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Abstract: In poroelastic media, i.e., porous structures
whose pores contain fluid, a kind of waves can be ob-
served that does not occur in elastic media, the so-called
slow P-waves or Biot waves, which may be perceived as
opaque when first encountered. In this paper, we pursue
two goals: firstly, we want to provide a simple explana-
tory model of these waves and, secondly, we want to pre-
pare the reader for Biot’s seminal paper. We discretize
a finite poroelastic waveguide by Galerkin’s method to
arrive at a mechanical system with 2 degrees of freedom
and solve the eigenvalue problem of free oscillations. This
oscillator representation (ODE) is simpler than the wave
representation (PDE) while maintaining salient features
of poroelastodynamics and offering a different perspec-
tive. In fact, an oscillation is a standing wave with wave
velocity and wave length being related to frequency and
domain length. In this reduced model, slow P-waves,
when they exist, correspond to an oscillation with large
phase shift and fast P-waves to an oscillation with small
phase shift.

The intended audience are engineering or physics grad-
uate students with basic knowledge of linear oscillations,
linear differential equations and some understanding of
biphasic media.

Keywords: wave propagation, porous media, poro-
elasticity, linear differential equations, Biot waves, slow
P-waves

1 Introduction

Poroelasticity is commonly used to model quasistatic
deformations of soils, rocks or biological tissues, in ad-
dition to the solid matrix it considers the pore fluid,
too. The evaluation of seismic signals in geology or ul-
trasound waves in medical technology often assumes
elasticity as the underlying theoretical framework, ne-
glecting the influence of the pore fluid. In elastic media,
there are two types of waves: pressure-waves (P-waves)
and shear-waves (S-waves), which are also named pri-
mary and secondary waves, respectively, because the
former are faster than the latter. A qualitative difference
between poroelasticity and elasticity when it comes to
dynamic problems in fully saturated media is the oc-
currence of a new type of wave, a slow P-wave [1, 2] in
addition to the fast P-waves, which corresponds to the
P-waves in elastic media. There are even more of these
slow P-waves in porous media whose pore space is filled
with distinct fluid phases, i.e., under conditions of par-
tial saturation [3, 13]. Often, these kinds of waves are ig-
nored, since they are highly dissipative, but also because
they seem, to a certain degree, to be somewhat myste-
rious, even to some geophysicists. This may be rooted
in the fact that they are not easily observed and were
experimentally demonstrated much later than theory
predicted their existence [12]. We wish to aid students
and researchers starting to work on biphasic dynam-
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ics in their “de-mystification” and try to illustrate Biot
waves as simply as possible by reducing the wave propa-
gation problem in a continuous domain, given by partial
differential equations (PDEs), to free oscillations of a dis-
crete system, given by ordinary differential equations
(ODEs). Such a reduced model is often more easily ac-
cessible to graduates with a typical background from an
engineering mechanics syllabus centered around mass-
spring-damper systems. Even though this description
is simpler than in the original papers by Biot [1, 2], it re-
tains shared features key to their phenomenology, such
as mass coupling and some characteristic parameter
ratios. Familiarity with non-dimensionalization [9, 10]
would be a key asset for understanding the paper, since
we directly start from well-established models in their
non-dimensional formulation. We also assume famil-
iarity with static biphasic theory and refer to textbooks
[4, 14, 15] for further details.

We review S-waves in section 2, where only one kind
of wave exists in contrast to P-waves. With the aid of this
simpler case we introduce the path to discretization and
we also notice differences in wave propagation between
poroelastic and elastic media. Next, we move on to the
main subject of the paper, the model for P-waves in
section 3, with which we perform a modal analysis in
section 4, and discuss the results in section 5.

We use the same characteristic frequency

fc =
1

2π

µn

κϱf
, (1)

as Biot does, to define low ( f < fc) and high ( f > fc)
frequencies. This characteristic frequency depends on
material parameters only and is used as reference for
both, S- and P-waves.

2 S-waves as Preliminary

We reduce propagation of shear waves in an one-dim-
ensional poroelastic bar to oscillations of a two-body
system, with which we perform a modal analysis.

