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Abstract Today’s widely used programming approach for
mobile distributed systems, e.g., swarms, is bottom-up. I.e.,
the programmer has to be aware of the system’s distribution.
Such a kind of programming corrupts the principle Sepa-
ration of Concerns and turns out to be complicated. This
article proposes a top-down approach for the programming
of mobile distributed systems. It should be incorporated in a
new operating system to be developed by our research group
[17] [18].

Classical distributed systems often are intended to hide
their distribution from the user but not stringently from the
programmer. Moreover, most applications don’t consider the
executing system’s location and mobility, respectively. How-
ever, state-of-the-art mobile distributed systems’ applications
are widely based on location and motion data. So, the pro-
gramming approach of classical distributed systems which
abstracts from location and motion might no longer be con-
venient. We suggest raising the level of abstraction in order
to hide the system’s distribution from the user and program-
mer, in contrast to the bottom-up programming approach of,
e.g., swarms. This distribution transparency within the ex-
ecuting system is intended to be combined with location/-
motion awareness within the application so that the require-
ments of modern applications can be met. The programming
of such a distributed mobile system will be separated from
the complex and error-prone application partitioning and as-
signment a bottom-up approach would impose. This offers
further benefits like scalability and robustness with regard to
scheduling of sub-activities and sub-systems, respectively.
We promote the use of spatiotemporal constraints to realize
such a top-down approach. These constraints will be intro-
duced and explained using two examples.
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1 Introduction

Networking, miniaturization, embedding, and mobility are
important trends in the ICT field. Related to that, there is an
increasing number of distributed and mobile applications.
Many of them are characterized by specific communication
patterns like client/server or peer-to-peer, and the explicit
use of dedicated protocols. Thus, such a distributed applica-
tion can be seen as a group of nodes where the communi-
cation and cooperation has to be specified explicitly, called
node view.

By comparison, a system view with transparency regard-
ing several aspects of distribution can raise the level of ab-
straction. The required communication and cooperation be-
tween the nodes is performed implicitly by some middle-
ware or operating system supporting the abstractions. Thus,
the programmer (and user) don’t need to care about certain
distribution issues like the executing system comprising sev-
eral sub-systems. The distributed system can be used and
programmed as a one-piece system. However, applications
that have to be aware of certain locations/motions are usu-
ally designed with the node view in mind. So, we will as-
certain how to support a system view of a distributed system
for programmer and user while keeping motion or location
awareness within the application to be executed (and also
for programmer/user). This is the objective of the distributed
operating system to be developed FlockOS – Federation of
linked objects with common tasks Operating System.

1.1 Transparency and Awareness

The need to consider certain properties like the executing
system’s distribution could make programming (more) diffi-
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cult. Hiding such properties from the programmer and user
is called transparency and could facilitate programming/us-
ing the system. In contrast, awareness explicitly considers
certain issues, e.g., location and motion data as input for
state-of-the-art mobile applications.

In computer science, transparency can be seen as a black
box approach with encapsulation whereas awareness follows
a white box approach. As a first conclusion, both terms stand
in a trade-off relationship to each other. However, apply-
ing these concepts to different entities could help develop-
ing powerful applications. In order to delimit our concept,
we specify which kind of transparency and awareness, re-
spectively, should be supported: Distribution transparency
describing a system abstraction from locations within itself
in order to realize the system view to both user and pro-
grammer. In contrast, location and motion awareness are
essential features of the application. Processing motion or
location data could be done passively or actively, i.e., the
application not only reacts to given input but rather affects
location and motion data of related objects or itself (in-) di-
rectly. As a consequence, some of the intended applications
require their executing system to be mobile. This does not
conflict with the introduced distribution transparency within
the system because it should be handled as one system even
if it is mobile. Thus, FlockOS has to have means to provide
motion and location awareness to the application and an ab-
straction that hides executing system’s distributed character
from user and programmer.

1.2 Real Space-Time

Numerous existing embedded systems are real-time systems
where the correctness of an application does not only depend
on a computation result but also on meeting given timing
constraints. These timing constraints are typically expressed
by deadlines. Real-time requires an appropriate scheduling
that takes timing constraints into account.

