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Abstract: Neural networks can be used to parametrize
solutions of partial differential equations (PDEs). Specif-
ically, physics-informed neural networks (PINNs) have
gained popularity since they do not require numerically
simulated or experimental data for training. It is straight-
forward to use PINNs to represent not only a single PDE
solution but parameter dependent families of solutions.
On the other hand, PINNs are reported to experience lim-
ited accuracy as well as convergence issues during train-
ing. In this work, we give an account of our experience in
using PINNs to solve a simple family of PDE-constrained
optimal control problems dependent on the control cost
parameter. We employ a straightforward approach by
minimizing the pointwise residuals of the optimality sys-
tem at random collocation points. In our experiments,
we observe severe convergence problems during training,
even in the fixed parameter setting, and attribute them
to a bias in the multi-objective PINN training. We report
on two techniques to overcome this issue: dynamic loss
weights and hard-coding certain parts of the optimality
system. The combination of these measures enables the
PINN model to learn solutions to reasonable accuracy for
individual parameter values within a range of several
orders of magnitude. In an attempt to learn the entire
parametric family of solutions, we increase the network

size yet are unable to consistently achieve the same accu-
racy as in the fixed parameter setting. This indicates that
loss-weighting algorithms cannot completely overcome
training bias.

Keywords: optimal control, physics-informed neural
networks, adaptive loss weighting

1 Introduction

The rise of machine learning has produced a dynamic
field of research employing deep neural networks to
solve complex problems. Recently, it has been proposed
in [29] that their differentiable structure makes them
suitable candidates to solve problems modeled by par-
tial differential equations (PDEs). In particular, it has
been discovered that Algorithmic Differentiation (AD)
[12], the technique that enabled training deep neural
networks with gradient based methods [30], can be used
to efficiently compute partial derivatives of neural net-
work outputs w.r.t. the network’s parameters and the
network’s input. This procedure can be used to inform
the training process of so-called physics-informed neu-
ral networks (PINNs) as follows. Consider a PDE of the
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general form
D[z] = 0 inΩ,

B[z] = 0 on ∂Ω,
(1.1)

where D represents a single or a finite collection of lin-
ear or nonlinear differential operators acting on the un-
known solution z defined on a bounded domain Ω ⊆
R

D . Moreover, B represents associated boundary con-
ditions.

Following the PINN approach, we approximate the
PDE solution’s point evaluation map x 7→ z(x) using a
neural network zθ with parameters θ and input x. Since
we focus on stationary PDEs, x denotes any point inΩ
but an extension to time-dependent PDEs is straight-
forward. The spatial derivatives of x 7→ zθ(x) appear-
ing in D and B can be conveniently evaluated using
AD. First, we sample interior collocation points x I

i ∈Ω,
i = 1, . . . ,mI and boundary collocation points xB

i ∈ ∂Ω,
i = 1, . . . ,mB . Next, we define the loss function for PINN
training of (1.1) in case of a single scalar-valued PDE
and boundary condition as

L (θ) = 1

2

1

mI

mI∑
i=1

[
D[zθ](x I

i )
]2 + 1

2

1

mB

mB∑
i=1

[
B[zθ](xB

i )
]2.

(1.2)
During PINN training, this loss function is approxi-
mately minimized using a gradient descent scheme or
one of its stochastic variants. For reasonably low loss
values we can expect that zθ(x) is a good approximation
of the solution at the chosen collocation point sets and,
under continuity assumptions, also elsewhere withinΩ.
PINNs can be easily implemented with AD-enabled
deep learning libraries, and their great flexibility makes
them applicable to a wide range of problems.

Recent research, however, suggests that PINNs are
unlikely to provide runtime or accuracy improvements
over traditional finite element based solvers whenever
these are available [13]. On the other hand, an additional
advantage of PINNs is that they can approximate the
solution of a family of parameter-dependent PDEs in a
one-shot approach, where the parameter is treated as an
additional network input. In theory, a point evaluation
zθ(x) of the solution for a fixed parameter value can then
be obtained in a single forward pass.

In this work, we study the capability of PINNs to ap-
proximate solutions to optimal control problems for
PDEs. Specifically, we consider a simple model problem,
i. e., distributed optimal control of the Poisson equation:

Minimize J (y,u) := 1

2
∥y − yd∥2

L2(Ω)
+ γ

2
∥u∥2

L2(Ω)

subject to

{
−∆y = u inΩ,

y = 0 on ∂Ω
(1.3)

on a bounded Lipschitz domain Ω ⊆ R2. We refer to
the functions y and u as state and control variables, re-
spectively. The first term in J can be thought of as a
fidelity term, describing how well the so-called “desired
state” yd is met by y . Large values of the control u are
penalized by the second term, weighted by the regular-
ization or control cost parameter γ> 0. By introducing
the so-called “adjoint variable” p, solutions of (1.3) can
be classified by a system of PDEs. Namely, a control
u ∈ L2(Ω) together with the corresponding state and ad-
joint variables y, p ∈ H 1

0 (Ω) solve (1.3) if and only if they
satisfy the following system of equations:

{
−∆y = u inΩ,

y = 0 on ∂Ω,
(state eq.) (1.4a)

{
γu −p = 0 inΩ, (gradient eq.) (1.4b){

−∆p =−(y − yd ) inΩ,

p = 0 on ∂Ω.
(adjoint eq.) (1.4c)

For a derivation of these well-known necessary and suf-
ficient optimality conditions we refer the reader to, for
instance, [32, Theorem 2.25].