2.1 Continuum model

Our point of departure is the set of mass and momen-
tum balance, see equations (5.8) and (5.15) in Verruijt’s
textbook [14], in non-dimensional formulation for one-
dimensional shear waveguides

n

ρ
üf +

nτ

ρ
(üf − üs)+nDS(u̇f − u̇s) = 0, (2a)

(1−n)üs −
nτ

ρ
(üf − üs)−nDS(u̇f − u̇s)−u′′

s = 0, (2b)

xdim = L

uf, us

xdim

ρs, G , κ, n, τ, ρf, µ

Figure 1 – Continuous model for S-waves: one-
dimensional, poroelastic bar with fixed,
undrained left end (xdim = 0) and symme-
try boundary condition at the right end
(xdim = L).

c2

Uf Us

m1 m2

d∆

m∆

Figure 2 – Multibody-system representing a reduced
model for S-waves in a poroelastic bar.

with total displacement of the fluid phase uf and total
displacement of the solid phase us, and where □̇ de-
notes partial derivative with respect to time t and □′

with respect to spatial coordinate x.

For non-dimensionalization we refer positions to bar
length L and time to T = L

p
mvϱs. The ab initio non-

dimensional parameters are: porosity n and tortuosity
factor τ. The latter appears as an added-mass (inertial)
effect due to fluid acceleration along curved flow paths.
The non-dimensional parameters

ρ = ϱs

ϱf
, (3)

DS = nµL

κ
√

Gϱs

, (4)

are related with the original parameters: ϱf fluid density,
ϱs solid density, G shear modulus (bulk, drained), µ vis-
cosity of the fluid, and κ intrinsic permeability. By fluid
and solid we refer to the pure material (massive) and
by bulk to the porous matrix (averaged properties of
cell/truss structure). As an example, we consider the bar
shown in figure 1 with the numerical values listed in ap-
pendix A. This bar of length L (dimensional model) cor-
responds to one half of a bar of length 2L fixed on both
ends. The mechanical boundary conditions are that of
a fixed, undrained left end and a symmetry boundary



16 D. Kern, T. Nagel GAMMAS 2024

condition at the right end

uf(t ,0) = 0, (5a)

us(t ,0) = 0, (5b)

u′
f(t ,1) = 0, (5c)

u′
s(t ,1) = 0. (5d)

If we were interested in asymmetric mode shapes of
the original bar, then we had to take its full length into
account. However, the symmetric mode shapes are suf-
ficient for our purpose and that way we keep this exam-
ple aligned with the upcoming model for P-waves. For
sake of completeness, we note that the field equation
(2) inherently contains the assumption of plane waves
(infinite cross-sectional area) that we may imagine as a
periodic boundary condition on top and bottom (flow
top-out equals bottom-in and vice versa) conserving the
fluid mass.

2.2 Model reduction

We use separation of variables and assume a solution
of the form given by a product of a function in space
and a function in time. As function in space we choose
the base mode shape (first eigenmode) of an elastic bar
complying with the boundary conditions (5)

uf(t , x) =Uf(t )sin
(
π
(1

2
+k

)
x
)
, (6a)

us(t , x) =Us(t )sin
(
π
(1

2
+k

)
x
)
, (6b)

with mode number k ∈ N. For a finer approximation,
one may use more ansatz functions, however we are
going for the simplest model possible. According to
Galerkin’s method [5], we plug ansatz (6) into PDE (2),
weight the residuum and integrate over the domain.
This discretization eliminates the dependency on the
spatial coordinate x, here shown for equation (2a) and
base mode (k = 0)

1∫
0

(n(1+τ)

ρ
Üf(t )− nτ

ρ
Üs(t )

+nDS

(
U̇f(t )−U̇s(t )

))
sin2

(π
2

x
)
dx = 0, (7)

noting that we used the same functions for the spa-
tial parts of the ansatz and weights (Bubnov-Galerkin
method). For sake of completeness, these functions are
also referred to as trial and test functions, respectively.

Hence, we are left with a system of two coupled ODEs,
which corresponds to the multibody-system shown in
figure 2. Sorting for displacement, velocity and acceler-
ation of fluid and solid gives the meaning of the multi-
body-system parameters as springs, dashpots and masses

m1 = I11
n

ρ
, (8a)

m2 = I22

(
1−n

)
, (8b)

m∆ = I12
nτ

ρ
, (8c)

d∆ = I12nDS, (8d)

c2 = I22

(π
2

)2
, (8e)

with the integrals over the products of ansatz and weight
functions

I11 = I12 = I22 =
1∫

0

sin2
(π

2
x
)

dx = 1

2
. (9)

Although, here the Ii j share the same value, we keep sep-
arate variables to point out, where different ansatz func-
tions for fluid and solid motion would enter. All param-
eters given by equation (8) are common for multibody-
systems, except the mass coupling m∆, which results
from the tortuosity. In the customary notation of multi-
body dynamics, we have an equation of motion