Scheduling singly based on time properties ignoring the
presence of space may not be appropriate for mobile dis-
tributed systems. Space has to be taken into account for ap-
plying our approach of location and motion awareness, since
the intended applications might be subject to spatial restric-
tions. Thus, the integration of space and time leads to the
concept of Real Space-Time. Only a holistic view at time
and space can provide correct results. A reductionistic view
taking into account just one of them is possible only in sta-
tionary, i.e., non-moving systems.

1.3 Applications

With the spreading of mobile systems, there is a variety of
applications that can be simplified or even just realized fol-

lowing our approach. Below, some example scenarios shall
give an impression:

– Modern cartography bases on systems of cooperating
satellites. Controlling them could be simplified enormously
applying such a systemic point of view.

– Traffic jams waste time, resources and money. The ap-
proach of Hovering Data Clouds (HDCs) [16] could help
limiting them. A decentralized, flexible distributed sys-
tem shall be constructed.

– Cooperating robots, e.g., robot soccer, could take advan-
tage of a system view.

A more detailed discussion of possible applications can be
found in [18].

The remainder of this paper is structured as follows: Sec-
tion 2 discusses our top-down approach for mobile distributed
systems in detail. Section 3 provides information about the
suggested programming abstraction for motion aware appli-
cations. The use of this programming abstraction is demon-
strated by two examples in Section 4. Section 5 discusses
related work and Section 6 presents our conclusions.

2 The Top-Down Approach

Section 1 introduced the concepts of motion awareness within
the application and distribution transparency within the exe-
cuting system. The latter is an abstraction of the underlying
application executing system and enables a system view to
user and programmer. It allows programming applications
for distributed mobile systems as if the systems comprises
only one piece. A side effect of this concept is to hide fur-
ther characteristics of distributed systems. [8] distinguishes
between different kinds of distribution transparency. So, we
use this term as a synonym for a subset of it. Which con-
crete kind(s) are realized often depends on the application’s
requirements. For example, application migration might be
or not be an explicit part of the application. Imagine the ob-
servation of a certain area and the observing system com-
prises several sub-systems that alternate observing the area.
According to the system view, the user notices ”the system”
observing the area and not ”the system’s sub-systems”. In
that case, the application’s migration from one sub-system
to another that continues observing should be handled im-
plicitly. In contrast, an explicit migration may be described
generically, i.e., how the application can be influenced by the
executing system in order to change the application’s iden-
tity. For example, a ball in a robot soccer game represents the
application and a description how to pass the ball to another
soccer player describes the application migration explicitly.
The second case is not contrary to the system view as both
views have in common that programmer and user are dis-
burdened from specifying how an application is partitioned
into several sub-activities and how they are assigned to the
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sub-systems, i.e., how they are coordinated and scheduled,
respectively. S/he rather programs and uses a virtualized ex-
ecuting system. The concept of system view realized by dis-
tribution transparency also allows programming generic ap-
plications. A generic application description could be used
to describe a class of applications that do not refer to a par-
ticular executing system.

In contrast to the programming approach used in most
existing swarm (operating system) projects like [7], we want
to abandon the bottom-up approach and to realize a top-
down programming approach that bases on the system view,
i.e., the mobile distributed executing system is programmed
as a whole and not with its sub-systems in mind. Our pro-
gramming abstraction’s innovative concept is to support this
top-down approach and to integrate it into a new operat-
ing system that supports location and motion aware appli-
cations. That is, the application’s partitioning and the sub-
systems’ coordination should be shifted to a lower system
level, i.e., the operating system, where it can be automated
and possibly verified. If that automatization works correctly,
it allows using systems that comprise a number of sub-systems
whose coordination could not be handled manually. If fol-
lowing a bottom-up approach, a programmer would have to
account for sub-system failure manually which would raise
the code’s complexity and error-proneness dramatically. In
our top-down approach, this is intended to be handled by
the operating system automatically. The fields of research
towards the development of our operating system for dis-
tributed mobile systems are already pointed out by [18]:

– Programming Abstraction
– Real Space-Time Scheduling
– Correctness Reasoning

This paper is focused on introducing a suitable program-
ming abstraction for applications in real space-time and par-
ticularly on underlining the genericness and flexibility.

