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Abstract: Stiffness characterizes the response behaviour
of systems and links generalized displacements and forces
of that system. Stiffness matrices thus contain plenty of
information about system behaviour. In a finite element
setting, the global stiffness matrix is assembled and used
in the analysis, but it is rarely output and subjected to
analysis itself. Here, we use the eigendecomposition of
the stiffness matrix in continuous and discrete mechan-
ical settings. Particularly, we observe eigenvalues and
eigenvectors in relation to structural failure in illustra-
tive examples for educational purposes. Aside from the
classical case of buckling modes, we study a particular
strength reduction technique which is used in geotechni-
cal engineering practice for ultimate limit state analyses.
We briefly touch upon links to model reduction and check
whether failure loads can be estimated from pre-failure
information in non-linear settings. The paper has edu-
cational character, drawing links between different fields
of engineering and emphasizing visualization.

Keywords: stiffness matrix, singularity, limit states,
material/geometrical non-linearity, failure, buckling

1 Introduction

Certain analysis procedures common in practice for
establishing ultimate limit states (ULS) of structures
proceed via a loss of convergence in implicit calcula-
tion schemes at the point where internal forces can no
longer balance external forces. The point at which an
iterative Newton-Raphson algorithm fails to obtain a
solution to this force balance is dependent on time step
size, non-linear tolerances, linear solver settings, mesh
resolution, stress integration tolerances and other set-
tings. Once the finite-element code exits with an error
code, it remains to examine the last converged solu-
tion closely to assess whether the ULS was approached
closely enough. Indications for such a failure are dis-
placements approaching a pole or failure mechanisms
traversing the entire structure in such a way that com-
plete structural failure can be inferred.

There is, however, another way to look at this. Struc-
tural failure in the sense discussed here is linked to the
stiffness matrix becoming singular. In other words, at
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least one of its eigenvalues approaches zero. The asso-
ciated eigenvector should then give clear indications
of the failure mode. Simultaneously, the dominance of
certain modes in the full displacement solution opens
up avenues for model reduction, and thus simulations
that are more efficient both in time and in terms of re-
sources. The key to understanding and using this is
the spectral decomposition or the eigenvalue problem
known to all STEM graduates, for example from the de-
termination of principal stresses and their directions.
Although many textbooks on engineering mechanics
contain a section on buckling, we refer to Bigoni [3] for
further details on stability, as there are many illustrative
examples. Similarly, stiffness matrices are covered in
any textbook on Finite Elements sufficiently for our pur-
pose; we recommend Hartmann [8], who takes a more
general approach.

Following the educational purpose of the paper, we
first illustrate this idea by a simple example from non-
linear structural mechanics taught throughout basic en-
gineering mechanics curricula, namely rod buckling.
We then make the transition to a discrete setting where
we examine the information content of the stiffness ma-
trix in a linear finite element model and draw parallels
to model reduction. Finally, we proceed to a non-linear
ultimate limit state (ULS) analysis of slope failure using a
strength-reduction technique prevalent in geotechnical
engineering for assessing the safety of slopes, embank-
ments, construction pits etc. There, we make use of
both introductory examples to understand the results
and re-iterate the model reduction link. We do so with
minimum mathematical context aiming at a mix of for-
mal and intuitive understanding by a combination of
equations and visual illustration.

While our examples are all from the field of solid me-
chanics, the considerations are generalizable to other
domains or coupled systems, such as poroelasticity, ther-
moelasticity or anything else with characteristics em-
bedded in a system matrix / quasi-linear mapping. It is
also worth noting that a singular stiffness matrix does
not necessarily indicate failure, but also opens up new
possibilities in the post-buckling period, such as vibra-
tion isolation [18] or functional mechanisms [15].

2 Definitions and hypothesis

We start with a stiffness matrix K that depends on dis-
placements u, that is, K(u). This is because in linear
problems with a constant stiffness matrix K, nonlinear
effects, such as stability loss and multivalent solutions,
would be excluded. In practical terms, you need to make
sure that nonlinear analysis is enabled in your simula-

tion software when you are going to analyze stability
and safety of buckling-prone structures.

As customary, we condense external loading to a scalar
load factor λF , which scales a prescribed load distribu-
tion. The variable λ is commonly used for eigenvalues
and λF will be closely linked to this meaning in what
follows, too. We further assume a stable unloaded initial
state at λF = 0 and approach critical states by a load
increase to a positive value λF > 0. When approaching
a critical state, classical Newton-iterations in a quasi-
static analysis fail to converge, since the stiffness matrix
tends towards singularity, i.e. a vanishing stiffness in
some sense. However, non-convergence is not a reli-
able indicator as it is sensitive to all kinds of numerical
settings and could be related to other causes such as
bad initial guesses or unsuitable load step sizes. There-
fore, the actual cause for non-convergence needs to be
identified. What we are looking for is an equilibrium
state, in which there is (at least) one displacement di-
rection without associated stiffness, implying failure of
the structure1. Mathematically, this corresponds to a
nonlinear eigenvalue problem (EVP) of the form

K
(
u
(
λF ))

vF = 0 with K
(
u
(
λF ))

u(λF ) = f
(
λF )

. (1)

Its eigenvalues λF
i are the critical loads that make the

stiffness matrix singular. In terms of mathematics, a sin-
gular stiffness matrix indicates a bifurcation. On cross-
ing bifurcation points, solutions change stability and
start or cease to exist. For a detailed discussion of bifur-
cations we refer to general system theory [7]. In most
cases, the lowest critical load is relevant for design, but
we keep in mind, that the corresponding failure mech-
anisms, indicated by the eigenvectors vF

i , may change
depending on properties and constraints of the system.
In other words, boundary conditions may stabilize one
failure mode and destabilize another, such that a failure
mechanism initially corresponding to a higher load may
become associated with the lowest critical load.

