
thus avoiding potential collisions between different ap-
plications and their objects.

I allocator 1

placeholder for references
& direct scalars

-

allocation

placeholder for
indirect scalars

-

allocation
* header of allocator

Fig. 4 Structure of an allocator object

3.3 Multi Consistency

Rainbow OS supports several consistency models, which
have been implemented by kernel or system program-
mers. Each consistency covers a separate logical address
space, which has a size of 512 GB. Rainbow OS offer
three consistency models by default: local, transactional
and one special local for MMIO, which can be used by
device drivers to map their device memory. Transac-
tional Consistency is preset for all references in Rain-
bow OS, precluding invalid manipulations of the kernel
runtime structures or of the type system. In the future
we will investigate, to what extent we can use weaker

13

consistency models for references, without putting sys-
tem functions at risk. Rainbow OS is aware of every
memory access and delegates it to the corresponding
consistency protocol, which can then operate according
to its requirements.

Transactional Consistency any consistency

' ",

Jreferences | Jreferences | [ind. scalars || ind. scalars

k=aliocator 1 + allocator 2 -| = aliocator 1'| k=allocator 2 -l

Fig. 5 Allocators representing different consistencies

4 Reliability and persistence
4.1 Introduction to Checkpointing

Checkpointing is a common way of providing fault tol-
erance and reliability in a distributed system. If a long-
running application is checkpointed from time to time,
a possible runtime error or hardware fault does not force
the application to start over from the beginning as it
can fall back to a recent checkpoint and resume from
that point.

Traditional operating systems like Linux or Microsoft
Windows find it difficult to provide a transparent appli-
cation checkpointing mechanism as the entire state of a
running application consist of a user context and a sys-
tem context (i.e. open file descriptors or process IDs). A
checkpointing facility running solely in userspace might
be able to read the user context but is usually forbid-
den to read the system context let alone to modify it
in case of a fallback. A kernel mode checkpointing facil-
ity on the other hand can access both the user contexts
and system contexts, thus being able to form consistent
checkpoints of an application and to support restoring
all changed structures in case of a fallback.

The major disadvantage of a kernel mode check-
pointing is the need to adapt it to all release changes in
the OS kernel, be it a security patch or continuous de-
velopment. The checkpointing task becomes even more
difficult and complex if the application is not run lo-
cally on only one computer but is distributed to many
nodes in a computer network. In contrast to local ex-
ecution the checkpointing facility must now also con-
sider a higher degree of both parallelism and message
latency throughout the network in order to guarantee
consistent snapshots of distributed applications.

4.2 Smart Checkpointing

A transactional distributed memory (TDM) system re-
duces the effort for consistent distributed snapshots to
a minimum by taking advantage of the transactional
character of its distributed memory as described in sec-
tion 3. These ”"Smart Snapshots” make it possible to
avoid the drawbacks mentioned above and gain the ca-
pability of taking snapshots of the entire operating sys-
tem at once which obviously includes all running ap-
plications. In order to create a checkpoint of an entire
distributed system it is usually not sufficient to have
every system node store its own memory content inde-
pendently from other nodes because of potential intern-
ode dependencies thus requiring additional coordina-
tion methods. Unlike traditional distributed memories
Rainbow OS implements a transactional distributed mem-
ory which easily produces consistent memory images of
the entire cluster. This simplifies the task of storing
a consistent snapshot: It suffices to read out the entire
system image and to store it on a persistent device (e.g.
a hard disk). Since this task can be performed using
existing methods provided by the transactional consis-
tency module, taking a checkpoint adds little additional
complexity to the system. No auxiliary algorithms for
distributed snapshots are required.

4.3 Checkpointing in Rainbow OS

The major part of the Rainbow kernel runs in a transac-
tionally distributed mode in conjunction with the appli-
cation transactions. Since the security layers mentioned
in section 1 prevent unintended or malicious access from
the applications to the kernel, no address space separa-
tion is required. Smart Checkpoints of the entire Rain-
bow cluster are easily constructed by storing this global
TDM image to a persistent device. In case of a fall-
back there is no need to specifically read and modify
application-relevant kernel structures. Nearly all impor-
tant kernel components such as the distributed memory
management, the task scheduler and most drivers live
within the transactional distributed memory and are
therefore automatically and transparently included in
every system checkpoint. Those modules of the Rain-
bow kernel which run locally contain only very few in-
formation items which are relevant to distributed kernel
components or applications. One example of a locally
executed kernel feature are the modules providing the
transactional consistence and the network access. Both
of them can be restarted without losing critical infor-
mation which is not also represented by a distributed
object and thus included in any checkpoint.