3 Programming Abstraction

In this section, we will introduce spatiotemporal constraints
as generic programming abstraction that allows realizing the
top-down programming approach while providing motion
awareness within the the application which is beneficial for
implementing applications in real space-time where, besides
temporal restrictions like in real-time systems, spatial con-
straints have to be met as well.

Constraints are suitable to express incomplete informa-
tion and relationships between different objects. E.g., a lin-
ear system of equations can be regarded as arithmetic linear
constraints [3]. Resolving them is done by a so-called con-
straint resolver. It might resolve the linear system of equa-
tions by using the Gauss elimination. Constraint program-

ming allows solving combinational problems, e.g., schedul-
ing [9], [5], based on incomplete or imprecise information.

Spatiotemporal constraints, i.e., constraints that consider
space and time information, are intended to extend the im-
perative part of application code in order to introduce the
awareness of restrictions in space, time and motion. A fea-
sible application schedule has to adhere to these given con-
straints. We consider that spatiotemporal constraints are a
suitable programming abstraction because the top-down pro-
gramming relies on the system view which hides details from
the programmer. These have to be (re-) constructed at run-
time according to the given constraints. In order to con-
firm the understanding of how spatiotemporal constraints al-
low realizing the top-down approach and facilitate motion
aware generic programming in real space-time, we distin-
guish three classes of spatiotemporal constraints:

– Application Constraints
– System Constraints
– Runtime Constraints

Application constraints are given by the application pro-
grammer and extend the usual imperative code. They ex-
press conditions and restrictions a certain application re-
source is subject to. Imagine the observation of a certain area
on earth by several satellites. The application’s execution is
bound to a spatial area. The resource this spatial constraint
has to be assigned to is a satellite’s observation system like a
camera. It is available for the application’s scope when it is
inside the specified spatial area. So, the observation system
has to be imposed with a spatial constraint that represents
that area. Besides spatial constraints, temporal or motional
constraints like a maximum execution time or that the sys-
tem’s velocity that has to be adjusted to a related object’s
one are imaginable. A generic application description im-
poses to use generic (constraint) parameters instead of ex-
plicit values. That is, some input like a concrete area to be
observed may be given later. This provides the possibility
that a programmer describes applications having the same
intention generically. More abstractly, the applications’ ex-
ecuting system can be considered as a virtualized executing
system the programmer has not to be aware of its detailed
physical properties.

While the application constraints are subject to the appli-
cation’s description which abstracts from the executing sys-
tem, we suggest using system constraints in order to describe
the executing system’s capabilities. This adheres to the sys-
tem view because they are intended to specify the motion
capabilities and restrictions of an individual sub-system like
a maximum velocity or a description of possible motions
in space-time. The distinction between application and sys-
tem constraints allows programming different applications
for one system and vice versa while re-using application
code. For example, it is necessary to describe a satellite’s
orbit in order to allow appropriate scheduling.
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Fig. 1 Different constraint types and their validity within an applica-
tion’s life circle.

So-called runtime constraints, which represent runtime
information, are used to instantiate all constraints in order
to allow a scheduling algorithm to derive a schedule from
a generically programmed but later instantiated application.
Examples for runtime constraints are the total number of
available sub-systems (if this is not static), their initial po-
sitions or explicit spatial and temporal restrictions that arise
from the current situation. That implies that runtime con-
straints might be of dynamic nature, i.e., they are allowed to
change during execution. On the one hand, a generic appli-
cation description including numerous runtime constraints
increases flexibility and it could be used in a number of
different systems. On the other hand, this might increase
the solution space for the constraint resolver. So, the dis-
tinction between runtime and non-runtime constraints points
out to be reasonable in terms of efficient scheduling. Staged
scheduling at compile time when only application and sys-
tem constraints are known might decrease the solution space
and so reduce scheduling overhead at runtime. This staged
scheduling approach respectively the constraints’ validities
in an application’s life circle are illustrated by Figure 1.