Our goal is to employ a PINN to solve the above system
of equations, first for fixed, then for variable control cost
parameter γ. We report on difficulties and limited suc-
cess we experience while studying this problem and pro-
vide some remedies for commonly encountered caveats
in PINN training.

Our presentation is organized as follows. In section 2,
we present a common failure mode of PINN training
and discuss mitigation techniques that we have used
to ensure convergence during training of our models
for the fixed parameter setting, i. e., solving (1.3) for a
fixed value of γ, using the ADAM algorithm [20]. Once
we establish a setup such convergence is achieved for a
range of control costs, we introduce γ as an additional
input to the network. We report on numerical results in
section 3 and conclude with a discussion in section 4.

2 Analyzing Failure Modes of PINN
Training

Following the standard PINN approach, we use a neu-
ral network with outputs yθ,uθ and pθ to model state,
control and adjoint variables. Next, we use (1.4) to for-
mulate a loss-function according to (1.2), i. e., a loss
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consisting of the sum of the following five terms:

L1(θ) = 1

2

1

mI

mI∑
i=1

[−∆yθ(x I
i )−uθ(x I

i )
]2 (2.1a)

L2(θ) = 1

2

1

mB

mB∑
i=1

[
y(xB

i )
]2 (2.1b)

L3(θ) = 1

2

1

mI

mI∑
i=1

[
γuθ(x I

i )−p(x I
i )

]2 (2.1c)

L4(θ) = 1

2

1

mI

mI∑
i=1

[−∆pθ(x I
i )+ yθ(x I

i )− yd (x I
i )

]2 (2.1d)

L5(θ) = 1

2

1

mB

mB∑
i=1

[
p(xB

i )
]2. (2.1e)
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Figure 2.1 – Comparison of a finite element baseline so-
lution and standard PINN solution of (1.4)
with γ= 10−3. The PINN does not converge
to a good solution. Detailed setup in ta-
ble 3.1, ID: 1a.

When training PINNs using this simple setup, we were
initially surprised to find the quality of our solutions
heavily depending on γ: the solution can be well ap-
proximated by a PINN, whenever γ is close to one, how-
ever the quality of approximation worsens dramatically
when γ= 10−3; see fig. 2.1. These convergence failures
persisted when increasing training time, network size
and manually tuning optimization parameters like the
learning rate. Notably, other researchers also report
convergence problems when training PINNS using this
five-term loss function [6]. Our observations fall in line
with a growing number of publications on PINN training
reporting difficulties to converge to good solutions [3, 9,
33, 38]. Indeed, since we aim to minimize the residuals
of all equations simultaneously, PINN training can be
seen as a multi-objective optimization problem. Sum-
ming up all residuals to obtain a naive scalarization of
the multi-dimensional loss function has some major
theoretical drawbacks:

(1) From a mathematical perspective, residuals should
be measured in suitable dual Sobolev-norms on
function spaces supported on Ω and ∂Ω. These
norms usually contain derivatives of the functions
under consideration. The (squared) pointwise resid-
uals lack this information.

(2) When physical phenomena are modeled, as is the
case for PDE and PDE-constrained optimal control
problems, the residual expressions carry physical
units which should match before being added up in
a single loss function. By default, this is not the case,
e. g., when adding L1, . . . ,L5.

From a more practical point of view, we implicitly as-
sume that all residual terms equally contribute to the
update of the network parameters. Otherwise, training
via first order methods is biased towards minimizing
a particular residual. This is a well-known challenge
for multi-objective optimization with competing terms;
see, e. g., [8, Chapter 1]. In case of our optimal control
problem (1.3), we search a state y approximating the de-
sired state yd , while imposing homogeneous Dirichlet
conditions on the boundary. This introduces a competi-
tion between objectives, e. g., whenever yd has nonzero
boundary values. Competing objectives can be decou-
pled “in space”, by using multiple gradient descent [1], or
“in time”, by alternating the training of state and adjoint
variables [39], or by enforcing chronological training in
time-dependent PDEs [35].

In this work, we instead follow a substantial body of
research developing techniques to:

(1) rescale objectives with suitable weights λk , so they
contribute evenly to the network parameter up-
dates.

(2) eliminate objective terms by designing the network
architecture such that some of the residuals are in-
herently satisfied. In the present study, we achieve
this by exactly imposing the Dirichlet boundary con-
ditions of (1.4a) and (1.4c), as well as the gradient
equation (1.4b); see fig. 2.2.

We emphasize, that only a combination of the two ap-
proaches yields stable convergence for a significant
range of γ values (fig. 3.2).

2.1 Adaptive Loss Weighting Strategies

A straightforward way to reduce bias during training is
to introduce weights λk > 0 into the loss function, i. e.,
for a system consisting of a total of NI interior and NB

boundary equations:

L (θ) =
N∑

k=1
λk Lk (θ) (2.2)
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with N := NI +NB . This allows to For specific problems,
theoretically optimal weights can be estimated analyti-
cally [33] or empirically, by selecting those that produce
the lowest value of the optimal control objective J in
(1.3) [26]. In general, since training is a dynamic opti-
mization process, there is little hope to find fixed weight
values that ensure convergence over the whole course
of training. Instead, a large body of literature proposes
dynamic weighting strategies that update weights dur-
ing optimization, for instance [1, 2, 16, 23, 33, 36, 37]. In
the following we discuss three such strategies and later
compare them for problem (1.3).

