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Abstract: This paper investigates the semismooth New-
ton method and its application to solving constrained
quadratic optimization problems. We begin by reviewing
various generalized concepts of differentiability, such as
Clarke’s generalized Jacobian, slanting functions, and
Newton differentiability, providing a comparative anal-
ysis to clarify their differences. We then establish the
equivalence between the semismooth Newton method
(SSN) and the primal-dual active set algorithm (PDASA),
and key global convergence results are summarized. Our
study focuses on the cycle behavior of small-dimensional
quadratic problems. For the two-dimensional case, we
prove global convergence for arbitrary quadratic prob-
lems, demonstrating the robustness of the method in this
setting. A necessary condition for cycles of certain lengths
is derived and used to identify possible cycling patterns,
for problems in three dimensions. While only two of the
cycling patterns were observed in randomly generated
examples, the other remain a theoretical possibility, sug-
gesting further exploration of the method’s behavior.

Keywords: semismooth Newton method, primal-dual
active set method, global convergence, cycling behavior

1 Introduction

Optimization of quadratic problems is a fundamen-
tal problem in many scientific and industrial fields.

These problems arise in various domains, particularly
in optimal control problems, as regularization terms
in machine learning and as subproblems in Sequential
Quadratic Programming (SQP) methods. Let us consider
the finite-dimensional constrained quadratic program

minimize
x∈Rn

f (x) = 1

2
(x, Ax)− (b, x),

subject to x ≤ u,
(QP)

where A ∈ Rn×n , b ∈ Rn and u ∈ (R∪ {∞})n . By (·, ·) we
denote the Euclidean inner product in R

n . Problem
(QP) is a constrained quadratic problem with unilateral
bounds in finite dimensions. We note that considering
only unilateral instead of bilateral bounds is a restriction.
Further, we assume that A is positive definite and sym-
metric; therefore, (QP) has a unique solution x∗. The
KKT conditions [17, Theorem 12.1] imply, that the cor-
responding Lagrange multiplier µ∗ is also unique since
the linear independence constraint qualification (LICQ)
holds. For convex quadratic problems, we can write the
optimality system of necessary and sufficient conditions
in complementarity form [17, Chapters 16.4 and 16.6] as

Ax +µ= b,

u ≥ x, µ≥ 0, (µ,u −x) = 0.
(1.1)

These conditions constitute a linear complementarity
problem (LCP), a well-studied class of problems in math-

This is an open-access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.14464/gammas.v7i1.810 
https://orcid.org/0009-0005-8965-352X
https://orcid.org/0000-0003-2515-4818
https://orcid.org/0000-0003-2164-6575
http://creativecommons.org/licenses/by/4.0/


GAMMAS 2025 H. Rickmann, E. Herberg, R. Herzog 15

ematical programming [8]. Problem (1.1) can be equiva-
lently reformulated as a nonsmooth root-finding prob-
lem using the max-complementarity function:

F (x,µ) =
(

Ax +µ−b
µ−max(0,µ+ c (x −u))

)
= 0, (1.2)

for any c > 0 [23]. The well-known semismooth New-
ton method is a powerful tool to solve such problems.
It is also applicable to more general complementarity
problems, regardless of their connection to quadratic
optimization problems.

Semismooth functions and the corresponding New-
ton methods were studied in [18] and [19], which
demonstrate local superlinear convergence similar
to the classical Newton method for differentiable op-
erators. However, their analysis is limited to finite di-
mensions, which is not suitable, e. g., for applications to
optimal control problems or other infinite-dimensional
constrained optimization problems.

For infinite-dimensional spaces, the concepts of slant-
ing functions [5] and Newton differentiability [10] were
devised. Concurrently, an alternative approach was
developed in [3], [2], specifically in the context of in-
finite-dimensional quadratic problems. The authors
introduced a primal-dual active set strategy, which was
later found to be interpretable as a semismooth Newton
method [9]. There exists extensive research on the appli-
cation of the primal-dual active set strategy for optimal
control problems; see, e. g. [11, 12]. Other methods to
solve optimal control problems with bound constraints
on the controls include interior-point methods [25] and
gradient projection methods [14].

One of the objectives of the present paper is to give
an overview about different concepts frequently called
“semismoothness” and to clarify the differences between
these concepts in Section 2. Second, we explicitly state
the semismooth Newton method in Section 3 along with
some known global convergence theorems. Finally, we
present new findings on convergence of the method for
dimensions n = 2 and n = 3, and provide an abstract
cycle condition in Section 4.

2 Differentiability Concepts

The optimality system (1.2) has the form of a root-
finding problem, which is commonly solved by New-
ton’s method. To address the lack of differentiability in
the classical sense, we review generalized derivatives [7]
and the concept of semismooth functions, which was
first introduced in [16] and extended in [19], initially in
finite dimensions.

To add to our historical overview, we revisit related
concepts in infinite-dimensional spaces, specifically
slanting functions [5] and Newton differentiability [10].
In the literature, the term “semismooth” is used inconsis-
tently, and all of the above concepts are often subsumed
under the term “semismoothness”. We aim to give an
overview and clarify the differences between these con-
cepts. In Fig. A.1 we provide a timeline of concepts and
corresponding papers.

2.1 Generalized Derivatives

From now, suppose that X is a Banach space, D ⊆ X is
an open subset, and f : D →R is a Lipschitz continuous
function. Clarke in [7] defines generalized directional
derivatives

f ◦(x;d) = limsup
y→x, t↘0

f (y + td)− f (y)

t

and generalized subdifferentials

∂ f (x) = {
ζ ∈ X ∗ | (ζ,d) ≤ f ◦(x,d) for all d ∈ X

}
.

Here X ∗ denotes the dual space of X . Observe that this
definition is more general than the classical directional
derivative, as it allows for a limit superior instead of
a limit and y ̸≡ x. Further, the concept was initially
referred to as “generalized gradient” but we now denote
it as “generalized subdifferential” for consistency.

In finite-dimensional spaces such as X = Rn , Rade-
macher’s theorem states that Lipschitz continuity on an
open subset implies differentiability at almost all points
of that open subset; see [6, Theorem 2.5.1]. Denoting
the set of points at which f lacks differentiability asΩ f ,
we can characterize the generalized subdifferential as

∂ f (x) = conv
{
lim∇ f (x(k)) |x(k) → x, x(k) ̸∈ S ∪Ω f

}
.

where S ⊆Rn is an arbitrary Lebesgue null set and conv
denotes the convex hull.

For vector valued functions F : Rn → R
m , we define

the generalized Jacobian [6, Definition 2.6.1] of F at x ∈
R

n as

∂F (x) = conv
{
lim JF (x(k)) |x(k) → x, x(k) ̸∈ΩF

}
,

i. e., as the convex hull of all m ×n matrices Z that are
derived as the limit of a sequence in the form JF (x(k))
where x(k) → x, x(k) ̸∈ΩF , and JF represents the conven-
tional m ×n Jacobian matrix of partial derivatives.

2.2 Semismooth Functions

For finite-dimensional spaces, the notion of semis-
mooth functions has been initially introduced for func-
tionals [16] and later extended to general maps [19].
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The concept also exists in infinite dimensions; see
Section 2.3.

Definition 2.1 ([19, p. 355]). A function F : Rn → R
m is

called semismooth at x ∈R if F is Lipschitz continuous
in a neighborhood of x and

lim
d (k)→d , t (k)↘0

G (k)∈∂F (x+t (k)d (k))

G (k)d (k)

exists for all d ∈Rn .