4 Examples

4.1 Problem

In this section, we demonstrate using spatiotemporal con-
straints as programming abstraction for applications in real
space-time. We give two examples that adhere to the same
application but different executing systems in order to par-
ticularly underline the approach’s genericness. The exam-
ples help understanding the constraints’ intention. We do not
focus on the constraint resolving, i.e., how a certain sched-
ule is derived from the application code extended with these
constraints. For the ease of understanding, the constraints
are given in a mathematical fashion. Further consideration
about a suitable language-based programming interface and
a stepwise constraint resolving will be published elsewhere.
The example application is engaged in observing a certain

area. In C-like pseudocode, its imperative programming lan-
guage part can be given as:

1 vo id * observe_area( i n t obsystem , i n t num) {

2

3 image* total = malloc(num* s i z e o f (image ));
4 image frac;

5

6 wh i l e ( num > 0 ) {

7

8 read(obsystem , &frac , s i z e o f (image ));
9 total[num --] = frac;

10 }

11 r e t u r n ( vo id *) total;

12 }

Listing 1 Pseudocode of the observation application

image represents a data structure for image data. The vari-
able total accumulates the pictures taken by the observa-
tion system while executing the application. frac contains
the current taken picture. The read operation uses obsystem
as file descriptor that refers to the observation system, e.g., a
camera. This descriptor represents a resource that is required
to execute the application. It is available, i.e., the read opera-
tion succeeds, iff the application’s identity is inside the area
to be observed. When the resource is not available, the read
operation is assumed not to return, i.e., it is a synchronous
operation. In order to realize this resource’s availability, a
spatial constraint has to be attached to obsystem. Applica-
tion migration to the next sub-system is done implicitly, i.e.,
it does not need to be considered at application level. How-
ever, it implies that the application state, e.g., at least total
and num, has to be submitted to the sub-system that exe-
cutes the application next. We abstract from the concrete re-
alization and assume application migration is reliable. That
application code prescinds from the executing system and
therefore adheres to the introduced system view.

4.2 General Conventions and Assumptions

Before starting, several general assumptions and naming con-
ventions are given:

1. The application executing system’s sub-systems ob ji are
elements of a set of resources R.

2. Each ob ji’s location respectively motion is represented
by a space-time trajectory (STT) stt [t0;t1]

ob ji
(t). As a motion

could be partitioned into several sub-motions, each sub-
motion’s STT is valid only for a certain time interval.
The expression stt [t0;t1]

ob ji
(t) means that ob ji’s STT is valid

only during the interval [t0 ≤ t ≤ t1].
3. The application identity’s location at time t is denoted

by sttcur(t), i.e., it is a placeholder for the virtualized
executing system the programmer refers to.

4. The spatial area to be observed is represented as a generic
closure space cs(t) because its geometric form and in
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which coordinate system it is represented is not known
at programming time. It represents a set of space-time
points.

5. The expression sstcur(t)∩cs(t) determines if the applica-
tion, respectively its current identity, is inside the spatial
area denoted by cs(t) at time t. If the expression returns
the empty set, the application is not inside cs(t). If it is
not the empty set, the application must be inside cs(t).

6. In order to determine if the resource obsystem is avail-
able, it is assumed that a value equal to 1 implies that
it is available and a value not equal to 1 that it is not
available.

7. Each ob ji ∈R has an observation system. The expression
obsystemon

ob ji
(t0) denotes that ob ji switches on its ob-

servation system at time t0. Analogously, a sub-system
switches off its observation system at t1 expressed by
obsystemo f f

ob ji
(t1).

8. When the read operation in line 7 from listing 1 is be-
ing executed successfully, i.e., the resource obsystem is
available on the application’s identity, this object’s ob-
servation system is switched on automatically. If the ap-
plication sleeps or the resource is not available, the ob-
servation system is switched off.

9. Each ob ji ∈ R has a data sending system. sendob ji(t) im-
plies that ob ji sends the application’s state to the next
application executing sub-system at time t. The commu-
nication is assumed to be reliable.

4.3 Satellite Observation

4.3.1 Specific Assumption

In this example, the area observation is done by several satel-
lites on fixed non-geostationary orbits, like illustrated by
Figure 2. The specific assumption in this example is that the
space-time is restricted to the two-dimensional case, i.e., one
polar dimension, the angle, and one time dimension.

4.3.2 Constraints

The following spatiotemporal constraints describe the ap-
plication’s non-imperative part, the satellite system and the
runtime parameter. Application constraints are denoted by
aCk, system constraints by sCk and runtime constraints by
rCk where k is the number of the specific constraint.