Inverse Dirichlet Weighting

When training is performed using (a variant of) gradient
descent, the influence of the objective Lk on a network
parameter θℓ in each training step is proportional to
∂Lk
∂θℓ

. The influence that Lk has on all weights, in a par-
ticular training step, can be visualized using a histogram
of ∇θLk ; see fig. 3.4. Treating ∇θLk as a distribution
of partial derivatives, we expect distributions with large
variance to have more influence on the network parame-
ters [11, 36]. Having made this observation, the straight-
forward approach is thus to introduce weights λk which
rescale distributions to have similar variances. This is
in essence what the authors of [23] have termed inverse
Dirichlet weighting. The particular update rule they
propose is

λ̂k (t ) =
√

maxi=1,...,N Var[∇θLi (θ)]

Var[∇θLk (θ)]+ε , (2.3a)

λk (t ) =αλk (t −1)+ (1−α) λ̂k (t ), (2.3b)

where α ∈ [0,1] is an exponential smoothing parameter
and θ = θ(t) are the network weights in iteration t ∈
N. Here we omit the argument for readability. We also
added a small positive constant ε = 10−7, chosen by
hand, in the denominator of (2.3b), to avoid division by
zero.

The authors of [23] argue that this weighting proce-
dure leads to the variances of each objective being ap-
proximately equal, i. e.,

Var[λk∇θLk (θ)] ≈ max
i=1,...,N

Var[∇θLi (θ)] (2.4)

for k = 1, . . . , N . Indeed, without smoothing and numeri-

cal correction, i. e., α= ε= 0, we see

Var[λk∇θLk (θ)]

= Var[λ̂k∇θLk (θ)] = λ̂2
k Var[∇θLk (θ)]

=
(

maxi=1,...,N Var[∇θLi (θ)]

Var[∇θLk (θ)]

)
Var[∇θLk (θ)]

= max
i=1,...,N

Var[∇θLi (θ)],

where the first equality follows by standard calculus
rules for the variance. When α ∈ [0,1] and ε> 0 is small,
we expect this equation to be true in an approximate
sense, i. e., (2.4) to hold.

Relative Loss Balancing with Random Lookback

The next adaptive weighting strategy we implement
is called Relative Loss Balancing with Random Look-
back (RELOBRALO) and has been proposed in [1]. It
aims to combine the advantages of three existing ap-
proaches [2, 16, 36] and the authors report performance
improvements on model problems. RELOBRALO oper-
ates solely on loss statistics. Weight updates are expo-
nentially smoothed and updates are based on the rela-
tive progress of each objective. In particular, the authors
of [1] propose the update rule

λbal
k (t , t ′) = N ·

exp
(

Lk (t )
τLk (t ′)+ε −µ(t , t ′)

)

∑m
i=1 exp

(
Li (t )

τLi (t ′)+ε −µ(t , t ′)
) ,

λhist
k (t ) = ρλk (t −1)+ (1−ρ)λbal

k (t ,0),

λk (t ) =αλhist
k + (1−α)λbal

k (t , t −1),

for k = 1, . . . , N , where N denotes the number of addi-
tive objective terms. They add a lookback with prob-
ability represented by a Bernoulli distributed random
variable ρ, whereE[ρ] is close to 1. The parameter α is
the exponential smoothing rate, like in inverse Dirichlet
weighting, and τ is used to control the homogenizing
effect of the softmax function: large values of τ lead to
uniform loss weights, while with τ→ 0, the softmax ap-
proaches an argmax function. To avoid division by zero
we have added a small number to the denominator, i. e.,
ε= 10−15. The quantity

µ(t , t ′) := max
k=1,...,N

Lk (t )

Lk (t ′)

is subtracted to prevent numerical overflow. Note that
it is not present in the original formulation but we have
added it in our implementation, inspired by [27].
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NTK Loss Weighting

Some recent progress in the analysis of neural network
training dynamics has been made by [17] using a con-
cept called the neural tangent kernel (NTK). The authors
of [37] have extended these results to PINN training, use
them to derive a measure of average convergence rate
and propose loss weights aimed to homogenize this con-
vergence rate over all objectives. Training a neural net-
work zθ using a loss function L (θ) with gradient descent
can be understood as a forward Euler approximation of
the time-dependent gradient flow system [14].

dθ(t )

dt
=−∇θL (θ(t )). (2.5)

Here, by a slight abuse of notation, we denoted the con-
tinuous “time” variable also with t ∈R.

In case of PINN training we have a general system

Dk [z] = 0 inΩ for k = 1, . . . , NI ,

Bk [z] = 0 on ∂Ω for k = 1, . . . , NB
(2.6)

with NI scalar PDE components Dk and NB bound-
ary conditions Bk . Similar to the previous discussions
we sample collocation points x I

i ∈Ω, i = 1, . . . ,mI and
boundary points xB

i ∈ ∂Ω, i = 1, . . . ,mB and formulate
the general squared loss function

L (θ) = 1

2

NI∑
k=1

mI∑
i=1

[
Dk [zθ](x I

i )
]2

+ 1

2

NB∑
k=1

mB∑
i=1

[
Bk [zθ](xB

i )
]2. (2.7)

Note that unlike before, in this method it is customary
not to divide by mI and mB . We rewrite the loss function
(2.7) using the vectorized notation

Dk (θ) :=




Dk [zθ(x I
1)]

...
Dk [zθ(x I

mI
)]


 ∈RmI ,

Bk (θ) :=




Bk [zθ(xB
1 )]

...
Bk [zθ(xB

mB
)]


 ∈RmB ,

as

L (θ) = 1

2

NI∑
k=1

∥Dk (θ)∥2
2 +

1

2

NB∑
k=1

∥Bk (θ)∥2
2, (2.8)

where the ∥·∥2 is the Euclidean norm on RmI and RmB

respectively.
The following lemma analyzes the evolution of the

residuals associated with each of the differential and
boundary operators under the gradient flow (2.5).