The limit in this definition is understood in a way that
for all sequences d (k) → d and t (k) ↘ 0 we are free to
choose one generalized Jacobian G (k) ∈ ∂F

(
x + t (k)d (k))

for every k ∈ N. Semismooth functions satisfy many
useful properties [16]. For instance, convex functions
as well as continuously differentiable functions are al-
ways semismooth, and the composition of semismooth
functions yields again a semismooth function.

For a function F : Rn → R
m that is Lipschitz contin-

uous in a neighborhood of x, semismoothness at x is
equivalent to directional differentiability at x together
with

max
G∈∂F (x+h)

∥F (x +h)−F (x)−Gh∥ = o(∥h∥), (2.1)

as h → 0 [23, Proposition 2.3].

Example 2.2 ([9, p. 5]). The generalized subdifferential
of the maximum function x 7→ max(0, x) at x ∈R can be
computed as

∂max(0, x) =


1 if x > 0,

[0,1] if x = 0,

0 if x < 0.

The semismoothness of the max-function can easily be
shown with (2.1). From this it follows that (1.2) is a semis-
mooth problem, consisting of a composition of semis-
mooth functions. In the subsequent analysis, we consis-
tently adopt

G(x) =
{

1 if x > 0,

0 if x ≤ 0,
(2.2)

as a specific representative of the set-valued generalized
subdifferential of the maximum function at 0.

Example 2.3 ([16, p. 962]). The locally Lipschitz contin-
uous function

f : R→R, f (x) =
{

x2 sin( 1
x ) if x ̸= 0,

0 if x = 0

is not semismooth at x = 0. On R>0 and R<0, the func-
tion is continuously differentiable, and we have ∂ f (x) =

{
2x sin( 1

x )−cos( 1
x )

}
for x ̸= 0. Conversely, for x = 0 and

d = 1 we obtain

conv

{
lim

t (k)↘0
Gd

∣∣∣∣∣G ∈ ∂F (x + t (k)d)

}

= conv

{
lim

t (k)↘0
G

∣∣∣∣∣G ∈ ∂F (t (k))

}

= conv

{
lim

t (k)↘0
2t (k) sin

( 1

t (k)

)
−cos

( 1

t (k)

)}
= [−1,1].

This indicates that the requirement for a unique limit in
Definition 2.1 is not satisfied.

To solve root-finding problems as (1.2), we can use a
generalized Newton method [19]. At an iterate x(k), we
use the update rule

x(k+1) = x(k) − (G (k))−1F (x(k)),

where G (k) is a nonsingular element of the generalized
Jacobian ∂F (x(k)). This is called the semismooth New-
ton (SSN) method.

Algorithm 1 Semismooth Newton method

Input: x(0) ∈Rn and set k := 0.
1: while stopping criterion is not met do
2: Choose G (k) ∈ ∂F (x(k))
3: Determine the Newton update

G (k)δx =−F (x(k)).

4: Set x(k+1) = x(k) +δx.
5: Set k := k +1.
6: end while

The algorithm is usually terminated by achieving a
residual of sufficiently small norm. One can show that
locally, the SSN method is well-defined and superlin-
early convergent [19, Theorem 3.2].

2.3 Slanting Functions and Newton
Differentiability

To extend the concept of semismooth functions to infi-
nite-dimensional spaces, we review slanting functions
[5] and Newton differentiability [10]. Throughout this
section, we consider Banach spaces X and Y and an
open subset D ⊆ X . Moreover, L (X ,Y ) denotes the
space of bounded linear operators X → Y .

Definition 2.4 ([5, Definition 2.1 and 2.3]). A function
F : D → Y is said to be slantly differentiable at x ∈ D if
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there exists a mapping G : D →L (X ,Y ) and ε> 0 such
that

{
G(x +h) |∥h∥ < ε} is bounded in the operator norm

and

lim
h→0

∥F (x +h)−F (x)−G(x +h)h∥
∥h∥ = 0.

The function G is called slanting function for F at x.
Further, we call the set

∂SF (x) := {
limG(x(k)) |x(k) → x, x(k) ∈ D

}
the slant derivative of F associated with G at x ∈ D.

Definition 2.5 ([5, Definition 2.2]). A function F : D → Y
is said to be slantly differentiable in an open domain
U ⊆ D if there exists a mapping G : D → L (X ,Y ), such
that G is a slanting function for F at every x ∈U . In this
case, G is called slanting function for F in U .

This notion of differentiability now enables us to ex-
tend the concept of semismoothness to infinite-dimen-
sional spaces.

Definition 2.6 ([5, Definition 3.2]). A function F : D →
Y is called semismooth at x ∈ D if there is a slanting
function G for F in a neighborhood N (x) of x such that
G and the associated slant derivative satisfy the following
two conditions:

(i ) lim
t↘0

G(x + th)h exists for every h ∈ X and

lim
∥h∥→0

∥limt↘0 G(x + th)h −G(x +h)h∥
∥h∥ = 0,

(i i ) For all V ∈ ∂SF (x +h), we have

∥G(x +h)h −V h∥ = o(∥h∥).

This alternative definition of semismooth functions
aligns with Definition 2.1 in finite-dimensional spaces
[5, Theorem 3.3]. We also mention the related defini-
tions of semismoothness in [23] and [24, Definition 3.1].

Let us comment on some of the important properties
of slanting functions [5], which contributes to a better
understanding of the concept.

(i ) Due to the point-wise definition of slanting func-
tions, a function F can be slantly differentiable at
every point of D, but still there may be no com-
mon slanting function of F at all points of D [5,
Remark (1)]. For instance, if F is Fréchet differen-
tiable at x, we define G(y) := F ′(x) as a constant
function for all y ∈ D. Hence, G constitutes a
slanting function for F at the point x, although it
generally does not fulfill this role at other points
within D. Conversely, if F is continuously dif-
ferentiable in D and we set G(y) = F ′(y) for all
y ∈ D, then G satisfies Definition 2.5 and it is a
slanting function for F in D .

(i i ) Not all continuous functions are slantly differen-
tiable [5, Remark (8)]. For instance, consider the
real-valued function

f (x) =
{p

x if x ≥ 0,

−p−x if x < 0.

Then as h ↘ 0 we have

f (h)− f (0)−G(h)h

h
=

p
h −G(h)h

h

= 1p
h
−G(h).

Since 1/
p

h →∞ as h ↘ 0, it follows that there is
no uniformly bounded function G such that the
right hand side goes to zero. In this example, f is
continuous but not slantly differentiable at zero.

(i i i ) A function F : D → Y is slantly differentiable at
x if and only if there exists a neighborhood of x
such that F is Lipschitz continuous in this neigh-
borhood [5, Theorem 2.6].

An adaptation of Definition 2.5 was published in [10]
three years after the introduction of slant differentiabil-
ity. It involved a relaxation of the boundedness condi-
tion on

{
G(x +h)

}
for slant differentiability, introducing

a new concept known as Newton differentiability.

Definition 2.7 ([10, Definition 1.1]). A mapping F : D →
Y is called Newton-differentiable or generalized differ-
entiable on the open subset U ⊆ D if there exists a family
of generalized derivatives G : U →L (X ,Y ), such that

lim
h→0

∥F (x +h)−F (x)−G(x +h)h∥
∥h∥ = 0

holds for every x ∈U .