The application’s resource obsystem is available iff the
application’s virtualized executing system sstcur(t)’s current
position is inside the spatial area cs(t) to be observed. This
approach allows specifying the application constraints once
for several area observation applications and underlines its
genericness.

s0

s2

s1

Earth 0°

90°

180°

270°

Fig. 2 Three satellites that have to observe the area on the earth’s sur-
face marked by the dashed lines.

aC1: The application’s resource obsystem is available iff the
application’s identity is inside the area to be observed:

∀t : sttcur(t)∩ cs(t) 6= /0⇐⇒ obsystem = 1

The system constraints are used to describe the execut-
ing system.

sC1: There are n satellites which denote the number of avail-
able resources. This constraint preserves the distribu-
tion transparency because it is given in a generic fash-
ion:

∃n : R = {s0,s1, . . . ,sn−1}

sC2: Motion awareness and distribution transparency are pre-
served by generically describing the satellites’ motions.
Each satellite si’s current position at time t respec-
tively motion is described by an STT stt [t0;t1]

si (t), given
an initial angle σ s

si
at a starting time ts and an angular

velocity ωsi :

∀si ∈ R;∀t;∃ts;∃ωsi :

stt [ts;∞]
si (t) =

(
ωsi · (t− ts)+σ

s
si

)
mod 360◦

Runtime constraints can be given by the user, e.g., which
spatial area has to be observed, but they also could be de-
termined automatically by the satellite system itself, e.g.,
the number of available satellites and their initial positions.
They instantiate the generic descriptions of the application
and the executing system by setting in explicit values as far
as possible.

rC1: A satellite si is inside or outside cs(t) at time t when
its current position sst [t0,t1]

si (t) is inside or outside an
orbit sector denoted by σ0(t) and σ1(t) that is specified



6

by the user. This instantiates the application constraint
aC1:

∀si ∈ R;∀t, t0, t1;∃σ0(t),σ1(t) :

sst [t0;t1]
si (t)∩cs(t) 6= /0⇐⇒ [σ0(t)≤ sst [t0;t1]

si (t)≤σ1(t)]

rC2: Runtime constraint rC1 is instantiated by the assumed
user input:

∀t : σ0(t) = 25◦∧σ1(t) = 40◦

rC3: The number of available satellites is assumed to be
constant during execution. In fixed systems, this might
be a system constraint but so it points out the approach’s
genericness:

∀t : n = 3

rC4: The satellites’ initial angles are assumed to be σ s
s0

=
70◦, σ s

s1
= 190◦ and σ s

s2
= 310◦.

rC5: It is assumed the applications starts at ts = 0.
rC6: The satellites’ orbit is assumed to be 1000 km above

the earth surface and their period of revolution is as-
sumed to be 100 min. So, the resulting angular veloc-
ity of each satellite is ωsi = 0,06◦/s for i = 0,1,2. To-
gether with runtime constraints 4 and 5, it instantiates
the system constraint sC2.

Note that there are no time constraints given because the
application is assumed to run continuously until it is stopped
manually. So, the satellites STTs’ time intervals are valid in-
definitely long. It would be an easy task to introduce further
runtime constraints.

4.3.3 Schedule

After specifying all constraints, the scheduling algorithm
has to determine a feasible schedule that adheres to the given
constraints by assigning explicit values to parameters that
are not assigned so far. Here, only the observation systems’
activations are not assigned. All other parameters are fixed
according to system constraint sC2 and the runtime con-
straints. The resulting satellite schedule, that represents the
node view, is:

s0 :


obsystemon

s0
(87 1

2 min+100min · k)
obsystemo f f

s0 (91 2
3 min+100min · k)

sends0(91 2
3 min+100min · k)

s1 :


obsystemon

s1
(54 1

6 min+100min · k)
obsystemo f f

s1 (58 1
3 min+100min · k)

sends1(58 1
3 min+100min · k)

s2 :


obsystemon

s2
(20 5

6 min+100min · k)
obsystemo f f

s2 (25min+100min · k)
sends2(25min+100min · k)

x

y

0

start
d0

d1

Fig. 3 Observation of the shaded area by two drones.