Lemma 2.1. Consider the gradient flow (2.5) for the
loss function (2.8). Then there exists a symmetric and
positive semi-definite matrix K (t) ∈Rn×n of dimension
n := NI mI + NB mB , called the neural tangent kernel,
such that the evolution of the residuals is described by
the following system of ordinary differential equations
(ODEs):

d

dt




D1
...

DNI

B1
...

BNB




=−K (t )




D1
...

DNI

B1
...

BNB




(2.9a)

with

K (t ) =




JθD1
...

JθDNI

JθB1
...

JθDNB







JθD1
...

JθDNI

JθB1
...

JθBNB




T

. (2.9b)

Here, JθDk is the Jacobian of Dk (θ(t )) with respect to θ.

The proof is rather elementary and essentially amounts
to rearranging terms. For two objectives it can be found
in the appendix of [37].

Proof. We start by calculating one entry of the vector on
the left-hand side of (2.9). The chain rule and (2.5) yield

(
dDℓ(θ(t ))

dt

)

j
=

dDℓ[yθ(t )](x I
j )

dt

=
(
∇θDℓ[yθ(t )](x I

j ),
dθ(t )

dt

)

=−
(
∇θDℓ[yθ(t )](x I

j ),∇θL (θ(t ))
)

(2.10)

for all ℓ = 1, . . . , NI and j = 1, . . . ,mI Here (·, ·) denotes
the Euclidean inner product.

Next, we need to compute ∇θL (θ). Starting out with
a single partial derivative, we obtain

∂L (θ)

∂θℓ
= ∂

∂θℓ

[1

2

NI∑
k=1

mI∑
i=1

[
Dk [yθ](x I

i )
]2

+ 1

2

NB∑
k=1

mB∑
i=1

[
Bk [yθ](xB

i )
]2

]

=
NI∑

k=1

mI∑
i=1

Dk [yθ](x I
i )

∂

∂θℓ
Dk [yθ](x I

i )

+
NB∑

k=1

mB∑
i=1

Bk [yθ](xB
i )

∂

∂θℓ
Bk [yθ](xB

i ),
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which means that

∇θL (θ) =
NI∑

k=1

mI∑
i=1

Dk [yθ](x I
i )∇θDk [yθ](x I

i )

+
NB∑

k=1

mB∑
i=1

Bk [yθ](xB
i )∇θBk [yθ](xB

i )

holds. Inserting into (2.10), we get

(
dDℓ(θ(t ))

dt

)

j
(2.11)

=−
NI∑

k=1

mI∑
i=1

Dk [yθ(t )](x I
i )

(
∇θDℓ[yθ(t )](x I

j ),∇θDk [yθ(t )](x I
i )

)

−
NB∑

k=1

mB∑
i=1

Bk [yθ(t )](xB
i )

(
∇θDℓ[yθ(t )](x I

j ),∇θBk [yθ(t )](xB
i )

)
.

Next, we observe that
(
∇θDℓ[yθ(t )](x I

j ),∇θDk [yθ(t )](x I
i )

)

=
Nθ∑

n=1

∂Dℓ[yθ(t )](x I
j )

∂θn
· ∂Dk [yθ(t )](x I

i )

∂θn

=
[
JθDℓ(θ(t ))

(
JθDk (θ(t ))

)T
]

j i

holds, where JθDk is the Jacobian of Dk with respect to
the network parameters θ, and Nθ denotes the number
of parameters. Inserting into (2.11), we obtain

(
dDℓ(θ(t ))

dt

)

j

=−
NI∑

k=1

mI∑
i=1

Dk [yθ(t )](x I
i )

[
JθDℓ(θ(t ))

(
JθDk (θ(t ))

)T
]

j i
︸ ︷︷ ︸

j -th entry of JθDℓ(θ(t ))(JθDk (θ(t )))TDk

−
NB∑

k=1

mB∑
i=1

Bk [yθ(t )](xB
i )

[
JθDℓ(θ(t ))

(
JθDk (θ(t ))

)T
]

j i
︸ ︷︷ ︸

j -th entry of JθDℓ(θ(t ))(JθBk (θ(t )))TBk

,

which means

(
dDℓ

dt

)

j
=−

NI∑
k=1

[
JθDℓ

(
JθDk

)T Dk

]
j

−
NB∑

k=1

[
JθDℓ

(
JθBk

)T Bk

]
j

.

A similar calculation shows

(
dBℓ

dt

)

j
=−

NI∑
k=1

[
JθBℓ

(
JθDk

)T Dk

]
j

−
NB∑

k=1

[
JθBℓ

(
JθBk

)T Bk

]
j

.

With these two equations we can finally assemble the
entire system

d

dt




D1
...

DNI

B1
...

BNB




= −




JθD1
...

JθDNI

JθB1
...

JθBNB







JθD1
...

JθDNI

JθB1
...

JθBNB




T

︸ ︷︷ ︸
=:K (t )




D1
...

DNI

B1
...

BNB




.

The symmetry and positive semi-definiteness of K (t)
are evident.