We remember that u
(
λF )

is a one-to-many relation, at
the latest after the first bifurcation of the solution, and
therefore so is K

(
u
(
λF ))

. Strictly speaking, we should de-

note the eigenvaluesλF
i by referring to a solution branch.

For sake of simplicity, we assume that the initial unbuck-
led state remains, even when it becomes mechanically
unstable.

Our idea to evaluate the ordinary EVP of K for failure
estimation is motivated by observations we made in
numerical simulations and the convenience that the
stiffness matrix comes for free in typical analysis types,

1You can think of a horizontal force-displacement curve, where at
a given force, the displacement can grow without bounds.
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as it is computed anyway. The ordinary eigenvalues λi

of the stiffness matrix K correspond to the stiffnesses
in the directions of the associated eigenvectors vi ̸= 0,
which is obvious, when we write the EVP like that

K
(
u
(
λF ))

v =λv. (2)

The ordinary eigenvector v0 corresponding to the lowest

ordinary eigenvalue λ0 of the stiffness matrix K
(
u
(
λF ))

coincides with the eigenvector vF
i of the nonlinear EVP (1),

because at critical loads λF = λF
i the stiffness matrix

gets singular, i.e. det
(
K

(
u
(
λF

i

)))= 0. Since the determi-

nant is the product of the eigenvalues det
(
K

(
u
(
λF

i

)))=
λ0λ1λ2 . . . the lowest2 ordinary eigenvalue must be zero
λ0 = 0. On rearranging the ordinary EVP (2) slightly dif-
ferently (

K
(
u
(
λF ))−λI

)
v = 0. (3)

and setting λ=λ0 = 0, we have the same equation defin-
ing the eigenvectors as in the nonlinear EVP (1).

So far everything is well known. To proceed further
we hypothesize that the eigenvector v0 of the stiffness
matrix corresponding to the lowest eigenvalue provides
a useful estimator for the failure mode already before
we reach failure. This would be useful for numerical
analyses that stop converging some time before one
of the eigenvalues reaches zero. We use the notation
vi (λF ) to indicate that we compute the eigenvectors
of the stiffness matrix at the given load λF . In such
simulations we found evidence that the eigenvector
v0(λF < λF

0 ) predicts upcoming failure quite well, i.e.
v0(λF <λF

0 ) ∼ v0(λF
0 ) withλF

0 denoting the lowest critical
load andλ0 = 0 the vanishing stiffness in the direction of
v0. By assumption, the load factor λF is positive and so
are the nonlinear eigenvalues λF

i > 0. The eigenvalues
of the ordinary EVP may become negative indicating
that the load exceeds a critical load, e.g. when we would
evaluate the eigenvalues of K(λF

1 ) then we were beyond
the lowest critical load λF

1 > λF
0 and have one negative

eigenvalue λi .

3 Basic examples
In the first example, a variation of the well-known Euler
buckling, we estimate buckling loads and mode shapes.
After discretization we have a stiffness matrix to com-
pute eigenvalues/-vectors, and test our hypothesis. In
the second example we subject a rod simply to tensile

2By low we refer to the absolute value, further we assume the
eigenvalue/-vector pairs to be sorted by the absolute value of
the eigenvalue in ascending order.

k̄w̄

x̄, ū
F̄

x̄ = X̄ x̄ = LE A,E I

Figure 1 – An axially loaded rod hinged at both ends with
a stabilizing lateral spring at X̄ .

loading along its axis in a linear analysis but transition
to a finite-element setting. No instability occurs in this
second case. Instead, we illustrate the interpretation of
the eigenvectors of the stiffness matrix in the context of
boundary conditions and reveal their potential use in
model reduction.

3.1 Rod buckling

Rod buckling exhibits the characteristic features of sta-
bility problems. Failure means in this context a vanish-
ing stiffness in axial direction, when the rod bends in
transversal direction, either left or right in a two dimen-
sional setting. It is a simple, illustrative example and
after discretization based on a kinematic Ansatz leads
to an equation system

K(u)u = f, (4)

which is a common sight in numerical mechanics, such
as when using the finite element method (FEM).