From this satellite schedule, the designated application’s
one, denoted by tapp

e , is derived. The user is only interested
in this schedule because s/he is not aware of the explicit ex-
ecuting system in order to adhere to the system view. So,
we gave the satellite schedule to point out the correlation
between both different point of views.

tapp
e =


[20 5

6 min+100min · k;25min+100min · k]
[54 1

6 min+100min · k;58 1
3 min+100min · k]

[87 1
2 min+100min · k;91 2

3 min+100min · k]

The number of revolutions is denoted by k = 0,1,2, . . .. We
omit the schedule’s validation at this point because it obvi-
ously meets all constraints.

4.4 Drone Observation

4.4.1 Specific Assumptions

In the second example, several drones are intended to ob-
serve a certain area like the shaded one illustrated by Figure
3. This example differs from the satellite observation de-
scribed in Section 4.3 because the drones’ STTs are freely
configurable so that there are more degrees of freedom for
the scheduler. That is, the scheduling algorithm has to assign
explicit values to more generic parameters than in the first
example. We do not investigate how a constraint resolver
might derive a feasible schedule. We point out that our pro-
gramming approach allows to generically describe applica-
tions in order to abstract from the underlying executing sys-
tem. The specific assumptions made to simplify matters in
that example are:

1. The space-time is restricted to the three-dimensional case
(two pace and one time dimension). Therefore, we de-
note the space-time trajectories −→stt [t0;t1]

ob ji
(t) in order to ex-

press the multiple space dimensions.
2. We abstract from the drones’ detailed motions, i.e., take-

off and landing are not considered. Motions are free of
acceleration and deceleration.

3. To simplify matters, the drones perform only rectilineal
motions.
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4.4.2 Constraints

In order to demonstrate the programming approach’s gener-
icness, we use the same application constraints introduced
in section 4.3.2. Although the executing system is a differ-
ent one, re-using them is allowed by programming against
a virtualized executing system. However, the different exe-
cuting system requires specifying other system constraints.
Primarily, they generically describe the drones’ motions as
those are not fixed like the satellite ones’ in Section 4.3.

sC1: There are n drones:

∃n : R = {d0,d1, . . . ,dn−1}

sC2: Each drone di’s current position at time t is described
by its STT −→stt [t0;t1]

di
(t) given an initial position (x0;y0)T

at time t0 and a velocity vector −→v [t0;t1]
di

:

∀di ∈ R;∀t, t0, t1 :

−→stt [t0;t1]
di

(t) =
(

x0
y0

)
+−→v [t0;t1]

di
· (t− t0) (1)

sC3: The drones must not collide, i.e., their STTs must not
be equal for a certain time. This only holds for drones’
STTs’ time intervals that overlap:

∀di,d j ∈ R;∀t0, t1, t2, t3;@t :
−→stt [t0;t1]

di
(t)=−→stt [t2;t3]

d j
(t)∧([t0, t1]∩[t2; t3] 6= /0)∧(i 6= j)

sC4: A drone’s motion’s velocity is limited to a maximum
velocity vmax

di
. So, two points in space must be reach-

able by moving with at most this velocity:

∀di ∈ R;∀t0, t1 :

|−→stt [t0;t1]
di

(t1)−
−→stt [t0;t1]

di
(t0)|

|t1− t0|
≤ vmax

di
(2)

The possibility to use equations (2) and (1) caused us
to make assumption 3 in section 4.4.1.

sC5: This system constraint claims the motions’ consistency.
There must not be gaps in time or in space for two sub-
sequent motions of the same object:

∀di ∈ R;∀t0, t1, t2, t3 :(
(−→stt [t0;t1]

di
(t1) =−→stt [t2;t3]

di
(t2)
)
∧

([t0; t1]∩ [t2; t3] = {t1; t2})∧ (t1 = t2)

Analogously to the satellite example in section 4.3, run-
time constraints instantiate the application.

rC1: A drone di is inside or outside cs(t) at time t when
its current position −→stt [t0;t1]

di
(t) is inside or outside an

area within a certain radius r around a given space-
time point (xm(t);ym(t))T :