The authors of [37] argue that (under certain assump-
tions) the NTK K (t) remains approximately constant
and the training dynamics (2.9) of PINNs are well-
described by the spectrum of the NTK, where compo-
nents parallel to eigenvectors corresponding to large
eigenvalues of the NTK decay faster. For this reason, for
a positive semi-definite kernel matrix K ∈ Rn×n , they
define the average convergence rate c(K ) as the mean
of its eigenvalues, i. e.,

c(K ) = trace(K )

n
. (2.12)

For fully connected neural networks, eigenvectors that
belong to large eigenvalues have been conjectured to
represent lower frequencies of the solution. Hence, fully
connected neural networks tend to learn lower frequen-
cies faster — a phenomenon termed spectral bias [28].
The authors of [37] further observe that eigenvalues of
the NTK of PINNs decay fast and thus conclude that
PINNs also suffer from spectral bias. The gradient flow
(2.5) is therefore a stiff ODE system. To calculate weights
that homogenize the convergence rate in the sense of
(2.12), i. e., to remove spectral bias, they propose the
following. First, define the diagonal entries of the block
matrix K = K (t ) from (2.9) as

K D
k :=JθDk (JθDk )T, k = 1, . . . , NI ,

K B
k :=JθBk (JθBk )T, k = 1, . . . , NB .

Noting that K has block form, one obtains

trace(K ) =
NI∑

k=1
trace(K D

k )+
NB∑

k=1
trace(K B

k ).

Then, we introduce weights λI
k ,λB

k into (2.8)

L (θ) = 1

2

NI∑
k=1

λI
k∥Dk (θ)∥2

2 +
1

2

NB∑
k=1

λB
k ∥Bk (θ)∥2

2
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with the choices

λI
k := c(K )

c(K D
k )

= trace(K )

trace
(
K D

k

) ,

λB
k := c(K )

c(K B
k )

= trace(K )

trace
(
K B

k

) .

These weights rescale the trace of the NTK and lead to
a homogeneous convergence rate in the sense of (2.12).
Although the NTK is assumed to be constant for the the-
oretical analysis, we follow [36] and update the NTK loss
weights in regular intervals over the course of training.

2.2 Hard-Constraining the Boundary and
Gradient Equations

In our experiments, despite a hyperparameter search,
none of the weighting schemes described above is suc-
cessful in guaranteeing convergence to a good solution
of the optimality system (1.4) for γ= 10−3 using the five
objective terms (2.1). In particular, the boundary condi-
tions and the linear relation between control and adjoint
variable (1.4a) could not be recovered (see fig. 3.2). Al-
though the hyperparameter search was not exhaustive,
these findings are in line with [6] who report similar
difficulties.

Thus, we now modify the network architecture in or-
der to eliminate objective terms such that some of the
residuals are inherently satisfied. As in [31], we impose
the Dirichlet boundary condition exactly. This tech-
nique has been used to solve stochastic PDEs [18], op-
timal control problems [39], and it can be extended to
other forms of boundary conditions [31, 22]. Since we
face homogeneous Dirichlet conditions, we multiply the
neural network predictions for state and adjoint yθ, pθ
with D , a distance-like function to the boundary ∂Ω:

yθ(x) := yθ(x)D(x), pθ(x) := pθ(x)D(x). (2.13)

Because D(x) = 0 holds on the boundary, the model ex-
actly satisfies the homogeneous Dirichlet conditions in-
dependently of the values of the network’s parameters θ.
The neural network then only learns the deviations of
the true solutions from D . The exact distance function
usually has some discontinuities in the first derivative,
which is why we use a smooth approximation. Such ap-
proximations can be obtained in a variety of ways even
for complex domains, for instance, using R-functions
and mean value potentials [31], or by solving heat trans-
fer problems [4].

The next design step exploits the specific structure
of the problem (1.3), namely, that the linear gradient
equation (1.4b) can also be explicitly imposed in the
network architecture. This is done by simply replacing

the network’s output representing the control variable
uθ with uθ := γ−1pθ. This idea has also been described
in [6] and it can be easily extended to problems with
pointwise bound constraints on the control. A disad-
vantage of this architecture is that it requires the gradi-
ent equation to be explicitly solvable w.r.t. the control
variable u as a function of y and p. The authors of [6]
propose that this hard constraint could be replaced with
a small separate neural network to approximate nonlin-
ear control-adjoint relations, as they appear for more
complicated optimal control problems. However, since
they did not provide any numerical results it remains to
be seen how well this works in practice.

The resulting architecture for the optimal control
problem (1.3) with fixed control cost γ is visualized in
fig. 2.2. Using this architecture together with suitable
loss weights for the two remaining objective terms

Lstate(θ) = 1

2

1

mI

mI∑
i=1

[−∆yθ(x I
i )−γ−1pθ(x I

i )
]2,

Ladjoint(θ) = 1

2

1

mI

mI∑
i=1

[−∆pθ(x I
i )+ yθ(x I

i )− yd (x I
i )

]2,

we are now able to approximate the solution of (1.3)
for γ= 10−3 to reasonable accuracy (see bottom row of
fig. 3.2 and fig. 3.6).

...
...

...

· γ−1

uθ

x1

x2

yθ

pθ

·D

·D

1 1

∂x1
∂x1

∂x2
∂x2

yθ

pθ

∂2
x1

yθ

∂2
x2

yθ

∂2
x1

pθ

∂2
x2

pθ

Figure 2.2 – Schematic network architecture. Outputs of
the network are multiplied by the approxi-
mate distance function D. The calculation
of derivatives is depicted as differentiation
layers. The output of the control variable uθ

is hard-coded as γ−1pθ .