3.1.1 Physical model

Our example, shown in Figure 1, corresponds to the
second Euler case extended by a stabilizing spring added
somewhere along the rod. The elastic potential for a rod
with coupled bending and axial displacements (length L,
Young’s Modulus E , cross section area A, area moment
of inertia or second moment of area I ), a discrete spring
(stiffness k̄) and a conservative load (force F̄ ) reads [19]

Π̄= 1

2

L∫
0

[
E I w̄ ′′(x̄)2 +E A

(
ū′+ 1

2
w̄ ′2

)2]
dx̄+

+ 1

2
k̄w̄

(
X̄

)2 + F̄ ū(L). (5)

For the sake of simplicity, we assume constant cross-
sectional parameters E I = const. and E A = const. On
non-dimensionalization [11] with reference length L

and reference force
E I

L2 , i.e. x = x̄
L , X = X̄

L , u = ū
L , w = w̄

L
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and Π= Π̄L
E I , we obtain the non-dimensional potential

Π= 1

2

1∫
0

[
w ′′(x)2 +G

(
u′+ 1

2
w ′2

)2]
dx+

+ 1

2
kw(X )2 +Fu(1), (6)

with the non-dimensional parameters: squared slender-
ness ratio, non-dimensional spring stiffness and non-
dimensional load, respectively, given by

G = AL2

I
, (7a)

k = k̄L3

E I
, (7b)

F = F̄ L2

E I
. (7c)

The buckling loads for a simple rod without spring (k =
0), also referred to as Euler’s critical loads, are Fi = (iπ)2

with i = 1,2,3, . . . .
Let’s come back to the kinematic Ansatz mentioned

earlier. We apply Ritz’s method [19] approximating the
axial displacement by a linear function, which is exact
for the case of pure compression, and two sinusoidal
modes for the transversal displacement (bending)

u ≈ ûx, (8a)

w(x) ≈
2∑

j=1
ŵ j sin

(
jπx

)
. (8b)

We use two modes for bending, because we want to
find out how the buckling mode shapes depend on the
properties of the spring (stiffness k, position X ).

Application of Ritz’s method leaves us with three de-
grees of freedom, sometimes called Ansatz free values,
which we collect in a generalized displacement vec-
tor u = [ŵ1, ŵ2, û]T. We expect two buckling modes to
which we refer to as lower and higher for the respec-
tive buckling load to distinguish them from the basis
indexed by numbers (w1, w2) given in (8b). This two-
mode Ansatz may seem limited, however, it reflects the
fact that often we are practically interested in the lowest
mode only (upcoming failure) and some outlook beyond
it. By outlook we mean to check, whether a small change
in boundary conditions or loading may allow one of the
higher modes to become the lowest.

The next steps are straightforward: we differentiate
the potential (6) twice with respect to our degrees-of-
freedom to obtain the stiffness matrix

K = ∂2Π

∂u2 (9)

Table 1 – Parameter values of the quantitative example
(non-dimensional).

G 1002 squared slenderness ratio

X

{
0.50
0.55

centre position
off-centre position

k 0. . .300 spring stiffness

with

K11 =
9π4Gŵ2

1

16
+ 3π4Gŵ2

2

2
+ π2Gû

2
+ π4

2
+k sin(πX ),

(10a)

K12 =K21 = 3π4Gŵ1ŵ2 +k sin(πX )sin(2πX ), (10b)

K13 =K31 =
π2Gŵ1

2
, (10c)

K22 =
3π4Gŵ2

1

2
+9π4Gŵ2

2 +2π2Gû +8π4 (10d)

+2k sin(πX )sin(2πX )cos(πX ), (10e)

K23 =K32 = 2π2Gŵ2, (10f)

K33 =G . (10g)

Remember that the degrees-of-freedom depend on the
load factor by the equilibrium condition of the nonlinear
EVP (1), which means ŵ1(λF ), ŵ2(λF ) and û(λF ) in our
example. Since we assume loading by the axial force
only

f
(
λF )=λF

 0
0

F = 1

 , (11)

there is no bending (w1 = w2 = 0) in the pre-buckled
state, which simplifies the stiffness matrix K. For further
details we refer to the supplementary material.

3.1.2 Quantitative example

We choose a slender rod with a spring positioned in
its centre or close by. Its numerical values are listed in
Table 1.

Let’s start with the buckling loads. We compute them
from the nonlinear EVP (1) and plot them in Figure 2.
Let’s first interpret the results for the spring in the centre
position. The sloped line, independent of its color, corre-
sponds to the buckling mode shape coinciding with w1,
and is given by the linear function F1 = k

π2 +π2. Similarly,

the horizontal line F2 = 4π2 corresponds to mode shape
w2. At a spring stiffness kcross = 3

2π
4 ≈ 146.11 the buck-

ling load is the same for both modes, i.e. there is not a
single mode shape but a manifold of mode shapes, since
linear combinations of w1 and w2 may occur in addition
to the two modes themselves. Mathematically, we have
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a bifurcation of co-dimension two that is characterized
by a zero eigenvalue of multiplicity two [10]. The physi-
cal interpretation behind these calculations is that the
central spring stabilizes only the w1 mode, whereas it is
ineffective for the w2 mode which by definition (8b) has
a node in the rod’s center. The colors of the lines in Fig-
ure 2 show which of the buckling loads is the lower (blue)
and which is higher (red) one. For the central spring, the
blue line for the lower buckling mode matches exactly
the w1 basis in the lower range 0 ≤ k < kcross and the
w2 basis in the higher range kcross ≤ k < ∞, and vice
versa for the red line of the higher mode. The message
to remember is that the buckling mode shape (lower,
higher) depends on system properties or constraints,
here represented by the spring, and may change.