∀di ∈ R;∀t, t0, t1;∃xm(t),xm(t) :
−→stt [t0;t1]

di
(t)∩ cs(t) 6= /0⇐⇒∣∣∣∣−→stt [t0;t1]

di
(t)−

(
xm(t)
ym(t)

)∣∣∣∣≤ r (3)

rC2: In order to complete runtime constraint rC1 we as-
sume as user input:

∀t : xm(t) = 9∧ ym(t) = 5

rC3: The number of drones remains constant:

∀t : n = 2

rC4: The drones’ initial positions (x0;y0)T at the applica-
tion’s starting time ts are (1;5)T and (0;5)T for d0 and
d1, respectively.

rC5: It is assumed the application starts at ts = 0.
rC6: The drones’ d0,d1 maximum velocities are assumed to

be a general maximum velocity of four space units per
time unit. This constraint counts to the runtime con-
straints because the maximum velocity might depend
on (at programming time) non-predictable conditions
like the weather:

∀di ∈ R;∀t0, t1 : |−→v [t0;t1]
di
| ≤ vmax

di
= 4

4.4.3 Schedule

In contrast to the example in section 4.3, the drones’ mo-
tions are not fixed. They are subject to the scheduling algo-
rithm that has to assign explicit values to the generic motion
description given in system constraint sC2. Their resulting
schedule directly influences the application’s one. One pos-
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sible drone schedule (node view) is: (tc =
√

17
4 ):

d0 :



−→stt [0;tc]
d0

(t) = (1;5)T + 1
tc
· (4;−1)T · t

−→stt [tc;2tc]
d0

(t) = (5;4)T + 1
tc
· (4;1)T · (t− tc)

−→stt [2tc;3tc]
d0

(t) = (9;5)T + 1
tc
· (−4;1)T · (t−2tc)

−→stt [3tc;4tc]
d0

(t) = (5;6)T + 1
tc
· (−4;−1)T · (t−3tc)

−→stt [4tc;5tc]
d0

(t) = (1;5)T + 1
tc
· (4;−1)T · (t−4tc)

−→stt [5tc;6tc]
d0

(t) = (5;4)T + 1
tc
· (4;1)T · (t−5tc)

−→stt [6tc;7tc]
d0

(t) = (9;5)T + 1
tc
· (4;1)T · (t−6tc)

. . .

obsystemon
d0

(2tc− 1
4 )

obsystemo f f
d0

(2tc + 1
4 )

sendd0(2tc + 1
4 )

obsystemon
d0

(6tc− 1
4 )

obsystemo f f
d0

(6tc + 1
4 )

sendd0(6tc + 1
4 )

. . .

d1 :



−→stt [0;2tc]
d1

(t) = (0;5)T + 1
2tc
· (1;0)T · t

−→stt [2tc;3tc]
d1

(t) = (1;5)T + 1
tc
· (4;−1)T · (t−2tc)

−→stt [3tc;4tc]
d1

(t) = (5;4)T + 1
tc
· (4;1)T · (t−3tc)

−→stt [4tc;5tc]
d1

(t) = (9;5)T + 1
tc
· (−4;1)T · (t−4tc)

−→stt [5tc;6tc]
d1

(t) = (5;6)T + 1
tc
· (−4;−1)T · (t−5tc)

−→stt [6tc;7tc]
d1

(t) = (1;5)T + 1
tc
· (4;−1)T · (t−6tc)

. . .

obsystemon
d1

(4tc− 1
4 )

obsystemo f f
d1

(4tc + 1
4 )

sendd1(4tc + 1
4 )

. . .

In this schedule, d0 starts at (1;5)T , moves to (5;4)T , then
to (9;5)T , to (5;6)T and finally to (1;5)T again. d1 starts
at (0;5)T . While d0 is on the way, d1 moves to (1;5)T and
starts the same tour like d0 just when d0 leaves (9;5)T , i.e.,
the reversal point of the tour. So, d1 keeps a phase displace-
ment of half tour time to d0. The schedule could be con-
tinued arbitrarily by adding (k ·

√
17) to each given time

except d1’s very first STT. Landing both drones would re-
quire to schedule d1’s motion so that it lands at (0;5)T . From
that drones’ schedule, the application’s execution time tapp

e ’s
schedule (system view) is derived:

tapp
e =

[√
17
2
− 1

4
+
√

17
2
· k;

√
17
2

+
1
4

+
√

17
2
· k

]
Here k = 0,1,2, . . . denotes the number of half tours both
drones complete, i.e., k increases two times per drone’s tour.
Again, we abstain from the schedule’s detailed validation
and ensure that it meets all constraints.