In general, G is not unique and the definition of New-
ton differentiability is not restrictive regarding the type
of generalized derivative that is being used. By choosing
a single-valued selection of Clarke’s Jacobian as general-
ized derivative G , (2.1) implies that every semismooth
function is also Newton differentiable. Therefore, New-
ton differentiability extends the notion of differentiabil-
ity even further than semismooth functions: F is not
required to be locally Lipschitz continuous, the general-
ized derivative is not restricted to be Clarke’s generalized
Jacobian and the existence of a directional derivative is
not necessary. Furthermore, if F is semismooth, every
single-valued selection of Clarke’s Jacobian serves as the
generalized derivative G in Definition 2.7.

Example 2.8. In Example 2.2 we demonstrated that the
maximum function x 7→ max(0, x) for x ∈ R is semis-
mooth and that a possible representative of the set-valued
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generalized subdifferential is

G(x) =
{

1 if x > 0,

0 if x ≤ 0.

This immediately implies that the maximum function is
Newton differentiable. Because G(x) ∈ {0,1}, the operator
family {G(x)} in Definition 2.4 is uniformly bounded.
Thus, G is also a slanting function for the maximum
function for all x ∈R.

Example 2.9. In Example 2.3 we argue that

f : R→R, f (x) =
{

x2 sin
( 1

x

)
if x ̸= 0,

0 if x = 0

is not semismooth at zero. But, f is slantly differen-
tiable at zero with any slanting function G that satisfies
limh→0 G(h) = 0 ([5, Remark (6)]). Then we have

lim
h→0

h2 sin
( 1

h

)−G(h)h

h
= lim

h→0

[
h sin

( 1

h

)
−G(h)

]
= 0.

This example illustrates that both slant differentiability
and Newton differentiability are indeed extensions of
semismoothness.

In the academic literature, the term “semismooth” is
used inconsistently. Various concepts, including slant
differentiability and Newton differentiability, are some-
times referred to as “semismoothness”. Although the
differences might be minor, it is essential to evaluate
their significance for the specific application. Impor-
tantly, even though Newton differentiability is a weaker
condition compared to slant differentiability or semis-
moothness, a successful local convergence analysis of
the Newton method remains feasible.

Theorem 2.10 (Local superlinear convergence; [9, The-
orem 1.1]). Suppose that x∗ is a solution to F (x) = 0
and that F is Newton differentiable in an open neighbor-
hood N (x) containing x∗ with slanting function G(x). If
G(x) is nonsingular for all x ∈N (x) and

{∥G(x)−1∥|x ∈
N (x)

}
is bounded, then the Newton iteration

x(k+1) = x(k) −G(x(k))−1F (x(k)),

converges superlinearly to x∗, provided that ∥x(0) − x∗∥
is sufficiently small.

Note that in the original formulation of this theorem
in [9, Theorem 1.1], the authors use the term “slantly
differentiable” instead of “Newton differentiable”, while
referring to the concept that we denote as Newton dif-
ferentiability.

Proof. The proof follows the arguments of the proof in
[9, Theorem 1.1] and we have adapted the phrasing used
there. Let B(x∗,r ) ⊆N (x) denote a ball of radius r cen-
tered at x∗. Since ∥G(x)−1∥ is bounded in U , we find a
positive constant M such that ∥G(x)−1∥ ≤ M in B(x∗,r ).
Let η ∈ (0,1] be arbitrary. Using Definition 2.7 of Newton
differentiability, there exists ρ ∈ (0,r ) such that

∥F (x∗+h)−F (x∗)−G(x∗+h)h∥ < η

M
∥h∥ (2.3)

holds for all ∥h∥ < ρ. Assuming ∥x(k) − x∗∥ < ρ and us-
ing the above equation with h = x(k) − x∗, the Newton
iterates satisfy

∥x(k+1) −x∗∥
= ∥x(k) −G(x(k))−1F (x(k))−x∗∥
= ∥−G(x(k))−1 [

F (x(k))−G(x(k))(x(k) −x∗)
]∥

≤ ∥G(x(k))−1∥∥F (x(k))−G(x(k))(x(k) −x∗)∥
≤ ∥G(x(k))−1∥︸ ︷︷ ︸

≤M

∥F (x(k))−F (x∗)︸ ︷︷ ︸
=0

−G(x(k))(x(k) −x∗)∥

≤ M
η

M
∥x(k) −x∗∥ = η∥x(k) −x∗∥.

Consequently, if we choose x(0) such that ∥x(0) − x∗∥ <
ρ, all iterates are well-defined and satisfy ∥x(k) − x∗∥ <
ρ. Since η is arbitrarily chosen, x(k) → x∗ converges
superlinearly.

Note that with the definition of Newton differentia-
bility, the proof of superlinear convergence is short and
concise. The reason for this is that the definition pre-
supposes the upper bound, which is a crucial and fun-
damental aspect of the proof.

In conclusion, it can be stated that the various differ-
entiability concepts presented in this section are closely
connected. We provide a timeline in Fig. A.1 of the
mentioned concepts and corresponding papers. The
original definition of semismooth functions in finite-di-
mensional spaces [16], [19] relies on Clarke’s generalized
derivatives [6]. Chen, Nashed, Qi extended this concept
to spaces of infinite dimensions by introducing slanting
functions [5]. Clarke’s concept of generalized derivatives
can serve as slanting functions in finite-dimensional
spaces.

Newton differentiability is a minor modification of
slant differentiability, which eliminates specific restric-
tions on the slanting function, thus providing a more
general framework. Importantly, we argue that, by se-
lecting Clarke generalized derivatives as the generalized
derivative in the Newton differentiability framework, it
can be demonstrated that all semismooth functions are
Newton differentiable.
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3 Semismooth Newton Method

The generalized or semismooth Newton method is
applicable to semismooth and Newton differentiable
problems, such as (1.2). In the following we explicitly
compute the update steps of the semismooth Newton
method for the root-finding problem (1.2). Consistent
with the generalized subdifferential of the maximum
function (2.2), we define active and inactive index sets

A = {
1 ≤ i ≤ n |µi + c (xi −ui ) > 0

}
,

I = {
1 ≤ i ≤ n |µi + c (xi −ui ) ≤ 0

}
,

for (1.2). On these active and inactive sets, (1.2) simpli-
fies to

Ax +µ−b = 0{
µi = 0 if i ∈I

c (xi −ui ) = 0 if i ∈A .

Therefore, calculating the generalized subdifferential of
F (x,µ) based on the active and inactive sets, we obtain
the Newton update (δx,δµ) solving the system


AII AIA idII 0
AA I AA A 0 idA A

0 0 idII 0
0 −c idA A 0 0



δxI

δxA

δµI

δµA



=−


(Ax +µ−b)I
(Ax +µ−b)A

µI

c (u −x)A

 .

Here, we rearrange x,µ, A,b,u according to the disjoint
index sets A and I . For the matrix A this leads to the
block matrix representation

(
AII AIA

AA I AA A

)
.

Note that, for instance, we use the notation AIA to
denote the submatrix of A formed by selecting the rows
from I and columns from A . The Newton update is
used to calculate the next iterate (x +δx,µ+δµ). This
update can be equivalently interpreted as the following
primal-dual active set algorithm (PDASA), compare [9,
Chapter 2] for a derivation of the update step.