0 50 100 150 200 250 300
k

0

10

20

30

40

50

60

70

F

kcross

Fhigher

Flower

Figure 2 – Buckling loads versus spring stiffness with
spring at centre (semi-transparent straight
lines) and off-centre position (fully opaque
curved lines).

From the fully opaque lines in Figure 2 we find the
buckling loads of the off-centre case being smoothed
versions of the centre-case. There is no longer any sharp
transition as seen with the central spring, since the spring
now couples effectively both basis shapes w1 and w2.

Consequently, the buckling mode shapes are now lin-
ear combinations of both Ansatz functions with a mode’s
dominance depending on spring stiffness. To reveal
what the buckling modes look like and how their tran-
sition proceeds, we plot the buckling mode shapes for
varying spring stiffness in Figure 3. The notion of low
and high stiffness is to be understood in relation to the
crossing point kcross. With the spring in the off-centre
position the mode switch occurs at kcross ≈ 153.65, if

we define ŵ1 = ŵ2 =
p

2
2 as the crossing condition (nor-

malized eigenvectors ∥vF
i ∥ = 1 with û = 0). For a low

spring stiffness, we observe buckling mode shapes sim-
ilar to classical rod buckling (k = 0), they correspond
to mode shapes close to w1. Whereas mode shapes as-
sociated with the higher load are close to w2. For the
intermediate spring stiffness, lower and higher buckling

0.2 0.4 0.6 0.8 1X
x

-1

1

w

whigher

wlower

0.2 0.4 0.6 0.8 1X
x

-1

1

w
0.2 0.4 0.6 0.8 1X

x

-1

1

w

Figure 3 – Buckling mode shapes in the off-centre case
for three values of the spring stiffness (from
top to bottom): low k = 3, intermediate k =
150 and high k = 300. Spring position marked
by X .

mode are almost symmetric with respect to the rod’s
centre (for X = 0.5 and k = kcross(X = 0.5) they would
be exactly symmetric). One can observe how the lower
mode is shifting due to the constraint imposed by the
spring. For a high spring stiffness, we observe a swap
in the sense that now the lower buckling load causes
a mode shape close to w2 and the higher one close to
w1. The constraining effect of the spring now becomes
quite apparent. The transition from top to bottom, as
k increases, is smooth in the mode shapes, whereas for
the spring in central position the mode shapes remain
constant and at k = kcross there is a sudden take-over in
the buckling loads. Note in passing, that this observed
mode swap resembles frequency veering in vibrational
systems [13] and points to interesting parallels between
vibrations and stability [17].

Now let’s test our hypothesis and evaluate the ordi-
nary EVP for sub-critical loads 0 < F < Flower and esti-
mate the buckling mode shapes. In Figure 4 we plot the
composition of the lower buckling mode shape in terms
of the degrees-of-freedom of each basis function and
find an increasing match of the estimator for F < Flower.
In accordance with Equation (3) the match is perfect for
F = Flower. Similarly, we plot our estimator for the higher
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0 50 100 150 200 250 300
k

0.0

0.2

0.4

0.6

0.8

1.0

w

|w1|
|w2|

Figure 4 – Mode shape estimation for the lower
buckling load computed at F /Flower =
{0.25−, 0.5−, 0.75−, 0.85−, 0.95−, 1.0−} with
increasing opacity (blue). The lines for
F = Flower coincide with the exact values
(black). The zero component û = 0 is not
shown.

0 50 100 150 200 250 300
k

0.0

0.2

0.4

0.6

0.8

1.0

w

|w1|
|w2|

Figure 5 – Mode shape estimation for the higher
buckling load computed at F /Flower =
{0.25−, 0.5−, 0.75−, 0.85−, 0.95−, 1.0−} with
increasing opacity (red). The exact values
(black) were obtained for F = Fhigher, which
may be unreachable in practical simulations
due to failure at Flower. The zero component
û = 0 is not shown.

buckling mode shape in Figure 5 and again observe an
increasingly better match with increasing load F , not
getting the perfect match, since Flower < Fhigher.

Finally, we check the possibility to extrapolate the
eigenvalues, particularly the lowest, as function3 of the
load λ0(λF ). From Figure 6 we find that the lowest eigen-
value varies almost linearly with the load in our example.
The kinks in this plot are either due to absolute value
or to the next eigenvalue taking over the minimum. We
sort the eigenvalues by absolute value and so we did the
plots, that you can read off the crossings. Their signs are
all positive in the unloaded state λi (λF = 0) > 0 and be-
come negative after their corresponding critical load. A

3To make this function univalent, we assume that the rod remains
in the unbuckled state, even when it is (mechanically) instable.