2.3 Loss Weights for Variable Control Cost

Having obtained a PINN model that can be trained to
reasonable accuracy for a range of fixed values of the
control cost parameter γ including γ= 10−3, we turn to
solving the family of parameter-dependent problems
by a single PINN. By treating γ as an additional input to
the network and including loss terms for various sample
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values of γ, we may approximate solutions to the family
of problems in a single training run. After the reduction
steps described in the last paragraph, only state and
adjoint equation remain which we equip with weights
λstate and λadjoint. Note however, that it is necessary to
choose γ-dependent weights, as the influence of γ on
gradient scaling made individually weighting the loss
terms necessary in the first place fig. 3.4. Given samples
γ j , j = 1, . . . , Nγ, we thus derive the loss function

L (θ) =
Nγ∑
j=1

λstate(γ j )Lstate(θ,γ j )

+
Nγ∑
j=1

λadjoint(γ j )Ladjoint(θ).

Unfortunately, this leads to 2Nγ independently weighted
terms in the loss function. Increasing the number of
γ-samples to reduce interpolation error simultaneously
increases the number of objectives. This reinforces the
problem’s multi-objective nature, making it arguably
harder to solve.

3 Numerical Results
We first give a general overview about the experimental
setup, and discuss our results in detail afterwards.

Experimental Setup

Our numerical experiments have been performed on
a square domain Ω = (−1,1)2 and we have chosen the
desired state in (1.3) as the step function yd (x1, x2) =
3 ·1x1≥0. As ground truth state and control variables we
use a finite element solution that was obtained by L-
BFGS minimization of the reduced form of (1.3), cf. [10,
15], where Euclidean gradients were calculated using the
DOLFIN-ADJOINT library [25]. To obtain a ground truth
for the adjoint variable, we multiplied the calculated
finite element control by γ. The experiments were per-
formed on a regular 64-by-64 triangle mesh. To assess
the quality of the approximations we calculate relative
error measures

E L2

state =
∥yθ− yfem∥L2(Ω)

∥yfem∥L2(Ω)

,

where we approximate the integrals using a two-dimen-
sional trapezoidal rule on the mesh vertices x1, . . . , xn

for n = 642, as well as

E L∞
state =

max
i=1,...,n

|yθ(xi )− yfem(xi )|

max
i=1,...,n

∣∣yfem(xi )
∣∣ .

We consider solutions for γ ∈ [10−5,1]. This choice is
motivated as follows. On the one hand, γ≫ 1 would
lead to solutions y very far from the desired state yd ,
i. e., the control problem loses its meaning. On the other
hand, for γ ≤ 10−5, the finite element solution is no
longer a reliable ground truth on the chosen grid.
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Figure 3.1 – Finite element solutions for several values
of γ. While the state variable values are
roughly bounded between 0 and 3, the val-
ues for the control variable increase in mag-
nitude for smaller values of γ.

With our finite element ground truth solution estab-
lished, we perform a range of experiments for a range of
γ values. Our experiments indicate that the unweighted
PINN model using the five-term loss function (2.1) strug-
gles to learn solutions with fixed γ≤ 10−3. To establish
which of the proposed measures enable model train-
ing to good accuracy below this critical value of γ, we
first test combinations of architectures and NTK loss
weighting in section 3.1. Next, we train models with-
out adaptive loss weighting for a range of fixed values
of γ and record their gradient histograms. We find that
increasing imbalances in gradient distributions are a
plausible explanation for the decay of approximation
quality; see section 3.2. After that, in section 3.3, we
return to fixed γ = 10−3 and examine the capabilities
of the proposed loss weighting schemes to counteract
these imbalances. Finally, we turn to approximating the
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ID hidden layers system size loss weights γ Nγ mB mI epochs sect.

1a 40,40,20 full None γ= 10−3 1 500 1000 10000 3.1

1b 40,40,20 full NTK γ= 10−3 1 500 1000 10000 3.1

1c 40,40,20 reduced None γ= 10−3 1 0 1000 10000 3.1

1d 40,40,20 reduced NTK γ= 10−3 1 0 1000 10000 3.1

2 40,40,20 reduced None γ= 10−5, . . . ,100 1 0 1000 10000 3.2

3a 40,40,20 reduced RELOBRALO γ= 10−3 1 0 1000 10000 3.3

3b 40,40,20 reduced INVDIRICHLET γ= 10−3 1 0 1000 10000 3.3

3c 40,40,20 reduced NTK γ= 10−3 1 0 1000 10000 3.3

4a 40,40,40,40 reduced INVDIRICHLET γ ∈ [10−4,1] 20 0 1000 30000 3.4

4b 40,40,20 reduced INVDIRICHLET γ= 10−4, . . . ,100 1 0 1000 10000 3.4

4c 40,40,40,40 reduced NTK γ ∈ [10−4,1] 20 0 1000 30000 3.4

4d 40,40,20 reduced NTK γ= 10−4, . . . ,100 1 0 1000 10000 3.4

Table 3.1 – Details of architecture and training setups. ID: 4a and ID: 4c examine the variable γ setting. System size “full”,
refers to training with all five-term loss terms (2.1), while “reduced” refers to training with hard-constrained
gradient equation and boundary conditions as described in section 2.2. All networks use hyperbolic tangent
activation functions. We perform full-batch ADAM optimization with a learning rate of 10−3. During training,
weight updates are performed every 100 epochs.