Mq̈+Dq̇+Cq = 0, (10)

with position vector

q =
[

Uf(t )
Us(t )

]
, (11)

mass matrix

M =
[

m1 +m∆ −m∆

sym. m2 +m∆

]
, (12)

damping matrix

D =
[

d∆ −d∆
sym. d∆

]
, (13)

and stiffness matrix

C =
[

0 0
sym. c2

]
. (14)

Evaluation of the swap relation [6]

M−1DM−1C ̸= M−1CM−1D (15)

reveals that the damping is non-modal due to frictional
fluid flow in the pores; assuming an inviscid fluid (µ= 0)
it becomes modal (or rather undamped). If, additionally,
tortuosity vanishes (µ= 0 and τ= 0) , then the masses
m1 and m2 were decoupled. Mathematically speaking,
diagonalization with the eigenvectors of the undamped
system is impossible. Consequently, we expect com-
plex eigenvectors, which is nothing out of the ordinary
and simply introduces phase-shifts other than integer
multiples of π.
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2.3 Modal analysis

The first choice for linear systems of ODEs like (10) is an
exponential ansatz

q(t ) = q̂eδt with q(t ) =
[

Uf(t )
Us(t )

]
, (16)

whose real part has the physically meaningful interpre-
tation of a position

R
{

Ûfe
δt

}
= |Ûf|e−t/T cos(ωt +ϕf), (17a)

R
{

Ûseδt
}
= |Ûs|e−t/T cos(ωt +ϕs), (17b)

while its imaginary part is ignored. The real part of
the coefficient R{δ} =− 1

T describes the decay and the
imaginary part I{δ} =ω periodic oscillations (same co-
efficient for both components of the position vector q).
The phase shifts originate from the complex amplitudes
ϕf =∠Ûf and ϕs =∠Ûs.

Inserting ansatz (16) into the reduced equation of mo-
tion (10)[

δ2M+δD+C
]

q̂ = 0 with q̂ =
[

Ûf

Ûs

]
(18)

has only nontrivial q̂ ̸= 0 solutions, if the determinant
vanishes

det
[
δ2M+δD+C

]
= 0. (19)

Evaluation of this determinant gives the characteristic
equation

pchar(δ) = a4δ
4 +a3δ

3 +a2δ
2 +a1δ+a0 = 0, (20)

with

a4 =
m1m2

m1 +m2
+m∆, (21a)

a3 = d∆, (21b)

a2 =
m1 +m∆

m1 +m2
c2, (21c)

a1 =
c2

m1 +m2
d∆, (21d)

a0 = 0. (21e)

We immediately notice the eigenvalue δ0 = 0 as a triv-
ial solution to the quartic equation (20). Substitution
of δ0 = 0 into (18) yields the eigenmode r = [1,0]T cor-
responding to m1 in arbitrary position and m2 in un-
stressed position, both at rest, which is plausible as there
is no force from dashpot or mass coupling. From the
remaining cubic equation, we know that it has either
one real and two conjugate-complex roots, or three (in-
dividual or multiple) real roots1. However, we postpone

1This can be intuited by drawing a typical third-order polynomial
and shifting it up and down along the ordinate.

the root-finding discussion to section 4, where we will
encounter a quartic equation again, but with different
coefficients. Indeed, the present characteristic equa-
tion (20) for the S-wave model is a special case (a0 = 0)
of the upcoming characteristic equation (37) for the P-
wave model. For now, we anticipate that there is one
real root (decay) and a pair of conjugate-complex roots
(oscillation) for physically plausible parameters. Since
the oscillation corresponds to waves, we conclude that
S-waves always exist. With our exemplary values (ap-
pendix A) we notice an exponential decay in the first
mode, in which both masses slow down while moving
in opposite direction

δ1 =−334.543, (22a)

r1 =
[

0.970
−0.244

]
. (22b)

The second mode is composed of the pair of conjugate-
complex roots

δ2 = δ̄3 =−0.0011−1.8127i, (23a)

r2 = r̄3 =
[

0.7071
0.7071−0.0043i

]
, (23b)

corresponding to a damped oscillation (real part of eigen-
values corresponds to decay constant and imaginary
part to angular frequency), which is slightly phase shifted
(complex-valued eigenvector) for the base mode (k = 0)
in our example.