10 20 30 40 50 60 70 80
F

0

50

100

150

200

250

300

350

|
0|

k = 3 k = 150 k = 300

Figure 6 – Lowest eigenvalue by absolute value during
loading for three different values of the spring.
The blue and red ticks mark lower and higher
buckling loads, respectively.

negative sign then indicates how far the current load ex-
ceeds the critical load while the next critical load (higher
mode) comes closer to zero and takes over the lowest
absolute value. Thus, we have good conditions for lin-
ear extrapolation of the eigenvalues’ zero-crossing. In
other words, loads at failure can be estimated based on
pre-failure information. Of course one specific example
is not sufficient, but it renders further study worthwhile.
We will get back to this in the ultimate limit state exam-
ple in Section 4.

3.2 Finite element stiffness matrix – discrete
model

Before coming to the application example of a non-
linear FE analysis for ultimate limit state analyses, we
examine the stiffness matrix resulting from a simple
one-dimensional linear finite element analysis of a rod
under tensile loading. The intent here is to provide a
simple example for the interpretation and use of the
eigen-decomposition of a FE stiffness matrix in a linear
case without instability with a pointer towards model-
order reduction.

3.2.1 Discrete model

Consider a rod of length L which we discretize into finite
elements of equal length h. The resulting stiffness ma-
trix of the linear system Ku = f reads in case of spatially
uniform tensile stiffness E A and separation into four
finite elements of length h = L/4 with five nodes

K = 4


1 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

 (12)
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0 1 2 3 4
node index j

0.6

0.4

0.2

0.0

0.2

0.4

0.6

vi j

1 = 0.000
2 = 1.528

3 = 5.528
4 = 10.472

5 = 14.472

Figure 7 – Eigenvalues and -vectors for the stiffness ma-
trix of the free rod from Eq. (12). The sequence
of modes can be recognized by decreasing
opacity and wavelength.

0 1 2 3 4
node index j

0.50

0.25

0.00

0.25

0.50

0.75

1.00

vi j

1 = 0.482
2 = 4.000

3 = 4.000
4 = 9.389

5 = 14.128

Figure 8 – Eigenvalues and -vectors for the stiffness ma-
trix of the constrained rod from Eq. (13). The
sequence of modes can be recognized by de-
creasing opacity and wavelength.

For the above, we normalized forces and displace-
ments, f/E A and u/L, to obtain non-dimensional stiff-
ness matrices as in the previous example. The factor
four comes from the above mentioned discretization
L/h = 4. Eigenvalues and eigenvectors of this stiffness
matrix are shown in Figure 7 for the case without bound-
ary conditions, Eq. (12), and in Figure 8 for the case with
boundary conditions, Eq. (13). In both figures, v i

j indi-

cates the value of the j th coordinate of the eigenvector
associated with the i th eigenvalue λi .

We observe in Figure 7 that the lowest eigenvalue with
vanishing stiffness corresponds to a rigid body mode4,
while the spatial frequency of the eigenmodes increases
with the associated stiffness, until we have alternating
compression and expansion in each of the finite ele-
ments for the highest eigenvalue.

To eliminate the rigid body mode, we constrain node
zero with a no-displacement boundary condition, chang-

4This lack of constraint could also be interpreted as a structural
failure, as the structure has no bearing to react against.

0 1 2 3 4
node index j

0.00

0.02

0.04

0.06

0.08

0.10

u j
 / 

L

FE solution
ntrunc = 1
ntrunc = 2
ntrunc = 3
ntrunc = 4
ntrunc = 5

0 1 2 3 4
node index j

0.010

0.005

0.000

0.005

u j
uFE j

 / 
L

Figure 9 – FE solution and its reconstruction by sum-
ming up modes using Eq. (14) (top). Bottom
figure shows deviation from exact solution.
Opacity increases with the highest mode con-
sidered in the summation.

ing the stiffness matrix to

K = 4


1 0 0 0 0
0 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

 (13)

The corresponding spectral decomposition yields a
strictly positive lowest eigenvalue and a corresponding
deformation mode that corresponds to a spatially mono-
tonic displacement, cf. Figure 8. We also observe that
all eigenmodes satisfy the boundary condition at node
0, except for one. This one will map the reaction force at
the Dirichlet boundary.

We now solve the system with a non-dimensional ex-
ternal load of 0.1 on node 5 obtaining the FE solution in
Figure 9. For a further interpretation of the eigenvectors,
we look at the spectral decomposition K = VΛV−1 with
Λ = diag(λi ). This allows us to diagonalize the linear
system to

Λ (V−1u)︸ ︷︷ ︸
ũ

= V−1f︸︷︷︸
f̃

(14)

This allows us to draw links to model order reduction
by truncating the modes used inΛ (diagonal matrix con-
taining the eigenvalues) and V (matrix containing the
eigenvectors) in Eq. (14) at a certain number. Alterna-
tively, we can write this as

uFE ≈
ntrunc∑
i=1

λ−1
i (vi ·F)vi (15)
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In other words, the solution space is spanned by the
eigenvectors. Each solution contribution in the sum is
co-linear with its basis/eigenvector and scaled by the
load vector projected onto that basis divided by the as-
sociated stiffness. The result of truncating the sum at
different orders is shown in Figure 9.