14

As can be seen from the discussion above, using a
TDM system such as Rainbow OS which keeps most of
its kernel inside the TDM provides an elegant and easy
way to overcome consistency issues on a single com-
puter as well as on an entire network cluster. As the
transactional approach introduces only a small addi-
tional overhead it opens up the possibility to create
system-wide checkpoints with a frequency of a few sec-
onds [7].

4.4 Performance issues

In order to implement a high-performance checkpoint-
ing facility it is important to consider typical run-time
scenarios. In the Rainbow pageserver two different situ-
ations can occur: in normal cluster operation mode the
pageserver is put in charge of regularly creating check-
points of the TDM which results in heavy disk write
operations and only very few read accesses. If a fatal
error induces the fallback of some cluster nodes, the
page server is then faced with different requirements:
the cluster nodes affected by the fatal error are now
requesting the consistent version of TDM data which
they lost due to their fallback. The page server is now
mainly answering data page requests from its hard disk.
A highperformace page server must therefore imple-
ment an efficient writing strategy as well as a technique
to quickly locate and access stored data on its disk.
Our previous 32-bit page server implements a special
disk access algorithm called ”linear segment” [5] which
was specially designed to meet the performance expec-
tations in a transactional cluster environment. It gains
maximum write performance on hard disks by writing
in a strict linear fashion, thus reducing disk seek oper-
ations to an absolute minimum.

4.5 Advancing to 64 bit architecture

Porting the Rainbow page server from 32 bit to 64 bit
introduces interesting challenges regarding the virtual
address space size. The available virtual address space
increases by more than four orders of magnitude from 4
Gigabyte to 256 Terabyte! while the installed physical
memory is solely enlarged by factor 8 from 1 Gigabyte
to 8 Gigabyte. This increase in address space calls for
an adaptation of formerly applied checkpoint storing
implementations. As depicted in figure 6, a Rainbow
snapshot basically consists of two different kinds of in-
formation: the image data which includes all content

1 Despite the notion, the virtual address space width of current
AMD64 / Intel64 architectures is only 48 bit.

of the transactional distributed memory and the meta
data which among other things describes the mappings
between each stored page and its respective block ad-
dress on the hard disk. In the 32 bit version of Rainbow
each checkpoint contains an exhaustive list which spec-
ified the hard disk block address of every logical page
of the TDM.

~
full
TDM data L check-
full point #0
meta data
<
g diff
*g TDM data check-
v full point #1
[72]
S ta dat
g meta data)
<
diff
TDM data check-
full point #n
 / meta data

Fig. 6 Page server disc structure (32 bit)

Due to the vast virtual address space of a 64-bit sys-
tem this is not a viable solution anymore as a complete
list of all pages would contain 2”36 entries. The amount
of meta data per snapshot can be reduced by switching
from a full page list to an incremental list which only
contains modified pages, but this optimization poses
additional challenges as well since it makes the task of
finding a specific version of a TDM page much more dif-
ficult. In the 32 bit system the hard disk block address
of any TDM page stored at any given logical time can be
easily detected by parsing the corresponding meta data
structure. This direct approach is not feasible anymore
if an incremental representation of meta data is used.
Challenge: find new algorithm to provide fast write ac-
cess, short read seek times, low memory consumption,
acceptable complexity of disk reordering.

4.6 Advancing to solid state disks

As described in subsection 4.4 an optimal algorithm
must combine high write throughput of page data with
fast read access in case of a fallback. Common magnetic
storage devices such as hard disks perform best if the
seek time between two subsequent commands is min-
imized. During normal cluster operation many pages