Algorithm 2 PDASA for upper bound constraints

Input: x(0),µ(0)

1: Set k := 0
2: while stopping criterion is not met do
3: Set

A (k) = {
1 ≤ i ≤ n |µ(k)

i + c (x(k)
i −ui ) > 0

}
I (k) = {

1 ≤ i ≤ n |µ(k)
i + c (x(k)

i −ui ) ≤ 0
}

4: Determine x(k+1),µ(k+1) from

Ax(k+1) +µ(k+1) = b,

µ(k+1) = 0 on I (k), x(k+1) = u on A (k).

5: Set k := k +1.
6: end while

Note that the iterations of this algorithm do not de-
pend on c > 0 for k ≥ 1 [15], since, for every index i ∈
{1, . . . ,n}, we have µ(k)

i = 0 or x(k)
i −ui = 0. Further, we

can state some useful properties of the iterates of the
algorithm [13, p. 194f.]:

A
A (k)A (k)δx

A (k) + A
A (k)I (k)δx

I (k) +δµA (k) = 0,

A
I (k)I (k)δx

I (k) + A
I (k)A (k)δx

A (k) +δµI (k) = 0,
(3.1a)

x(k) −u ≥ 0 and µ(k) ≥ 0 on A (k),

x(k) −u ≤ 0 and µ(k) ≤ 0 on I (k),
(3.1b)

δx = u −x(k) ≤ 0 on A (k),

δµ=−µ(k) ≥ 0 on I (k).
(3.1c)

Further, if A (k) =A (k+1), then we have found the solu-
tion (x(k+1),µ(k+1)) = (x∗,µ∗) for the root-finding prob-
lem (1.2) [13, Remark 7.1.1]. In the following we review
necessary and sufficient conditions for this to happen.

From the equivalence of the SSN method and the
PDAS algorithm, it directly follows that the PDAS al-
gorithm converges locally superlinearly to the solution
of the root-finding problem (1.2) [9, Theorem 3.1]. The
global convergence theory is not that straightforward.

Recall that A ∈Rn×n is called an M-matrix if A is non-
singular, (ai j ) ≤ 0 for i ̸= j , and A−1 ≥ 0 entry-wise. This
is the case, for instance, when (QP) arises from stan-
dard discretizations of an obstacle problem [13, Chap-
ter 4.7.4].

For M-matrices, Algorithm 2 exhibits global conver-
gence in a particular manner. This is shown in the fol-
lowing theorem, which we state here for symmetric ma-
trices A.

Theorem 3.1 ([13, Theorem 7.4]). Suppose that A is a
symmetric M-matrix. Then x(k) → x∗, µ(k) →µ∗ for arbi-
trary initial data (x(0),µ(0)). Moreover, x∗ ≤ x(k+1) ≤ x(k)
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for all k ≥ 1, x(k) ≤ u for all k ≥ 2, and there exists k0 such
that µ(k) ≥ 0 for all k ≥ k0.

As shown in the following theorem, global conver-
gence can also be shown for a broader class of matrices.
Recall that A ∈ Rn×n is called a P-matrix if all its prin-
cipal minors are positive [13, p. 197]. Note that every
M-matrix and every positive definite matrix is a P-matrix
[4, p. 271].

Theorem 3.2 ([13, Theorem 7.5.]). Suppose that A is a
symmetric P-matrix of size n ×n. Moreover, suppose that
for every disjoint union A ⊔I = {1, . . . ,n} we have∥∥∥(

(AII )−1 AIA

)
+
∥∥∥

1
< 1 and

∑
i∈I

[
(AII )−1xI

]
i > 0

for all xI ≥ 0 with xI ̸= 0, then limk→∞ x(k) = x∗. Here,
(·)+ denotes the positive part of every component in a
matrix. When I = ;, then both conditions are void.
When A =;, the first condition is void.

At first glance, the conditions of this theorem might
not seem intuitive, and it is not immediately clear which
matrices will satisfy them. However, Theorem 3.1 iden-
tifies a class of matrices that meet these conditions.
Specifically, for any M-matrix A, we have (AII )−1 ≥ 0
and (AII )−1 AIA ≤ 0 for every possible choice of A

and I [4, p. 134]. These properties are already utilized in
the proof of Theorem 3.1. Additionally, they imply that
∥((AII )−1 AIA )+∥1 < 1 and

∑
i∈I [(AII )−1xI ]i > 0 for

xI ≥ 0 with xI ̸= 0. As mentioned earlier, every M-
matrix is also a P-matrix, allowing us to apply Theo-
rem 3.2.

Hintermüller, Ito, Kunisch [9] have also demonstrated
a perturbation result, which asserts the global conver-
gence when A is a small perturbation of an M-matrix.
This is of particular interest in numerical implementa-
tions, since the properties of M-matrices, such as the
non-positivity of off-diagonal elements, are not stable
under small perturbations.

Theorem 3.3 ([13, Theorem 7.6]). Suppose that M is an
M-matrix, K is arbitrary and A = M +K is symmetric. If
∥K ∥ is sufficiently small, the root-finding problem (1.2)
admits a unique solution (x∗,µ∗), Algorithm 2 is well-
defined and limk→∞ x(k) = x∗.

A precise characterization of “sufficiently small” can
be found in the proof of [13, Theorem 7.6]. In particular,
the smallness of ∥K ∥ is determined by the parameters
ρ and σ defined in that proof, which quantify the per-
turbation bounds ensuring the theorem’s conclusions
hold.

For completeness, we briefly mention that there are
also convergence results for bilaterally constrained prob-
lems. That is, we add the constraints x ≥ ℓ for some
−∞< ℓ< u to (QP). In this case, convergence results are
more complex to express and significantly less intuitive
to comprehend. For some results on the convergence of
the PDASA for this case, we refer the reader to [12].

4 Cycle Analysis
In this section, we aim to further explore the global con-
vergence behavior of the PDASA. In particular, we seek
to go beyond the conditions of Theorems 3.1 to 3.3 and
investigate the convergence behavior for problems that
do not satisfy these conditions. To this end, we con-
sider the following standing assumptions for A ∈Rn×n

in (QP).

Assumption 4.1 (standing assumptions).

(i ) A is symmetric and positive definite. The latter
is equivalent to all leading principal minors of A
being positive.

(i i ) A is not an M-matrix. Therefore, there either exist
indices i ̸= j such that

ai j > 0 or A−1 ̸≥ 0 entry-wise.

(i i i ) There exists a disjoint union A ⊔I = {1, . . . ,n}
such that ∥∥∥(

(AII )−1 AIA

)
+
∥∥∥

1
≥ 1 (4.1)

with I and A nonempty, or∑
i∈I

[
(AII )−1xI

]
i ≤ 0 (4.2)

for some xI ≥ 0 with xI ̸= 0 and I nonempty.
(i v) For any M-matrix M and K := A − M, the ma-

trix K is not sufficiently small in the sense of The-
orem 3.3.

For matrices that satisfy these three conditions, the
global convergence of PDASA for the unilaterally con-
strained (QP) remains undetermined, as none of the
theorems from Section 3 is applicable.