We observe that the linear displacement (constant
strain) profile in the rod is recovered precisely if all modes
are included, while increasing deviations occur with ear-
lier truncation. Arguably, already the base mode consti-
tutes a reasonably good approximation of the solution.
We see in Equation (15), that each mode is weighted by
the inverse of the eigenvalue. In other words, the smaller
an eigenvalue is in relation to the others, the more its as-
sociated deformation mode will contribute to the overall
solution. This, and the particular relevance of the lowest
eigenmode explained in the example of buckling, moti-
vates further the study of the lowest eigenmode in the
non-linear FE problem of the next section.

4 Strength reduction – global limit
state

The findings are now transferred to a non-linear FE
model. For this purpose, we will look at a slope fail-
ure simulation typical in geotechnical engineering. We
will investigate the meaning of the eigenvector corre-
sponding to the lowest eigenvalue in light of the model
reduction idea as well as the trends of the eigenvalues
in light of our hypothesis.

In a non-linear FE analysis we solve for a vanishing
residual vector R given by the difference between inter-
nal and external forces, sometimes called out-of-balance
forces, R = Fint −Fext. When the external forces are in-
cremented in a load or time step, the corresponding dis-
placement increment∆u is sought iteratively. A Newton-
Raphson linearization gives rise to the following linear
system solved in each iteration of each load increment:

K(u)∆∆u =−R (16)

Here, ∆∆u is the Newton update for the sought dis-
placement increment ∆u. The stiffness matrix consti-
tutes the tangent of the problem in the sense of K =
∂R/∂∆u.

4.1 Example: strength reduction in
geotechnical engineering

Pressure-dependent strength of granular materials is
often described in terms of limit states defined based on

Figure 10 – Slope failure analysis: A load of 30 kPa is ap-
plied to the top of the slope over an area of
3 m in length. The bottom is fixed in all direc-
tions, the sides are constrained horizontally.

Coulomb’s or Mohr-Coulomb’s law, respectively5:

τ≤ c +σ′
n tanϕ (17)

σ1 −σ3

2
≤ σ′

1 +σ′
3

2
sinϕ+ c cosϕ (18)

The material parameters cohesion c and internal fric-
tion angle ϕ are at the basis of the associated strength
reduction techniques. These so-called ϕ-c reduction
methods have become popular due to their easy integra-
tion into standard displacement-based finite element
approaches and were compared to actual limit state
analyses based on the upper and lower bounds estab-
lished under certain assumptions by plasticity theory
[5, 16]. They can be extended towards less restrictive
assumptions, e.g. non-associated flow rules [16], com-
plex geotechnical settings and structures [2], as well as
coupled problems [9]. The objective of the analysis is to
determine a safety factor F with respect to the ultimate
limit state by slowly reducing the strength parameters
of a soil, namely the angle of internal friction ϕ and the
cohesion c in a Mohr-Coulomb strength model, until
structural failure is reached.

Instead of increasing the external loads, a reduction
coefficient ηtrial is increased over (pseudo-)time to pro-
duce a set of reduced strength parameters ctrial andϕtrial

following the so-called Fellenius rule, i.e.

ctrial =
c

ηtrial
, (19a)

ϕtrial = arctan

(
tanϕ

ηtrial

)
. (19b)

ηtrial is a scalar parameter with a similar role to the load
factor λF . Instead of increasing the load, ηtrial scales
down the strength. This reduction continues until no

5Here, a soil mechanical sign convention is used in which compres-
sive stresses are positive. The prime indicates effective stresses.
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static equilibrium can be achieved. In other words, the
internal forces can no longer balance the external loads
and the slope fails. Practically, the Newton-Raphson
equilibrium iterations no longer converge at some stage
at which state one determines the safety factor from the
last trial value, η= ηtrial,last.

To make sure that structural failure occurred and the
nonlinear analysis did not fail for other reasons, the ana-
lyst verifies the ultimate limit state by looking at poles in
the displacement solution and equivalent plastic strain
bands traversing the structure. Here, we additionally
analyse the global stiffness matrix of the finite element
analysis in the last converged load step.

4.2 Model

The slope analysis example, shown in Figure 10, was
motivated by an example realized in PLAXIS2D [14] and
also implemented in OpenGeoSys [4]. A smoothed ver-
sion of the Mohr-Coulomb material model was used
[1, 12].

The specific simulation settings are not relevant here
but can be found in [6]. A distributed load is applied on
top of a slope as indicated in Figure 10. The simulation
starts by applying gravity and top load gradually in the
first 2 s of the simulation6. After a hold phase of 1 s,
strength reduction commences as indicated in Table 2.

In the base case, slope failure is reached after t =
5.375s. The base case uses the numerical settings in-
dicated in [6] and linear triangular elements.
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𝜆0 /Nm−2
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10−1
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Fr
ac
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n

sm
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r

t=0.1 s t=2.0 s t=5.37527 s

1Figure 11 – Cumulative distribution function of eigen-
values of the global stiffness matrix at differ-
ent time points of the simulation (base case
TRI3a).