15

are written to the pageservers hard disk aproximately
in the order in which the modifications occur. In case
of fallback the cluster nodes most probably read those
pages in a completely different order. As can be seen
there is no perfect sequence of pages which suits max-
imum write throughput as well as maximum read per-
formance when using magentic hard disks. The current
rise of solid state disk (SSD) drives provides an interest-
ing opportunity to tackle this performance paradoxon.
Since SSD drives use flash chips to store information
their access times are potentially low compared to mag-
netic disk drives because no penalty for positioning the
hard disk head is involved anymore. Additionally SSDs
show great promise for massively increasing the abso-
lute read and write performance by spreading the work-
load to many flash chips which work in a parallel. To-
days SSDs such as Intels X25-E [8] already feature high
performance combined with low access latencies which
makes them the persistent storage media of choice for
the Rainbow page server. Switching from hard disk
drives to SDD drives requires fundamental changes in
the disk storage stuctures and the corresponding algo-
rithms. On the one hand it is not necessary any more
to access the device in a strictly linear way to achieve
acceptable write performance. On the other hand it is
important to consider the specific peculiarities of flash
media chips and the internal composition of SSDs. In
contrast to hard disk drives SDDs feature different op-
timal block sizes for read and write accesses. As can
be seen in Figure 7 it is usually possible to read small
amounts of non-subsequent data such as randomly cho-
sen 4 KB blocks in an efficient way, but writing the
same blocks in the same order will result in compara-
tively low throughput. This is caused by a write access
block granularity which is usally much bigger than 4 KB
in SSDs which makes write accesses with smaller block
size be mapped to more time-consuming readmodify-
write sequences inside the drive. It is therefore very
important to adapt the new algorithm for the 64 bit
pageserver bearing these special requirements in mind:
disk blocks of 4 KB or larger can be read with accept-
able speed, but write access should take place with large
block granularity to avoid internal throughput penalties
by the SSD.

Random 4 KB Reads

Random 4 KB Writes

Sustained Sequential

Read Sustained Sequential Write

35 K IOPS
3.3 K IOPS
up to 250 MB/s
up to 170 MB/s

Fig. 7 Performance figures for Intel X25-E SATA SDD [§]

5 Tools and implementation
5.1 SJC — Small Java Compiler

The Small Java Compiler SJC is a lean but sophisti-
cated compiler translating (a subset of the) Java lan-
guage into native code for different architectures; tar-
geting 8, 16, 32 and 64 bit processors (see [6]). The spe-
cial class “MAGIC” grants low-level hardware access
beyond the traditional Java sandbox. SJC thus recon-
ciles driver & OS-level programming with the benefits
of a type-safe language avoiding potential programming
errors due to memory arithmetic or misused pointers
(see [14]). The runtime structures created by the com-
piler discriminate between primitive data-types (called
scalars) and reference variables. The runtime structures
created by the compiler are well organized (see [6]) and
simplify the inspection of references in tasks like reloca-
tion or garbage collection. There are two categories for
scalar objects depending on the intended memory con-
sistency model: “direct scalars” are directly allocated
in the object descriptor and “indirect scalars” are allo-
cated in a separate allocation pool. The compiler itself
was also implemented in Java with appropriate packag-
ing to allow the addition of a new language frontend,
the provision of additional codegenerators (backend) for
different target machines. The creation of disk-bootable
images, hexfiles for EEPROM flashing or executable
files for Linux and Microsoft Windows works smoothly
due to the clean packaging of the compiler. The com-
plete SJC tool chain (see Figure 8) from source code
to output file is modularized, well arranged and eas-
ily teachable. Comprising the complete toolchain, no
separate linkers or loaders are required to create an ex-
ecutable or bootable image.

Bootable
image

Runtime

environment \
/ SIC

Executable

Source-

code
EEPROM

file

Fig. 8 Tool-chain in SJC

5.2 Binding schemes

Depending on the operation mode — static objects or
movable objects — the compiler resolves references dur-
ing compilation by inserting absolute addresses (static)

16

or taking a detour by dereferencing the class descriptor
of the invoked instance (movable). Whereas the gener-
ation of movable code facilitates the relocation of data
and code, the static compilation mode offers faster pro-
gram execution (see Figure 9).

Image containing
data & code

Image containing
data & code

class Test [class Test

public static void test(); public static void test();

code of Test.test() code of Test.test()

Test.test(); Test.test();

"static" movable code

Fig. 9 Binding schemes in SJC

During (the still ongoing) enhancement and exten-
sion of the compiler, much attention was paid to its
ability of selfcompilation, i.e. the compiler is capable
of compiling itself. Therefore, it is possible to integrate
the compiler itself in the source-code to be compiled,
providing the program or system contained in the re-
sulting image with the potential ability for evolution or
extension. Consequently, Rainbow OS contains its com-
piler which can be used to extend the running system
easily with new functionality.

Besides the advantages with respect to security and
safety issues, the usage of a type-safe and widespread
programming language like Java offers the opportunity
to benefit from existing IDEs such as Eclipse, facilitat-
ing the development process.