This section is principally inspired by the author’s im-
plementation of the PDASA, accessible on GitHub [20].
We have implemented Algorithm 2, choosing c = 1, and
have conducted multiple experiments with random in-
put data for A, b, and u. Our objective has been to
identify patterns in problem instances where conver-
gence was not achieved. Since there exist only finitely
many possible partitions of the index set {1, . . . ,n}, the
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algorithm will either exhibit convergence or encounter a
cyclic pattern, disrupting convergence. Thus, the exami-
nation of the algorithm’s convergence is equivalent to
examining the potential cycling patterns that may occur
for different problem instances. We consider only very
low-dimensional situations, where we can fully charac-
terize the behavior of the algorithm.

It is important to realize that each iteration of the
algorithm is completely determined by the current ac-
tive and inactive sets. The active indices of the primal
variable are constrained to the upper bound, while the
inactive indices of the dual variable are set to zero. The
remaining variables, xI and µA , are determined such
that they satisfy the linear system Ax+µ= b. To analyze
the iterative process of the algorithm, it is sufficient to
examine the active and inactive sets at each iteration.

For n = 1, convergence is always achieved within a
maximum of two iterations. This directly follows from
the fact that we have only two possible active sets (;,
{1}) and that identical active/inactive sets in consecutive
iterations indicate that a solution has been found.

For n = 2, we have observed global convergence of
PDASA for all problem instances. A proof of this result is
provided in Section 4.1.

For n = 3, we have noticed that the cycles disrupting
convergence in numerical examples are precisely of two
distinct types. We provide an analysis and mathematical
validation of the observed characteristics in Section 4.3.

4.1 Two-Dimensional Case

In this section we consider the two-dimensional case,
n = 2. We demonstrate in Theorem 4.3 below that in this
scenario, the PDASA exhibits convergence for any given
initial iterate and any set of problem data. The problem
data satisfies

A =
(

a11 a12

a21 a22

)
, b =

(
b1

b2

)
, u =

(
u1

u2

)
,

A−1 = 1

a11a22 −a12a21

(
a22 −a12

−a21 a11

)
.

In the two-dimensional case presently considered, we
explicitly restate the conditions from Assumptions (i )
and (i i ), as these two are specifically required for subse-
quent steps:

(i ) A is symmetric and positive definite if and only if

a12 = a21, a11 > 0, a11a22 −a2
12 > 0.

(i i ) A is not an M-matrix if and only if a12 > 0.

In the following analysis, we set c = 1 to simplify the
calculations. As noted earlier, the choice of c > 0 does

not affect the algorithm’s iterates beyond the first itera-
tion. Therefore, this analysis remains valid for the gen-
eral case. As mentioned before, it suffices to know the
previous active set to characterize the update step in the
PDASA. We need to distinguish three cases.

1. A (k) = {1,2}: The subsequent iterate is given by
x(k+1) = u and µ(k+1) = b − Ax(k+1) = b − Au. The
following active set will therefore be determined by
evaluating the signs of

µ(k+1) +x(k+1) −u =
(
b1 −a11u1 −a12u2

b2 −a22u2 −a12u1

)
. (4.3)

If, for instance, b1 − a11u1 − a12u2 > 0, then 1 ∈
A (k+1), whereas b1 −a11u1 −a12u2 ≤ 0 would imply
1 ∈I (k+1).

2. A (k) = {i } and I (k) = { j }: In this case, we have
x(k+1)

i = ui and µ(k+1)
j = 0. Solving the linear equa-

tion system leads to

x(k+1)
j =

b j −ai j ui

a j j
,

µ(k+1)
i = bi −ai i ui −ai j

b j −ai j ui

a j j
,

and hence

µ(k+1)+x(k+1)−u =
bi −ai i ui −ai j

b j−ai j ui

a j j
b j−ai j ui

a j j
−u j

 . (4.4)

3. A (k) = ;: Finally, we have µ(k+1) = 0 and x(k+1) =
A−1b and hence

µ(k+1) +x(k+1) −u =
b2a12−b1a22

a2
12−a11a22

−u1
b1a12−b2a11

a2
12−a11a22

−u2

 . (4.5)

With the three equations (4.3), (4.4) and (4.5), we can
fully describe the behavior of PDASA in problem dimen-
sion n = 2.

Example 4.2. The purpose of this example is to present
a case where PDASA converges globally but that is not
covered by the known convergence results Theorems 3.1
to 3.3. We set

A =
(
1 2
2 5

)
, b =

(−1
−1

)
, u =

(
0
0

)
,

as problem data and observe the active set behavior il-
lustrated in Fig. 4.1. In this and all other figures, each
circle represents one particular active set. The arrows
indicate transitions to the subsequent active set. The cir-
cle colored in green represents the active set identifying
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the unique solution of the problem. Once the algorithm
reaches this active set, it remains there and can be ter-
minated. The first active set is determined by the initial
iterate (x(0),µ(0)).

In this example, A satisfies Assumption 4.1. In particu-
lar, A is symmetric and positive definite. Further, it is not
an M-matrix and Theorems 3.1 to 3.3 are not applicable.
Still, the PDASA converges for any initial guess. In The-
orem 4.3 we show that this is not a coincidence in case
n = 2.

Figure 4.1 – Active set behavior for Example 4.2.

Theorem 4.3. Suppose that A ∈ R2×2 is symmetric and
positive definite, b ∈ R2, and u ∈ R2. Then PDASA con-
verges for any initial guess x(0).

To prove this theorem, the following lemma exhibits
three rules that necessarily hold for all possible se-
quences of active and inactive sets.

Lemma 4.4. For A ∈R2×2 satisfying Assumption 4.1, in-
dices i , j ∈ {1,2}, i ̸= j , and iteration indices k,k ′ ∈ N,
k ̸= k ′, the following holds:

(i ) if A (k) = {1,2} and i ̸∈ A (k+1), then, for A (k ′) =
{ j }, it follows that i ̸∈A (k ′+1).

(i i ) if A (k) = {1,2} and A (k+1) = {i }, then, for A (k ′) =
{i }, it follows that i ∈A (k ′+1).

(i i i ) if A (k) =; and i ∈A (k+1), then, for A (k ′) = {i }, it

follows that i ∈A (k ′+1).

Proof. For the first rule, we observe (using (4.3)) that the
conditions A (k) = {1,2} and i ̸∈A (k+1) are equivalent to

bi −ai i ui −ai j u j ≤ 0.

Furthermore we characterize A (k ′) = { j } and i ∈A (k ′+1)

based on (4.4) with

bi −ai j u j

ai i
−ui > 0.

Since A is positive definite, we have ai i > 0. Conse-

quently, this results in a contradiction and i ̸∈A (k ′+1).

For the second rule, having A (k) = {1,2} and A (k+1) =
{i } can (using (4.3)) be equivalently expressed as

bi −ai i ui −ai j u j > 0, (4.6a)

b j −a j j u j −ai j ui ≤ 0. (4.6b)

Additionally, for A (k ′) = {i } and i ̸∈A (k ′+1) we write (us-
ing (4.4))

bi −ai i ui −ai j

b j −ai j ui

a j j
≤ 0.

Combining this with (4.6a), we derive

0 > ai j u j −ai j

b j −ai j ui

a j j

= ai j

a j j u j +ai j ui −b j

a j j
,

which contradicts (4.6b), because according to Assump-
tion 4.1 we have ai j > 0 and a j j > 0. This establishes the
second rule.