Having found the eigenvalues δi , finding the corre-
sponding eigenvectors for a 2D system is easy: we may
choose any of the two lines from the equation of motion
(10). Here, we find from the first line (same result from
the second) after evaluation of the ansatz (16)

Ûfi

Ûsi

= m∆δ
2
i +d∆δi

(m1 +m∆)δ2
i +d∆δi

. (24)

As customary, we constrain the eigenvectors to unit

length
√

Û 2
fi +Û 2

si = 1.
So far we focused on the base mode (k = 0). Now,

we sweep through higher modes (k > 0), and compute
the characteristics of the reduced S-model (phase an-
gle, amplitude) and its wave characteristics (velocity,
decay). The amplitudes and phase shifts decoded in the
eigenvalues- and vectors are illustrated in figure 3 for se-
lected modes. We notice from the numerical results that
the imaginary part of the complex eigenvalue and thus
the frequency f increases with mode number k. Conse-
quently, we evaluate the wave and oscillation character-
istics for various frequencies, shown in figures 4 and 5.
The results can be interpreted as follows:
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t

Uf,Usk = 0

t

Uf,Usk = 50

t

Uf,Usk = 500

Figure 3 – Complex amplitudes and transient oscilla-
tion of S-wave model in base frequency (top)
where both lines closely overlay, near the char-
acteristic frequency fc (middle) and beyond
(bottom), with time axis being scaled to the
period of the free oscillations.

• at low frequencies, the shear waves are slow be-
cause inertia is high and dissipation is low (fluid
and solid move in phase),

• at intermediate frequencies a transition occurs ac-
companied by a dissipation peak (fluid and solid
move out of phase at moderate amplitudes),

• at high frequencies the shear waves are fast be-
cause inertia is low (mainly solid moves),

Note that the edgy beginning of these curves is due to
the discretization into modes (integer k).

The computation of the phase velocity c = f λ (valid
for either wave type) assumes a wavelength equal to
a multiple of domain length (here λ = 4, since the as-
sumed mode shape covers a quarter of the spatial period
π
2 = 1

4 2π), which is exact for undamped waves and an
approximation for damped waves [8].

For comparison, in an elastic media with constant
parameters the non-dimensional shear wave velocity
were constant cel

S = 0.61 over frequency for our example,
and by definition the non-dimensional phase velocity
of elastic P-waves were constant cel

P = 1, too. Of course
in elastic media, no dissipation would be observed.
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Figure 4 – Phase velocity (sigmoid curve up) and decay
constant (bell curve) of S-waves versus fre-
quency.
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Figure 5 – Amplitude ratio fluid-to-solid (sigmoid curve
down) and phase angle (bell curve down) of
S-waves versus frequency.

xdim, uf, us

ρs, mv, Sp, κ, n, τ, ρf, µ

Figure 6 – Continuous model for P-waves: one-
dimensional, poroelastic bar with fixed,
undrained left end (xdim = 0) and free,
drained right end (xdim = L).
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Uf Us

m1 m2

c∆

d∆

m∆

Figure 7 – Multibody-system representing a reduced
model for P-waves in a poroelastic bar.
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3 Model Reduction of P-Waves

We consider again a one-dimensional, poroelastic wave-
guide on a finite domain as shown in figure 6. This
time the displacements are in longitudinal direction
in contrast to the transversal displacements in the pre-
vious section about S-waves. From the original PDEs
[14, chapter 5.2] we obtained a non-dimensional for-
mulation, as we did before in section 2. The motion
is governed by the balance of momentum of the fluid
phase (displacement uf) and of the solid phase (displace-
ment us)

n

ρ
üf +

nτ

ρ

(
üf − üs

)+nDP

(
u̇f − u̇s

)
−nM

(
nu′′

f − (n −α)u′′
s

)= 0, (25a)

(1−n)üs −
nτ

ρ

(
üf − üs

)−nDP

(
u̇f − u̇s

)
− (n −α)M

(−nu′′
f + (n −α)u′′

s

)−u′′
s = 0, (25b)

which is identical with the shear wave PDE (2), except
the displacement coupling between solid and fluid (stiff-
ness) and different dissipation ratio (DP instead of DS).