6Note, that a quasi-static analysis is used and the material model
is rate-independent. Therefore, time here is just a pseudo time
used to advance loading and strength reduction. Time steps
therefore constitute load steps.
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1Figure 12 – Extrapolation of the eigenvalue λ0 as a func-
tion of the reduction coefficient.

4.3 Analyzing the global stiffness matrix

For the analysis of the finite element stiffness matrix, we
will look at three different load steps with the following
time stamps:

• t = 0.1 s, i.e. at the beginning of the simulation
when the material is still elastic,

• t = 2.0 s after full loading has been reached, and
• t = 5.375 s, i.e. the last converged load step before

failure.

The cumulative distribution function of the eigenval-
ues of the global stiffness matrix at these load steps is
shown in Figure 11. One can observe a range of well-
defined positive values in the elastic structure indicated
by the blue curve. After load application, some plasticity
already occurred, shifting the curve to the left (green)
but maintaining a sound load-bearing structure. At the
end of strength reduction (red) the curve has shifted to
much lower stiffness values due to increasing plastifica-
tion of the slope. The formation of a continuous shear
band causes structural failure which is nicely demon-
strated in Figure 11 by the global stiffness matrix becom-
ing singular (lowest eigenvalue very close to zero).

As in the buckling load example, the evolution of the
eigenvalues is analyzed, cf. Figure 12. In contrast to the
introductory example, where the eigenvalue is analyzed
as a function of the load factor λF , the eigenvalue is
analyzed as a function of the reduction coefficient ηtrial

reducing material strength. We observe towards the end
of the base case (TRI3a) simulation a rapidly increasing
rate at which the lowest eigenvalue λ0 decreases. The
extrapolated zero value of ηtrial = 1.317 indicates the
reduction coefficient at which the slope fails, i.e. the
factor of safety determined in the calculation.

We compared the base case (TRI3a) with two other
simulation settings in Fig. 12. One simulation (TRI3b)
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0 s 1 s 2 s 3 s 4 s 5 s 6 s 7 s

Density ϱ / kg m−3 0 1600 1600 1600 1600 1600 1600 1600
Top loading ptop / kPa 0 15 30 30 30 30 30 30
Cohesion c / kPa 1 1 5 5 4.5 4 3.5 3
Friction angle ϕ / ° 20 20 20 20 18.12 16.24 15.26 12.32
Safety factor ηtrial 1 1 1 1 1.11111 1.25 1.42871 1.66667

Table 2 – Parameter values for slope failure analysis. In the first two seconds, gravity and external load are being linearly
ramped up. The actual strength reduction commences after 3 s.

𝜆0 = 639.8957 Nm−2

0.000 0.005 0.010 0.015 0.020 0.025 0.030
∥v0

𝑖 ∥

1(a) Slope t = 0.1 s

𝜆0 = 476.1906 Nm−2

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
∥v0

𝑖 ∥

1(b) Slope t = 2.0 s

𝜆0 = 0.0005 Nm−2

0.00 0.01 0.02 0.03 0.04 0.05 0.06
∥v0

𝑖 ∥

1(c) Slope t = 5.375 s

Figure 13 – Eigenvector analysis corresponding to the
smallest eigenvalue at different load steps.
Plot over deformed configuration.

uses a coarser time grid based on a larger value for the
minimum admissible load step in the adaptive load
stepping algorithm used (1 ·10−2 s instead of 1 ·10−4 s),

𝜆1 = 23.3449 Nm−2

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
∥v1

𝑖 ∥

1(a) Eigenvector analysis corresponding to the second mode.

𝜆1326 = 18522826.7787 Nm−2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
∥v1326

𝑖 ∥

1(b) Eigenvector analysis corresponding to a higher mode.

Figure 14 – Eigenvector analysis corresponding to
higher modes of the last load step t = 5.375 s.
Plot over deformed configuration.

leading to earlier non-convergence of the simulation.
Nevertheless, the simulation proceeded far enough to
yield a comparable safety factor. The other variation
(TRI6) uses triangular elements with quadratic shape
functions and otherwise similar settings as TRI3a. The
simulation with the higher-order elements reaches non-
convergence much earlier and achieves a reduction of
the smallest eigenvalue by only about three orders of
magnitude compared to the nearly six orders of magni-
tude observed in the TRI3a simulation. However, the
pole (vertical asymptode) of the curve and the extrapo-
lation indicate that structural failure was achieved, as
confirmed also by analysis of the displacement field. In
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1Figure 15 – Comparison of (normalized) displacement u/∥u∥ with the eigenvector v0 corresponding to the smallest
eigenvalue. Top to bottom: normalized displacement vector, eigenvector corresponding to the smallest
eigenvalue, difference of both. Left column shows horizontal component, right column vertical component.
Plots over undeformed configuration. Note the change in scale between the two top rows and the bottom row,
indicating the very small difference between the normalized displacement and the first eigenvector.

practice, such a sensitivity of the primary result to spa-
tial discretization requires further analysis, e.g. by mesh
convergence studies or regularization methods in case
of strongly localizing problems.