For the third rule, we characterize A (k) = ; and i ∈
A (k+1) (using (4.5)) by

b j ai j −bi a j j

a2
i j −ai i a j j

−ui > 0,

and it follows that b j ai j +ui (ai i a j j −a2
i j ) < bi a j j . This

is because A satisfies Assumption 4.1, thus, det(A) =
ai i a j j −a2

i j > 0. Moreover, A (k ′) = {i } and i ̸∈A (k ′+1) is
equivalent to (using (4.4))

bi −ai i ui −ai j

b j −ai j ui

a j j
≤ 0.

Since a j j > 0 by Assumption 4.1, this is equivalent to

b j ai j +ui (ai i a j j −a2
i j ) ≥ bi a j j . This is a contradiction,

hence the third rule follows.

Next, we rule out two specific active set cycles by
means of a contradiction that satisfy the necessary con-
ditions of Lemma 4.4. This narrows down the number
of possible active set cycles further.

Lemma 4.5. Suppose that A ∈ R2×2 satisfies Assump-
tion 4.1. The following cycles cannot occur in the PDASA.

(i ) {i } → { j } → {i },
(i i ) ;→ {1,2} →;.

Here i and j denote indices in {1,2} with i ̸= j .
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Proof. We characterize the cycle {i } → { j } → {i } using
(4.4), resulting in the inequalities

bi −ai i ui −ai j

b j −ai j ui

a j j
≤ 0, (4.7a)

b j −ai j ui

a j j
−u j > 0, (4.7b)

b j −a j j u j −ai j

bi −ai j u j

ai i
≤ 0, (4.7c)

bi −ai j u j

ai i
−ui > 0. (4.7d)

The first inequality (4.7a) is equivalent to

ai i ui +
ai j

a j j
b j −

a2
i j

a j j
ui ≥ bi

and (4.7c) is equivalent to (using ai i > 0)

ai i b j + (a2
i j −a j j ai i )u j

ai j
≤ bi .

Together this implies

ai i a j j −a2
i j

ai j a j j
b j ≤

ai i a j j −a2
i j

a j j
ui +

ai i a j j −a2
i j

ai j
u j .

Combining this with (4.7b), this leads to the contradic-
tion

ai j ui +a j j u j < b j ≤
ai j a j j

a j j
ui +

ai j a j j

ai j
u j

= ai j ui +a j j u j .

The cycle ;→ {1,2} →; can be described using (4.5)
and (4.3), resulting in the inequalities

b2a12 −b1a22

a2
12 −a11a22

−u1 > 0, (4.8a)

b1a12 −b2a11

a2
12 −a11a22

−u2 > 0, (4.8b)

b1 −a11u1 −a12u2 ≤ 0, (4.8c)

b2 −a22u2 −a12u1 ≤ 0. (4.8d)

The first inequality (4.8a) is equivalent to

a22

a12
b1 −

a11a22 −a2
12

a12
u1 > b2

and (4.8b) is equivalent to

a12

a11
b1 +

a11a22 −a2
12

a11
u2 < b2.

Together this implies

a11a22 −a2
12

a12a11
b1 >

a11a22 −a2
12

a12
u1 +

a11a22 −a2
12

a11
u2.

Combining this with (4.8c) leads to the contradiction

a11u1 +a12u2 ≥ b1 >
a12a11

a12
u1 +

a12a11

a11
u2

= a11u1 +a12u2.

The proof of Theorem 4.3 is now a direct consequence
of the previous lemmas. To see this, we list all combina-
torially possible cycles. Letting i , j ∈ {1,2} and i ̸= j , the
following is a complete list of cycles:

;→ {i } →; (i i i )

;→ {i } → { j } →; (i i i )

;→ {i } → { j } → {1,2} →; (i )

;→ {i } → {1,2} →; (i )

;→ {i } → {1,2} → { j } →; (i i )

;→ {1,2} →;
;→ {1,2} → {i } →; (i i )

;→ {1,2} → {i } → { j } →; (i )

{i } → { j } → {i }

{i } → { j } → {1,2} → {i } (i )

{i } → {1,2} → {i } (i )

The number in parentheses behind each cycle indicates
which of the three rules from Lemma 4.4 shows that this
cycle is actually impossible. The remaining two cycles
are ruled out by Lemma 4.5. In summary, we have sys-
tematically excluded all potential cyclic behaviors under
the condition that A satisfies Assumption 4.1, thereby
ensuring convergence of the PDASA to the optimal solu-
tion also in cases not covered by the known convergence
Theorems 3.1 and 3.2.

Note that in the proofs of Lemma 4.4 and Lemma 4.5,
we heavily used the positive definiteness of A. In case
that A is negative definite, the update step of the PDASA
remains well-defined, as the linear equation in the up-
date step can be uniquely solved. Consider the following
example:

A =
(−2 0

0 −1

)
, b =

(
1
1

)
, u =

(−2
−2

)
,

x(0) =
(
0
0

)
, µ(0) =

(
0
0

)
.

This setup presents a strictly concave problem and it is
thus an unbounded minimization problem. The PDASA
generates the cyclic active set sequence

{1,2} →;→ {1,2},

which was ruled out by Lemma 4.5 for positive definite
matrices.
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4.2 Abstract Cycle Analysis

In [1, Lemma 4.4], Ben Gharbia, Gilbert established
a necessary condition for the presence of a cycle of
length 3 in the PDASA. Here we extend their result to
cycles of arbitrary length.

Theorem 4.6 (Necessary condition for m-cycle). Sup-
pose that A ∈ Rn×n is symmetric, positive definite and
that the PDASA produces a cycle by visiting m ≥ 2 pair-
wise distinct points x(1) → . . . → x(m) and x(m+1) = x(1).
Then, for each k ∈ {1, . . . ,m} the set

(
A (k−1) ∩I (k) ∩I (k+1)

)
∪

(
I (k−1) ∩A (k) ∩A (k+1)

)
,

is nonempty. We recall that A (k) denotes the active set
at iterate x(k), with the conventions A (0) := A (m) and
A (m+1) :=A (1).

Proof. The proof follows the structure of the proof of
[1, Lemma 4.4], replacing the cycle length 3 with an
arbitrary cycle length m.

We observe that for this cycle the update rules of the
algorithm imply

x(2)
A (1) = uA (1) , µ(2)

I (1) = 0, x(1)
A (m) = uA (m) , µ(1)

I (m) = 0.

Now we calculate

x(2) −x(1) =



(x(2) −x(1))A (1)∩A (2)∩A (m)

(x(2) −x(1))A (1)∩A (2)∩I (m)

(x(2) −x(1))A (1)∩I (2)∩A (m)

(x(2) −x(1))A (1)∩I (2)∩I (m)

(x(2) −x(1))I (1)∩A (2)∩A (m)

(x(2) −x(1))I (1)∩A (2)∩I (m)

(x(2) −x(1))I (1)∩I (2)∩A (m)

(x(2) −x(1))I (1)∩I (2)∩I (m)



=



(u −u)A (1)∩A (2)∩A (m)

(u −x(1))A (1)∩A (2)∩I (m)

(u −u)A (1)∩I (2)∩A (m)

(u −x(1))A (1)∩I (2)∩I (m)

(x(2) −u)I (1)∩A (2)∩A (m)

(x(2) −x(1))I (1)∩A (2)∩I (m)

(x(2) −u)I (1)∩I (2)∩A (m)

(x(2) −x(1))I (1)∩I (2)∩I (m)



= 0
≤ 0
= 0
≤ 0
≥ 0

≤ 0

where the sign of the entries follows from (3.1b). Further,

we calculate

A (x(2) −x(1)) =



(Ax(2) − Ax(1))A (1)∩A (2)∩A (m)