5.3 Green Shell

Like other operating system, too, Rainbow will provide
several possibilities for interaction with the user rang-
ing from text-based commands to graphical user inter-
faces. A representative of the text-based user input is
the so-called ”Green shell”. Its name origins from the
predecessor of Rainbow OS, Green OS and the color
used for displaying text. The Green shell is designed
to be a lean, but fully functional user shell applica-
tion. It provides several features setting it apart from

other usual text-based inputinterfaces such as the pos-
sibility to append additional virtual screens to the cur-
rent screen displayed on the monitor and rotate between
these screens and the concept of active text.

rotate() rotate() rotate()

screen 0 screen 1 screen n

K rotate() /

Fig. 10 Rotating between virtual screens

Active text takes advantage of the fact that in most
cases the commands available for invocation are already
displayed on the monitor. The user therefore can simply
navigate with his cursor to the desired command and
execute it with a special shortcut. For the case that
a supported command isnt currently displayed on the
green-shell, the user can simply type it in and invoke
it in the same way. As Rainbow OS keeps all its code
and data in the Transactional Distributed Memory, it
can dispense with the burden of managing a file-system.
Code and data is represented by objects and runtime
structures in the TDM which can be invoked and ac-
cessed by active text calls. If, for instance, a user wants
to invoke a method "run” implemented by the class
”Task”, he can simply click on a preexisting text piece
”Task.run” to execute that method.

5.4 Wissenheim

A real application, proving the feasibility and perfor-
mance of the concepts integrated in Rainbow OS is
“World of Wissenheim”. The “World of Wissenheim”
project is an interactive 3D world intended to provide
a learning and leisure environment. The representation
of the participants by avatars suggests a direct form of
“virtual presence” facilitating encounters in the virtual
world. Approximately 30 topics, interactive animations
and social scenarios have already been implemented.
In contrast to classical message-passing based interac-
tive applications Wissenheim makes use of the transac-
tional memory paradigm to share a scene graph struc-
ture among the participating nodes. Every node can ac-
cess and alter the scene graph directly allowing a more
direct programming model. Wissenheim uses Rainbows
unique ability to support weaker consistency models to
relax consistency for highly interactive but non critical
content to boost overall performance.

17

6 Perspective
6.1 Garbage collection issues

An interesting research topic is the evaluation of dif-
ferent garbage collection schemes. Currently memory
management will record every new object instance and
its reference variable in a so-called backpack. With this

information it is determinable whether an object is garbage

or not. More or less relaxed reference tracking schemes
are conceivable and will be studied.

Another possibility to detect garbage is using offline
garbage collection on the page server. As the pageserver
holds successive versions of cluster checkpoints on its
disk, it can easily perform garbage collection tasks on
the stored images which are not subject to change any-
more. Although those TDM snapshots are not com-
pletely up-to-date, they can be used to detect objects
which are no longer reachable from the object root set.

Since the type-safe implementation of Rainbow al-
lows for nonconservative garbage collection algorithms,
it is obvious that any object which was once found to be
garbage remains garbage until its memory is reclaimed
by the operating system. Thus it is possible to sup-
plement the on-line garbage collection algorithm which
runs in a distributed fashion on some or all cluster nodes
with special ”hints from the past”. These hints will in-
dicate the conservative garbage state of objects, in spite
of the fact that this information was collected ” off-line”
on older TDM checkpoint images.

6.2 Minimally-invasive recompilation

Improvement, extension and evolution have always been
characteristics of software development. Whereas these
evolution issues are easily solved for stand-alone, short-
running software, a long-running system with a persis-
tent memory imposes several challenges. Considering
the recompilation of existing classes in a system, the
literature distinguishes between several stages ranging
from the so-called ”big bang” recompilation (simply re-
compile all existing classes) over cutoff-recompilation
(limiting the amount of recompiled classes by observ-
ing dependencies) up to "smart” recompilation tech-
niques [1]. Compatibility of runtime structures, consis-
tency and type-safety concerns are of special interest as
they directly interact with the possibilities and limits
of the applicable recompilation modes.

Another issue is the evolution of instances referenc-
ing obsolete versions of classes. Due to this fact, the
limitation of the amount of recompiled classes is of high
interest as it directly affects the number of instances
to be converted, which may add up to a considerable

amount in an orthogonally persistent operating system.
Additionally the use of a cluster operating system with
transactional and other consistency models brings the
efficient distribution of the work load for recompilation
and evolution tasks into focus. All these issues are part
of the work done on the minimally invasive recompila-
tion techniques in the Rainbow cluster operating sys-
tem with the perspective of an operating system, exten-
sible and evolvable at runtime with a minimal impact
on the runtime structures affected by the changes, and
yet providing the ease of a type-safe programming lan-
guage.