γ-dependent family of solutions in section 3.4.

In all of our experiments we use hyperbolic tangent ac-
tivation and train the networks using full-batch ADAM
optimization with a learning rate of 10−3. Whenever
we employ loss weighting algorithms, weight updates
are performed every 100 epochs. The detailed setup for
each experiment can be found in table 3.1.

3.1 Experiment 1: Comparing Combinations
of Loss Weighting and Architecture
Constraints

As mentioned in section 2, preliminary experiments sug-
gest that the unweighted PINN formulation using the
5-term loss function (2.1) struggles to learn a solution
of (1.4) for fixed γ≤ 10−3 (cf. second row of fig. 3.2). To
investigate which measures are sufficient to enable the
network to learn the solution below this critical value,
we train networks using combinations of the measures
described in section 2.1 and section 2.2.

When introducing NTK loss weights, the accuracies
for state and adjoint variable approximations improve,
but the gradient equation is still poorly satisfied (cf.
third row of fig. 3.2). The other weighting schemes lead
to equally poor results (not shown). Next, we hard-
constrain the gradient equation and explicitly impose
boundary conditions using the following polynomial ap-

proximation to the distance-to-the-boundary function

D(x1, x2) = (x1 −1)(x1 +1)(x2 −1)(x2 +1),

for the square domainΩ= (−1,1)2, which has also been
successfully employed in [39]. Training this reduced two-
equation system without adaptive loss weighting does
not meaningfully improve the convergence (cf. fourth
row in fig. 3.2). Only a model trained using both of the
two measures is able to successfully learn the solution
in our training setup (cf. bottom row in fig. 3.2).

3.2 Experiment 2: Examining Gradient
Imbalances as a Proxy for Optimization
Bias

We observe a broad trend in worse performance for
smaller values of γ, so we perform a systematic study
using fixed, logarithmically spaced γ-values in the in-
terval of interest [10−5,1]. Training the reduced system
consisting of objective terms Lstate and Ladjoint without
loss weighting, the model does not converge for small
values of γ; see fig. 3.3.

As mentioned in section 2, PINN training failures
have been attributed to biased multi objective opti-
mization. To gain further insight, we follow previous
authors who proposed to examine the histograms of
objective-specific gradients [11, 36]. We have combined
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Figure 3.2 – Overview of solutions for (1.3) obtained
with different setups for fixed γ= 10−3. Top
row: finite element ground truth solution.
Second row: training is not successful us-
ing the loss terms (2.1) without loss weights.
Notice that the color values for the adjoint
variable are truncated. Third row: introduc-
tion of NTK weights improves state and ad-
joint accuracy, while the control value is still
poorly captured. Fourth row: with the archi-
tecture from section 2.2 state and adjoint
still show qualitatively different behavior
from the ground truth. Fifth row: with NTK
loss weights, we obtain a favorable solution.
Detailed setup in table 3.1, ID: 1a–1d.

the objective-specific gradients of 10 training runs and
show the corresponding histograms in fig. 3.4. Indeed
we find similar distributions in the gradients of state and
adjoint equation when approximation quality is good
(i. e., for γ≈ 1), which become increasingly imbalanced
as γ decreases. To visualize this trend for decreasing
γ, we calculate the quotient of the variances of these
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100

γ
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ro

r

E L2

state E L2

adjoint

E L∞
state E L∞

adjoint

Figure 3.3 – Evolution of final prediction errors of the
unweighted reduced model versus γ, av-
eraged over 10 training runs, with verti-
cal lines indicating one standard deviation.
Quality of fits decreases significantly for γ
smaller than 10−3. Detailed setup in ta-
ble 3.1, ID: 2.

two distributions over the course of training; see fig. 3.5.
While subject to randomness, this relation of gradient
variances remains approximately constant over the
course of training. Large values, indicating optimization
bias, correspond to large approximation errors. We
can thus attribute the difficulties in convergence to
imbalanced gradient distributions.

3.3 Experiment 3: Comparison of Loss
Weighting Algorithms for the Case of
Fixed γ

Having seen that the convergence failure is caused by
an optimization bias, we investigate the capacity of the
proposed loss weighting schemes to counteract this bias.
We compare all adaptive weighting schemes introduced
in section 2.1, by training 10 models each for the previ-
ously critical value γ= 10−3; see fig. 3.6. Convergence
is only improved for NTK and INVDIRICHLET weights,
while RELOBRALO weights yield no advantage over the
unweighted model. We suspect that tuning of the hy-
perparameters in the RELOBRALO model can improve
convergence because in experiments with a different
desired state yd ≡ 3, RELOBRALO weights have led to
improved convergence accuracy (results not shown). Er-
rors for the improved models are of order 10−2 with
E L∞

adjoint of order 10−1 being the exception. Our attempts
to lower these relatively high errors by tweaking (hyper-
)parameters like the number of network parameters,
learning rate and training time, were unsuccessful.