Further we assume fixed, undrained boundary con-
ditions (no displacement, no fluid flow) on the left and
free, drained boundary conditions (force free, fluid flows
freely) on the right, which mathematically coincide with
boundary conditions (5). Note that for non-degenerate
parameters

0 < mv,Sp <∞,

the drained boundary condition implies u′
f(t ,1) = 0 and

similarly the boundary condition of no normal stress
implies u′

s(t ,1) = 0. The non-dimensional parameters

ρ = ϱs

ϱf
, (26)

M = mv

Sp
, (27)

DP = nµL
p

mv

κ
p
ϱs

(28)

depend on the dimensional parameters fluid density ϱf,
solid density ϱs, one-dimensional compressibility (i.e.

inverse of P-wave modulus) of the bulk mv =
(
K + 4

3G
)−1

,

storativity Sp = nCf + (α−n)Cs, fluid viscosity µ, perme-
ability κ as well as on the originally non-dimensional
parameters porosity n (0 < n < 1), Biot coefficient α
(n <α≤ 1) and tortuosity factor τ as defined by Verruijt
[14]. They are non-negative real (ρ,M ,DP,α,n,τ ∈R+

0 ) on
physical grounds. In comparison to S-waves we have

the same parameter ρ, a new parameter M and the fol-
lowing relation

DS =
cel

P

cel
S

DP with
cel

P

cel
S

=
√

1

mvG
. (29)

We note that Biot [1] refers to the phase velocity of un-
drained waves

cun
P =

√√√√ 1/mv +α2/Sp

(1−n)ϱs +nϱf
, (30)

which means the fluid cannot flow out, thus it stiffens
the bulk (remember mv denotes bulk compressibility,
i.e., of the porous matrix which is softer than the pure
solid). Whereas we use the phase velocity in the elastic
solid

cel
P = 1p

mvϱs
, (31)

which is usually smaller than the undrained velocity
(cel

P < cun
P ), for non-dimensionalization, because the re-

sulting relations are simpler. We will discuss this differ-
ence in section 5.

Again we make use of a Galerkin-ansatz; indeed, we
use the same functions (6) as in section 2. The result-
ing reduced equation of motion coincides with equa-
tion (10). Although its coefficients differ, the matrices M
and D share the same structure with their counterparts
of the S-wave model. However, the stiffness matrix is
different in structure

C =
[

c1 + c∆ −c∆
sym. c2 + c∆

]
, (32)

which is reflected in the corresponding discrete system
shown in figure 7. Except the mass coupling m∆, all pa-
rameters have a common interpretation for multibody-
systems as masses, dashpots or springs. Again, evalua-
tion of the swap relation (15) confirms that the damping
is non-modal, except for degenerate parameter values.

Note that for constant parameters, there is no other
dependency on x than the ansatz and weight function.
In fact, we have the same Galerkin integrals (9) as before.
The matrix entries are related with the non-dimensional,



20 D. Kern, T. Nagel GAMMAS 2024

continuum parameters as follows

m1 = I11
n

ρ
, (33a)

m2 = I22(1−n), (33b)

m∆ = I12
nτ

ρ
, (33c)

d∆ = I12nDP, (33d)

c1 = I11

(π
2

)2
nMα, (33e)

c2 = I22

(π
2

)2(
1− (n −α)Mα

)
, (33f)

c∆ = I12

(π
2

)2
nM(n −α). (33g)

Further inspection reveals that all parameters are real
and except c∆ all of them are non-negative (m1, m2,
m∆, d∆, c1, c2 ∈ R+ and c∆ ∈ R). The system remains
stable, as long as stiffness matrix and mass matrix are
positive definite C,M > 0, which by the structure of these
matrices reduces to the conditions

c∆ >− c1c2

c1 + c2
, (34a)

m∆ >− m1m2

m1 +m2
. (34b)

These conditions are met for physically plausible sys-
tems with α > n > 0, as found from insertion of (33g),
(33e) and (33f) into (34a) remembering (9)

nM(n −α) >−
nMα

(
1− (n −α)Mα

)
nMα+1− (n −α)Mα

(35)

and simplification to

n2M > 0, (36)

what we already assumed on physical grounds. It goes
without saying that condition (34b) is met, since the
masses are non-negative m1,m2,m∆ ≥ 0.

4 Modal Analysis

Now we are going to solve the free vibration problem
of the reduced model for P-waves, i.e., equation (10)
with parameters (33). We again use the exponential
ansatz (16), which on insertion into the reduced equa-
tion of motion (10) and requesting linear dependence
leads to the characteristic equation

pchar(δ) = a4δ
4 +a3δ

3 +a2δ
2 +a1δ+a0 = 0. (37)

t

Uf,Us

t

Uf,Us

Figure 8 – Complex amplitudes and transient oscillation
of slow P-wave (top) and fast P-wave (bottom)
in first mode where slow P-wave occurs (k =
5).