7 Related work

L. Keedy presented the idea of distributed shared mem-
ory systems in 1985 [9]. IVY [10], Mirage [4] and Tread-
Marks [3] implemented page-based distributed shared
memory systems with different consistency models. A
formal treatment of consistency models is available in
[15], leading to references and discussions of a multitude
of DSM systems and middleware packages.

The XtreemOS project aims at enabling Linux for
the Grid by integrating vital Grid services directly into
the operating system. The Object Sharing Service of
XtreemOS [11] provides a transparent way for data
sharing of distributed applications running in a grid
environment using a transactional memory approach.

The Intel STM C++ compiler [2] [12] integrates sev-
eral means for defining transactional regions in the code
including a ”High Performance Parallel Optimizer”, an
” Automatic Vectorizer” and a ”Multi-Threaded Ap-
plication Support”. These compilerdirectives guarantee
the proper operational sequence of the code regions ex-
ecuted in parallel.

References

1. R. Adams, W. Tichy, and A. Weinert. The cost of selec-
tive recompilation and environment processing. ACM Trans.
Softw. Eng. Methodol., 3(1):3—-28, 1994.

2. A. Adl-Tabatabai, B. Lewis, V. Menon, B. Murphy, B. Saha,
and T. Shpeisman. Compiler and runtime support for ef-
ficient software transactional memory. In ACM SIGPLAN
2006 Conference on Programming Language Design and
Implementation, Ottawa, Canada, 2006. STM.

3. C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R.
Rajamony, W. Yu, and W. Zwaenepoel. Treadmarks: Shared
memory computing on networks of workstations. Computer,
29(2):1828, 1996.

4. B. Fleisch and G. Popek. Mirage: a coherent dis-
tributed shared memory design. SIGOPS Oper. Syst. Rev.,
23(5):211223, 1989.

5. S. Frenz. Zuwverlaessiger verteilter Speicher mit transak-
tionaler Konsistenz. PhD thesis, University of Ulm, 2006.

18

6.

10.

11.

12.

13.

14.

15.

S. Frenz. Small java compiler. www-vs.informatik.
uniulm.de/dept/staff/frenz/private/compiler.html,
2008.

S. Gerhold, M. Schoettner, M. Fakler, M. Sonnenfroh, and
P. Schulthess. Smart snapshots on top of a distributed trans-
actional memory. 03 2007.

Intel. IntelA ®X25-E SATA Solid State Drive. Intel Cor-
poration.

J. L. Keedy and D. A. Abramson. Implementing a large
virtual memory in a distributed computing system. In In
Proceedings of the Eighteenth Annual Hawaii International
Conference on System Sciences, 1985.

K. Li. Ivy: A shared virutal memory system for parallel com-
puting. In International Conference on Parallel Processing,
1988.

M.-F. Mueller, K.-T. Moeller, M. Sonnenfroh, and M.
Schoettner. Transactional data sharing in grids. In Proc.
of the International Conference on Parallel and Distributed
Computing and Systems, 2008.

B. Saha, A.-R. Adl-Tabatabai, A. Ghuloum, M. Ra-
jagopalan, R. L. Hudson, L. Petersen, V. Menon, B. Mur-
phy, T. Shpeisman, E. Sprangle, A. Rohillah, D. Carmean,
and J. Fang. Enabling scalability and performance in a large
scale cmp environment. In EuroSys 07: Proceedings of the
2nd ACM SIGOPS/EuroSys European Conference on Com-
puter Systems 2007, pages 7386. ACM, 2007.

M. Wende, M. Schoettner, R. Goeckelmann, T. Bindham-
mer, and P. Schulthess. Optimistic synchronization and
transactional consistency. In Cluster Computing and the
Grid, 2002. 2nd IEEE/ACM International Symposium on,
page 331, 21-24 May 2002.

N. Wirth and J. Gutknecht. Project Oberon - The Design
of an Operating System and Compiler. Number SBN 0-201-
54428-8. Addison-Wesley, 1992.

David Mosberger. Memory consistency models. SIGOPS
Operating Systems Review , Volume 27 Issue 1, 1993.