Next, we decrease γ beyond 10−3. NTK and IN-
VDIRICHLET weights reduce model accuracy to reason-
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Figure 3.4 – Histograms of objective-specific gradients.
Each panel shows the distribution of partial
derivatives ∂

∂θi
accumulated over 10 train-

ing runs. For γ = 1, partial derivatives of
state and adjoint equations show similar
distributions (right column), while the vari-
ance of state equation derivatives is much
larger for γ= 10−3, indicating increasing op-
timization bias. Detailed setup in table 3.1,
ID: 2.

able levels for γ= 10−4. For γ= 10−5 however, none of
the proposed weighting schemes ensures convergence
to a good solution in 10000 training epochs (not shown).
Again, we have been unable to find hyperparameter
settings which lead to lower errors. This suggests a limit
in the ability of loss weights to compensate the increas-
ing optimization bias. As a consequence, we decide
to restrict γ to [10−4,1] for the parameter-dependent
models.

3.4 Experiment 4: Approximation of the
γ-Dependent Family of Solutions

Pivoting to the variable-γ setting, our goal was to explore
whether the accuracy of fixed parameter models can
be achieved by one large model trained in a one-shot
approach. To this end, we add a third input unit and
increase the network’s hidden dimensions to 4 layers of
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Figure 3.5 – Relation of objective-specific gradient vari-
ances for different values of γ. Large quo-
tients indicate training imbalances, which
explain the poor approximation quality for
γ≤ 10−3, confirming the behavior in fig. 3.3.
Detailed setup in table 3.1, ID: 2.
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Figure 3.6 – Final prediction errors for the critical value
γ = 10−3 versus different loss weighting
schemes averaged over 10 training runs,
with vertical lines indicating one standard
deviation. While RELOBRALO weights pro-
vide no advantage over the unweighted
model, NTK and INVDIRICHLET are able to
reduce errors. Detailed setup table 3.1, ID:
2, 3a–3c.

40 neurons each. Then we train a one-shot model for
γ ∈ [10−4,1], sampling Nγ = 20 logarithmically spaced
values. Training is again performed using full batch
ADAM, meaning that in each epoch, the network was
trained on all Nγ ·mI = 20 ·1000 combinations of values
of γ and collocation points. As discussed in section 2.3,
the loss weights are γ-dependent, since fig. 3.4 indicates
a difference of several orders of magnitude in gradient
variances when training fixed parameter models for dif-
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ferent values of γ.
For reference, we train models with fixedγ= 10−4, . . . ,100

utilizing the same training setup as in section 3.3 (details
in table 3.1, ID: 4b and 4d). While RELOBRALO weights
lead to numerical overflow, results after 30000 epochs
using INVDIRICHLET and NTK weights are shown in
fig. 3.7. Like in the fixed parameter regimen, approx-
imation errors increase for smaller γ-values. For IN-
VDIRICHLET weights, the solution accuracy is similar to
that of the fixed-γ models when γ ∈ [10−3,1]. While for
small values of γ, errors of the NTK-weighted model are
comparable to errors of corresponding fixed-γ model,
there is a sharp increase for values γ≥ 10−1.

4 Discussion

Although the PINN approach is easy to implement and
very flexible, we encounter major difficulties when em-
ploying it to solve the simple optimal control model
problem (1.3) for fixed γ ≤ 10−3. We attribute these
difficulties to converge to good solutions to a well-
documented phenomenon in general multi-objective
optimization and specifically in PINN training, that is
imbalanced objective-specific gradient distributions,
resulting in an optimization bias. Following the litera-
ture we have tried to reduce this bias using several loss
weighting schemes and have found some of them im-
proving convergence, however satisfactory accuracy has
only been achieved after reducing the number of equa-
tions from five to two, by designing a network architec-
ture such that the gradient equation as well as state and
adjoint boundary conditions are inherently satisfied.
This leads to reasonable accuracy for some of the weight-
ing algorithms and γ ∈ [10−4,1]. In case of INVDIRICH-
LET weights, similar accuracy can be achieved when
approximating the family of parameter-dependent so-
lutions in a one-shot approach for γ ∈ [10−3,1]. This
is not the case for NTK weights, where the one-shot
model exhibits overall worse accuracy Let us remark
that we did not conduct a systematic hyperparameter
tuning and used moderate training times due to limited
computational resources. Alternatively, a reason for
this poor accuracy could be the increase in number of
objectives mentioned in section 1 and a limited capacity
of the proposed schemes to reduce optimization bias
for a high numbers of loss terms. We conclude that the
model used in this work can not be used reliably to solve
the considered parameter-dependent optimal control
problem.

Another potential reason for the observed conver-
gence issues could be that the learning setup we use
aims to find strong solutions of the partial differential
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Figure 3.7 – Results of training with variable values of γ
for 30000 epochs using INVDIRICHLET (top
panel) and NTK weights (bottom panel),
together with prediction errors of fixed-γ
models for comparison. Vertical dots indi-
cate γ values used for training. When train-
ing with INVDIRICHLET weights, the model
reaches comparable accuracy for γ≥ 10−3.
NTK-weighted training leads to generally
larger errors and a pronounced discrepancy
for γ ≥ 10−1. Detailed setup table 3.1, ID:
4a–4d .

equations. Although there exists literature establishing
error estimates for this approach in case the PDE solu-
tion is smooth [5], numerical experiments suggest prob-
lems when approximating solutions with less regularity
[24]. This bears similarity to the perceived increase in
difficulty training models for small values of γ, since the
optimal control of problem eq. (1.3) loses regularity as
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γ↘ 0.
A number of improvements have been proposed rang-

ing from variational loss functions [7, 19], to learning
the solution operator itself [21, 34]. Nevertheless, we
conclude that the classical PINN formulation cannot be
used as an “off-the-shelf” approach to obtain reliable
solutions even for a simple optimal control problem of
the form (1.3).
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