(Ax(2) − Ax(1))A (1)∩A (2)∩I (m)

(Ax(2) − Ax(1))A (1)∩I (2)∩A (m)

(Ax(2) − Ax(1))A (1)∩I (2)∩I (m)

(Ax(2) − Ax(1))I (1)∩A (2)∩A (m)

(Ax(2) − Ax(1))I (1)∩A (2)∩I (m)

(Ax(2) − Ax(1))I (1)∩I (2)∩A (m)

(Ax(2) − Ax(1))I (1)∩I (2)∩I (m)



=



(Ax(2) − Ax(1))A (1)∩A (2)∩A (m)

(Ax(2) −b)A (1)∩A (2)∩I (m)

(Ax(2) − Ax(1))A (1)∩I (2)∩A (m)

(Ax(2) −b)A (1)∩I (2)∩I (m)

(b − Ax(1))I (1)∩A (2)∩A (m)

(b −b)I (1)∩A (2)∩I (m)

(b − Ax(1))I (1)∩I (2)∩A (m)

(b −b)I (1)∩I (2)∩I (m)



=



(Ax(2) − Ax(1))A (1)∩A (2)∩A (m)

−µ(2)
A (1)∩A (2)∩I (m)

(Ax(2) − Ax(1))A (1)∩I (2)∩A (m)

−µ(2)
A (1)∩I (2)∩I (m)

µ(1)
I (1)∩A (2)∩A (m)

(b −b)I (1)∩A (2)∩I (m)

µ(1)
I (1)∩I (2)∩A (m)

(b −b)I (1)∩I (2)∩I (m)



≤ 0

≥ 0
≤ 0
= 0
≤ 0
= 0

The positive definiteness of A implies

(x(2) −x(1))T A (x(2) −x(1)) > 0.

By contrast, I (1) ∩I (2) ∩A (m) ∪ A (1) ∩A (2) ∩I (m) be-
ing empty implies (x(2) −x(1))T A (x(2) −x(1)) ≤ 0 and we
would have x(2) = x(1), which contradicts the assump-
tion of cycle length m ≥ 2. The same is observed when
starting with x(2) and x(3), x(3) and x(4), and so on. Thus,
by cyclically permuting the indices, we obtain that the
set(

A (k−1) ∩I (k) ∩I (k+1)
)
∪

(
I (k−1) ∩A (k) ∩A (k+1)

)
,

is nonempty for k ∈ {1,2, . . . ,m}.

By considering this necessary condition for 2-cycles
in more detail, we can show:

Corollary 4.7 ([1, Lemma 4.3]). Suppose that A is sym-
metric and positive definite, then the PDASA does not
form 2-cycles.

Proof. By similar calculations as in the proof of Theo-
rem 4.6, we can show that

(x(2) −x(1))T A (x(2) −x(1)) ≤ 0.
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Since A is positive definite, this implies x(2) = x(1), which
is a contradiction.

The results from Theorem 4.6 and Corollary 4.7
present an alternative proof of Theorem 4.3 [1, Propo-
sition 4.5], i. e., global convergence of the PDASA for
two-dimensional problems.

4.3 Three-Dimensional Case

In this section, we exploit the necessary condition for
m-cycles as stated in Theorem 4.6 to investigate the
possible cycle behaviors in case n = 3.

For a comprehensive analysis of all possible cycles,
it is necessary to examine cycles of length m ≤ 7, as
there are 2n = 8 possible active sets, one of which is
optimal. Notice that any cycle that can occur must have
length m > 2 as established in Corollary 4.7. However,
in numerical examples we have typically observed that
m ≤ n, which gives us reason to believe that cycles of
greater length may also lead to contradictions. Proving
this property is an open question.

Consequently, in the following, we limit our analy-
sis to m = 3, since extending our analysis to include
m ∈ {4,5,6,7} is beyond the scope of this work due to
the substantial complexity involved and the lack of an
effective methodology to handle them.

We begin with two examples that show that cyclic
behavior can indeed occur.

Example 4.8 (First Cycle Type). The data

A =
11 −4 9
−4 10 −7
9 −7 9

 , b =
−6

9
−3

 , u =
−4

8
7

 ,

leads to the active set behavior illustrated in Fig. 4.2. Re-
call that the initial active set is exclusively determined by
the initial iterate (x(0),µ(0)). Based on this initial active
set, the algorithm will either converge or enter a cycle
from which it cannot escape.

Figure 4.2 – Active set behavior for Example 4.8.

Example 4.9 (Second Cycle Type). The data

A =
 9 −1 −7
−1 11 14
−7 14 22

 , b =
−1

5
2

 , u =
−6

0
0

 ,

leads to the active set behavior illustrated in Fig. 4.3. Note
that this is complementary to the active sets in Exam-
ple 4.8 in the sense that the roles of active and inactive
sets are interchanged.

Figure 4.3 – Active set behavior for Example 4.9.

A variation of the upper bound shows that the cycle
behavior depends on the upper bound. We emphasize
departure from the original data u in bold face. For ex-
ample,

u′ =
−6

5
−4


leads to the same cycle pattern as u. By contrast,

u′′ =
−6

14
0

 and u′′′ =
−6
−1
0


lead to the active set behaviors shown in Figs. 4.4 and 4.5.
In case of u′′, all bounds are inactive.

Figure 4.4 – Active set behavior for Example 4.9 with u′′.

Numerical investigations with a large set of randomly
generated problem data A,b,u suggest that Figs. 4.2
and 4.3 show the only possible cycle patterns in case
n = 3, modulo permutations of {1,2,3}. The natural
question arises as to why we observe precisely these
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Figure 4.5 – Active set behavior for Example 4.9 with u′′′.

two cycle types and whether we can find a theoretical
upper bound on the number of such cycle types.

First, we test every potential active set cycle configura-
tion with a cycle length of 3. In total, there exist 8 distinct
possible active sets. Thus, there are

(8
3

)= 56 distinct com-
binations of three active sets that can be part of a cycle.
A tedious but straightforward analysis reveals that the
majority of these configurations are inconsistent with
the necessary condition provided by Theorem 4.6. The
only remaining feasible cycle types can be written as

{i , j } → {i ,k} →;→ {i , j } (first type)

{k} → { j } → {i , j ,k} → {k} (second type)

{k} → { j } → {i } → {k} (third type)

{i , j } → {i ,k} → { j ,k} → {i , j } (fourth type)

where i , j ,k ∈ {1,2,3} are three pairwise distinct indices.
The first and second cycle types were observed to occur
in Examples 4.8 and 4.9. It can be proved that the fourth
cycle type can not occur:

Lemma 4.10. Suppose that A ∈ R3×3 is symmetric and
positive definite. Then, the active set sequence {i , j } →
{i ,k} → { j ,k} → {i , j } is impossible.

Proof. We start by listing the characterizing inequalities:
For {i , j } → {i ,k} we have

K :=
bk −ai k ui −a j k u j

akk
−uk ≥ 0, (4.9a)

bi −ai i ui −ai j u j −ai k

bk −ai k ui −a j k u j

akk
≥ 0, (4.9b)

b j −ai j ui −a j j u j −a j k

bk −ai k ui −a j k u j

akk
< 0. (4.9c)

For {i ,k} → { j ,k} we have

J :=
b j −a j k uk −ai j ui

a j j
−u j ≥ 0,

(4.10a)

bk −akk uk −ai k ui −a j k

b j −a j k uk −ai j ui

a j j
≥ 0,

(4.10b)

bi −ai k uk −ai i ui −ai j

b j −a j k uk −ai j ui

a j j
< 0.