Having studied the eigenvalues, we now look at the
eigenvectors corresponding to the lowest eigenvalue
(Figure 13). In the elastic case, Figure 13a, we observe
a deformation mode with a characteristic length scale
on the order of the structural length. After full load ap-
plication, some plastification occurred and a pattern
indicating a combination of ground bearing failure and
slope failure starts to become visible to the trained eye
in Figure 13b, such as slip circles in the slope and active
earth pressure wedges under the top load. At the final
load step, the eigenvector associated with the vanishing
stiffness clearly looks like a slope failure problem, Fig-
ure 13c. We will investigate this particular vector more

closely later.

For completeness, we first look at some higher modes
in the last load step in Figure 14. The eigenvector cor-
responding to the second smallest eigenvalue again de-
lineates mainly the sliding soil mass, Figure 14a. Com-
paring Figures 13c and 14a, we see that the first and
second modes show an increasing spatial frequency in
relation to the structural length of the sliding part of the
slope. This is analogous to what we saw in Section 3.2.
Similarly, the eigenvectors corresponding to the highest
eigenvalue show localized oscillations, modifying the
solution at the corresponding position, cf. Figure 14b.

The eigenvector of the lowest eigenvalue can be an-
alyzed in more detail in Figure 15. By means of Equa-
tion (15) we can speculate based on the results in Fig-
ure 11 that the eigenvector v0 should dominate the solu-
tion. In order to test this hypothesis, we normalize the
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resulting displacement field (i.e. the full solution) and
compare it to the zeroth eigenvector in Figure 15.

We find a strong visual resemblance in both the hor-
izontal and lateral vector components, indicating that
the principal deformation characteristics of the failing
slope are captured by the eigenmode v0. The difference
between normalized displacements and the eigenmode
is small compared to the values themselves. The main
differences are concentrated around the shear band and
the shoulder of the slope. These differences could in
principle be reduced by including higher-order compo-
nents as shown in Figure 9. This result opens up the
avenue for reduced-order representations of the failure
mode for this slope.

5 Discussion
In this article, illustrative examples for the analysis of
global (structural) stiffness matrices were presented. As
part of a special focus on structural failure, we inves-
tigated whether the eigenvector corresponding to the
lowest eigenvalue of the stiffness matrix provides a use-
ful estimator for the deformation mode during failure,
even before reaching failure completely.

In the first example, eigenvalues and vectors were
studied as a function of load in the case of a buckling rod.
The eigenmodes showed clear relation to the buckling
kinematics, and the lowest eigenvalue varied almost
linearly with the load in this case, indicating that a linear
extrapolation of the eigenvalues can be used to find
zeros. In other words, the extrapolation of pre-failure
information can be used to calculate the buckling load
and estimate shapes.

The second example returned to a linear analysis of
a rod under tension in a discrete finite element setting.
The eigenvectors show a hierarchy of deformation con-
tributions, each associated with an increasing stiffness
and a shorter wave length. Vanishing eigenvalues were,
in this linear setting, only associated with rigid body
modes due to a lack of constraints. Sorting the eigenval-
ues and eigenvectors opened the way to model reduc-
tion, i.e. approximation of the full solution by fewer de-
grees of freedom relying on deformation characteristics.
It could be seen that the approximation of the displace-
ment using only the lowest eigenmode already gives a
good approximation, particularly when the lowest eigen-
values are small in comparison to the remaining ones.

The third example is motivated by practical ultimate
limit state analyses in geotechnical engineering. In this
non-linear analysis, the eigendecomposition is performed
on the global stiffness matrix7 of an elasto-plastic slope

7Note that this matrix is large in practical situations with size corre-

failure problem. For increasing strength reduction coef-
ficients Ftrial the lowest eigenvalue decreases and even-
tually approaches but does not reach zero. By extrapo-
lation of the lowest eigenvalue evolution and by com-
parison of the associated eigenvector with the total dis-
placement solution one can confirm the proximity to
structural failure. We also showed the sensitivity of the
result to numerical settings, a fact well-known from the
literature. The eigenvector corresponding to the small-
est eigenvalue gives a good approximation of the overall
displacement results and again opens a path to model
reduction.

6 Conclusions

This paper illustrated possible interpretations of eigen-
values and -vectors of global stiffness matrices. They
provide instructive and unified ways of approaching ma-
terial or structural failure, bifurcations, other singular
points as well as certain types of model reduction. The
relationship of (the lowest) eigenvalues with loads or
material parameters can potentially be used to estimate
critical points based on information from pre-critical
states only. In non-linear problems this might, how-
ever, only be possible in the vicinity of the critical loads
themselves, providing a limitation for the approach. Fi-
nally, visualizing the eigenvectors associated with the ex-
tremes of the eigenvalue distribution can help in finding
causes for non-convergence in numerical simulations
and thus be a helpful debugging tool.

Code Availability: The code behind the examples is
provided in the form of Jupyter notebooks that can be
found on GitHub8. The finite element code used in the
strength reduction is available on GitLab9.
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