Recapitulatory, the same application description and con-
straints are used to describe the observation of a spatial area.

This is independent of the executing system and especially
from its distribution. Instead, the programmer and user re-
fer to a virtualized executing system according to the sys-
tem view. It is not necessary to give constraints that describe
the sub-systems’ cooperation or application migration ex-
plicitly. The system constraints describe the sub-systems’
motions generically while the runtime constraints instantiate
these constraints as far as possible. The overall instantiation
is done by the scheduling algorithm.

5 Related Work

Already existing operating systems for distributed systems
like Amoeba [14], Plan 9 [10] and Emerald [6] follow the
approach of migration and distribution transparency. Similar
to our approach, a programmer doesn’t need not to be aware
of different locations within the system. Unfortunately, these
systems aim at stationary executing systems, i.e., they are
not intended to execute motion aware applications so that
applications’ motion awareness is lacking in these systems.

At first glance, our project and swarm approaches like
the operating system SwarmOS [7] want to achieve common
purposes. FlockOS differs from these projects as we want
to realize a top-down approach whereas the others follow
a bottom-up approach. There, several pre-defined behavior
patterns are assigned to the sub-system the executing system
comprises. So, a programmer is aware of the system’s dis-
tribution, i.e., s/he has a node view in mind. SwarmOS also
suffers from the lack of the applications’ motion awareness.
We want to take an important step forward by providing the
possibility to hide this distribution and to consider the appli-
cations’ motions within our operating system explicitly.

A fundamental approach to formalize spatiotemporal con-
straints can be found in Allen [1]. It introduces an interval-
based temporal logic that allows reasoning about time inter-
vals on basis of 13 basis relationships between these inter-
vals. In a similar way, spatial information are handled by the
region connection calculus (RCC) [11]. [4] investigates spa-
tiotemporal reasoning on basis of RCC and Allen’s interval
algebra. Work on (qualitative) modeling of moving objects
can be found in geographical information systems [15] and
data base systems [12], inter alia. Further research has to
investigate imposing quantitative motion representation on
these approaches.

As the spatiotemporal constraints introduced in this pa-
per are intended to extend common (imperative) general pur-
pose programming languages, further investigation concerns
developing a suitable constraint formalism and integrating it
into an imperative programming language, e.g., C. Promis-
ing approaches can be found in [2] and [13]. These papers
introduce the so-called Constraint Handling Rules. One typ-
ical application domain of these Constraint Handling Rules
is spatiotemporal reasoning so that this would be a good



9

starting point for our further research. The multi-paradigm
Mozart Programming System and its language Oz provides
another promising possibility. Existing work on constraint-
based scheduling like [9] and [5] has to be investigated in
order to develop or to adapt an existing constraint resolver
so that our spatiotemporal constraints can be handled.

6 Conclusion

Within this paper, we introduced spatiotemporal constraints
as a suitable programming abstraction for distributed mobile
systems. They allow describing applications in real space-
time while preserving the distribution transparency within
the executing system and providing the necessary motion
awareness within the application. We pointed out that such
a top-down programming approach allows realizing generic
application descriptions by adhering to the introduced sys-
tem view. The distinction between three different constraint
types underlines the claimed genericness that is demonstrated
by two examples as well as the programming model’s close
relationship with scheduling in real space-time.

The next steps beyond the scope of this paper include
investigation of possibilities to formalize the spatiotempo-
ral constraints with regard to correctness reasoning and inte-
gration into general purpose programming languages. Other
points of research concern appropriate scheduling algorithms
and in particular the approach of staged constraint resolving,
respectively. With regard to robustness and self-stabilization,
an appropriate scheduling algorithm to be developed should
work decentralized and online. Implementing FlockOS as
an operating system that supports high portability and effi-
ciency, especially in terms of real space-time scheduling, is
aspired by our research group.
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