(4.10c)

For { j ,k} → {i , j } we have

I :=
bi −ai j u j −ai k uk

ai i
−ui ≥ 0,

(4.11a)

b j −a j j u j −a j k uk −ai j

bi −ai j u j −ai k uk

ai i
≥ 0,

(4.11b)

bk −a j k u j −akk uk −ai k

bi −ai j u j −ai k uk

ai i
< 0.

(4.11c)

Since A is positive definite, it has positive diagonal en-
tries, so (4.9a) implies

bk −ai k ui −a j k u j −akk uk ≥ 0.

Combining this with (4.11c) we get

ai k

bi −ai j u j −ai k uk

ai i
> ai k ui .

If ai k ≤ 0, this would result in a contradiction. Hence
we must have ai k > 0. By similar reasoning, we deduce
ai j > 0 and a j k > 0. Combining (4.9b) and (4.10c), we
obtain

ai j J > ai k K ,

and similarly

a j k K > ai j I and ai k I > a j k J ,

using (4.9c), (4.11b), (4.10b) and (4.11c). Combining
these results with the fact that ai j , a j k , ai k , I , J , K ≥ 0,
we conclude

ai j J > ai k K >
ai j

a j k
ai k I >

ai j

a j k
a j k J = ai j J ,

which is a contradiction and completes the proof.

Despite thorough investigation, we were unable to
find examples exhibiting the third cycle pattern. It is
noteworthy that the first and second cycle types are
complementary, as are the third and fourth cycle types.
Further investigation along these lines might contribute
to a deeper understanding of the PDASA also for values
of n > 3.
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5 Conclusion
This paper summarizes various notions of generalized
derivatives, including Clarke’s generalized Jacobian,
slanting functions, and Newton differentiability. We
state the equivalence of SSN applied to (QP) and the
PDASA together with known global convergence results.

We then investigate the global convergence behavior
of the PDASA for quadratic problems with symmetric
positive definite matrices and upper bound constraints.
For problems in dimension n = 2, we provide a new
proof of global convergence. In case n = 3, we identify
three theoretically possible cycles of length 3, two of
which have been confirmed to occur in randomly gener-
ated examples.

During this research, several limitations were identi-
fied that could be addressed in future work. First, while
the possibility of longer cycles in the case of n = 3 could
not be ruled out, it has not been observed in practice.
This suggests that a deeper understanding of the com-
plementarity of problems concerning their active and
inactive set behavior could be advantageous.

Overall, the global convergence theory even for prob-
lems with one-sided constraints remains incomplete.
While known results provide sufficient conditions de-
pending only on properties of the matrix A, the actual
convergence behavior also depends on b and u.
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A Timeline of Differentiability
Concepts

For an illustration of the historical development of differ-
entiability concepts, we provide a timeline of concepts
and corresponding papers in Fig. A.1.
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Generalized Derivatives Semismoothness

1976: Clarke [7]
Generalized subdifferential in Banach spaces:
Let f : X →R be locally Lipschitz continuous.
The generalized directional derivative of f at x in
direction d ∈ X is defined as

f ◦(x;d) = limsup
y→x, t↘0

f (y + td)− f (y)

t
.

The generalized subdifferential of f at x is

∂ f (x) = {
ζ ∈ X∗ ∣∣ (ζ,d) ≤ f ◦(x,d) for all d ∈ X

}
.

1987: Robinson [21]
Bouligand derivatives for F : Rn →R

m

1990: Clarke [6]
More on generalized subdifferentials:
Let f : Rn →R be locally Lipschitz continuous.
Suppose S is any set of Lebesgue measure zero in
R

n and Ω f the set of points where f fails to be dif-
ferentiable. Then the generalized subdifferential is

∂ f (x) = conv
{
lim∇ f (x(k))

∣∣x(k) → x, x(k) ̸∈ S ∪Ω f
}
.

1990: Shapiro [22]
On concepts of directional differentiability

2000: Chen, Nashed, Qi [5]
Introduction of slant differentiability:
A function F : D ⊆ X → Y is called slantly dif-
ferentiable at x ∈ D if there exists a mapping
G : D → L (X ,Y ), such that the family

{
G(x +h)

}
of bounded linear operators is uniformly bounded
in the operator norm for h sufficiently small and

lim
h→0

∥F (x +h)−F (x)−G(x +h)h∥
∥h∥ = 0.

G is called a slanting function for F at x.

2002: Ito, Kunisch [10]
Introduction of Newton differentiability:
The mapping F : D ⊆ X → Y is called Newton-
differentiable or generalized differentiable on the
open subset U ⊆ D if there exists a family of gener-
alized derivatives G : U →L (X ,Y ), such that

lim
h→0

∥F (x +h)−F (x)−G(x +h)h∥
∥h∥ = 0

holds for every x ∈U .

1977: Mifflin [16]
Introduction of semismooth functionals:
F : Rn →R is semismooth at x ∈Rn if

(i ) F is Lipschitz continuous on a ball at x,
(i i ) for each d ∈Rn and for all sequences(

t (k)) ∈R+,
(
θ

(k)) ∈Rn and
(
G(k)) ∈Rn such

that

t (k) ↘ 0,
θ

(k)

t (k)
→ 0, G(k) ∈ ∂F

(
x + t (k)d +θ(k)),

the sequence
(
G(k))Td has exactly one

accumulation point.

Here, ∂F (x) is a generalized subdifferential follow-
ing Clarke [7].

1993: Qi, Sun [19]
Introduction of semismooth functions:
We say that F : Rn → R

m is semismooth at x ∈ Rn if
F is locally Lipschitz continuous at x and

lim
d (k)→d , t (k)↘0

G(k)∈∂F (x+t (k)d (k))

G(k)d (k)

exists for all d ∈ Rn . Here, ∂F (x) is a generalized
Jacobian following Clarke.

2000: Chen, Nashed, Qi [5]
Generalization of semismoothness in infinite di-
mensions:
We say that F : D ⊆ X → Y is semismooth at x if
there is a slanting function G for F in a neighbor-
hood of x such that G and the associated slant
derivative satisfy the following two conditions.

(i ) lim
t↘0

G(x + th)h exists for every h ∈ X and

lim
∥h∥→0

∥limt↘0 G(x + th)h −G(x +h)h∥
∥h∥ = 0,

(i i ) for all V ∈ ∂S F (x +h), we have

∥G(x +h)h −V h∥ = o(∥h∥).

2003: Ulbrich [23]
α-order semismoothness:
Let F : Rn → R

m be locally Lipschitz continuous.
Then F is semismoothness at x if and only if F is
directional differentiable at x and if

max
G∈∂F (x+h)

∥F (x +h)−F (x)−Gh∥ = o(∥h∥) for h → 0.

The function is called α-order semismooth at x ∈Rn

for 0 < α ≤ 1, if it is locally Lipschitz continuous,
directionally differentiable at x and if

max
G∈∂F (x+h)

∥Gh −F ′(x,h)∥ = o(∥h∥1+α) for h → 0.

Figure A.1 – Timeline of differentiability concepts.
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