Embedded Selforganising Systems

Editorial

Issue on Distributed and Self-organising Systems

Matthias Werner

I guess, everybody who works in the area of dis-
tributed computer systems knows Lamport’s famous
definition of distributed systems [1]:

A distributed system is one in which the failure
of a computer you didn’t even know existed can
render your own computer unusable.

Well, this quote is aged more than 20 years. There
may be cases, where this definition is still valid. But
distributed systems are all around, and failure trans-
parency is an objective most designs of distributed sys-
tems follow (or, at least, try). Moreover, gaining one
or more kinds of transparency is one of the core prob-
lems in distributed system design. Beside failure trans-
parency, there are location transparency, name trans-
parency, access transparency, migration transparency,
etc. With other words, the designer aims to hide the
fact, that the user has to deal with something distributed
at all. This is done because distribution is a quite con-
fusing thing. The human structures of thinking are not
especially suited for distribution. Of course, we can han-
dle it. But it is a well-known fact that programming of a
message passing system is much more error-prone than
programming a shared memory system, which is in turn
more error-prone than programming a non-concurrent
system. Thus, frequently, the illusion is constituted that
the system the user is dealing with is a classical mono-
lithic system. A lot of approaches and abstractions have
been invented to support this illusion. Many of them
are so common that we take them for granted, not even
noting their existence (unless they fail, acknowledging
Lamport’s definition), such as RPC, DNS, you name it.

Matthias Werner

TU Chemnitz

Operating Systems Group

E-mail: mwerner@Qcs.tu-chemnitz.de

However, mock monolithic systems should not be
the last word. There are applications where distribu-
tion is inherent, i.e. it appears at the level of the appli-
cation’s semantic. In this case, there is still a need for
new abstractions, approaches, and mechanisms, which
help the programmer to deal with distribution in a bet-
ter way. Also, there exist approaches, where the pro-
grammer does not have to care about the distribution
explicitly, since the system cares itself. Such systems ex-
hibit properties that are usually called self-x properties,
where * is a wildcard for terms like “managing”, “con-
trolling”, “healing”, “organising” and so on, even “self-
adaptive” systems have been spotted.! Distributed sys-
tems with self-x properties can hide distribution by a
wide range of measures, starting from hiding distribu-
tion by use of global abstract objectives (which will
be broken down and distributed by the system’s intel-
ligence), and ranging to hiding the system objectives
itself, i.e. the semantic of the overall system. The last
is true, e.g., in some cases of systems with swarm or
flock intelligence, where the system behavior seems to
emerge in some magic way.

In this very tension between approaches to camou-
flage distributed systems as monolithic systems and ap-
proaches finding new ways to deal with distribution in
general I see the contributions of this issue’s papers. I
am looking forward to read interesting articles on this
domain.

I am looking forward?

That is true. At this very point I have to allude to
the fact, that this editorial differs a bit from most other
editorials in scientific journals. Whereas other editori-
als usually serve as introductions to articles in the issue,

I In my opinion, “self-adaptive” might be a pleonasm, since
“adaptive” implies already a self-reference.



compare their views and approaches, and discusse the
relation, you will not find anything similar in this edi-
torial. The reason is simple: At the time I am writing
these lines I have no idea how the final version of this
issue will look like. The reason in turn is due to the pub-
lishing scheme of the ESS Journal. We take advantage
of the greater flexibility and agility an e-journal can
provide in comparison to the traditional print journal:
Instead of imitating the classical creation process of a
journal with fix issues we use the “sliding issue” model.
Each issue of the ESS Journal starts with an editorial
that also serves as a kind of call for contributions. Any
contribution that is reviewed and accepted will be pub-
lished as soon as the final version is received by the
editorial board. In this way, an issue is “growing” until
the editors decide to close it. With other words, you
can already read articles while other articles are still in
the process of preparation. In addition, there may ex-
ist other topic-specific issues in parallel, where the very
same is true.
Sliding issues provide a number of advantages: Firstly,

the time to publish a single article is significantly shorter

than in traditional journals. (Well, this is an advantage
almost all e-journals share.) Secondly, several topic-
specific issues can co-exist, what makes it easier to re-
act to a hot or upcoming topic. Thirdly, direct reactions
and answer articles to a published article can be found
in the very same issue, as well as reactions to the re-
actions by the original authors. In this way, productive
discussions might come up: the best, what can happens
to a scientific journal.

From the meta level perspective, sliding issues are
another way to deal with distribution we find in our
daily life. They became possible due the (meanwhile
not-so-new) technology. And while the technology helps
to handle the distribution one can find in reality, I hope
for fresh ideas to handle distribution within the tech-
nology itself.

References

1. L. Lamport. Distribution. E-mail correspondence, May 28
1987. Message-Id: <8705281923.AA09105@jumbo.dec.com>.