For the current model, the coefficients read

a4 =
m1m2

m1 +m2
+m∆, (38a)

a3 = d∆, (38b)

a2 =
m2 +m∆

m1 +m2
c1 +

m1 +m∆

m1 +m2
c2 + c∆, (38c)

a1 =
c1 + c2

m1 +m2
d∆, (38d)

a0 =
c1c2 + c∆(c1 + c2)

m1 +m2
. (38e)

The characteristic equation of the P-wave model (38)
reduces to the characteristic equation of the S-wave
model (21) for c1 = c∆ = 0. In other words, although
the parameters, e.g., mass m1, have different values in
both models (S- and P-wave) there is a common mathe-
matical structure. On closer inspection, we find that all
coefficients are non-negative ai ≥ 0, which is straight-
forward except for i = 2. For a2, we find the limit case
from condition (34) leading to

a2 ≥
(c1m2 − c2m1)2

(c1 + c2)(m1 +m2)2 ≥ 0. (39)

The characteristic equation (37) is a quartic equation
and its discriminant D4, given by equation (41) in ap-
pendix B, helps us to determine the transition from
asymptotic decay to oscillation, i.e., the threshold from
which on slow P-waves exist. Generally, for real coeffi-
cients a0, a1, a2, a3, a4 ∈Rwe know [11]:

D4 < 0 two real roots and

one conjugate-complex pair,

D4 = 0 at least two roots are equal,

D4 > 0 four real roots or

two conjugate-complex pairs.
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δ

p(δ)

Figure 9 – Quartic polynomial with positive coefficients,
opacity of lines corresponds to asymmetry
introduced by cubic and linear monomials,
here exemplary for p(δ) = a4δ

4+a3δ
3+a2δ

2+
a1δ+ a0 with a4 = a2 = a0 = 1 and a3 = a1 =
0. . .1.9.

Furthermore, from the coefficients (38) we find that d∆
is decisive, as it introduces asymmetry (d∆ > 0) and with-
out dissipation (d∆ = 0) the polynomial p(δ) would be
symmetric to the y-axis.

Similarly to equation (24) of the S-wave model we
find the eigenvectors of the P-wave model. The free
oscillations corresponding to the two modes are shown
in figure 8 illustrating that the mode corresponding to
the slow P-wave decays much faster. This faster decay
of slow P-waves will be attributed to the phase shift and
amplitude ratio in the next section.

5 Discussion

We have identified four eigenvalues δi (i = 1,2,3,4) with
corresponding eigenvectors and now need to determine
whether they lead to damped oscillations or aperiodic
decay. Two real roots lead to real coefficients, i.e., aperi-
odic motion (here slow and fast decay), whereas a pair,
i.e., two roots, which are conjugate-complex roots, lead
to damped oscillations. A combination of two eigen-
values/-vectors is necessary to match initial positions
uf(0, x) and us(0, x), as well as initial velocities u̇f(0, x)
and u̇s(0, x). By the signs ai ∈ R+

0 of coefficients (38),
there are only two possible cases, which are shown in
figure 9. Either two complex conjugated pairs (corre-
sponds to two damped oscillations), or two real roots
and one complex conjugated pair (corresponds to two
decays and one damped oscillation). In the special case
(20) for S-waves, the graph passes the origin and only
two cases remain: the symmetric case (d∆ = 0) with a
multiple real root in the origin, and the asymmetric case
(d∆ > 0) with two real roots, one at the origin δ= 0 and
another negative one δ< 0.

This motivates a closer look at the discriminant D4 in
dependence on d∆ which is shown in figure 10, where
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1

d∆

D
4

Figure 10 – For damping below a critical value (d∆ <
d∆crit) there are two damped oscillations
(D4 > 0), otherwise exponential decay, slow
and fast, and one damped oscillation (D4 <
0).

we observe one zero crossing. In our example there
exists no slow P-wave in the base mode (k = 0), since
there the dissipation is above the critical value

d∆ = 13.900 > d∆crit = 0.235. (40)

To obtain the characteristics of slow and fast P-waves we
sweep through higher modes (k > 0). Slow P-waves start
to exist from a certain threshold on and then increase
monotonically in phase velocity and decrease monoton-
ically in decay constant with increasing frequency, as
shown in figure 11 and explainable by the amplitude
ratio and phase shift from figure 12. Fast P-waves in-
crease in phase velocity with increasing frequency and
a peak in the decay constant around Biot’s character-
istic frequency, as shown in figure 13 and explainable
by figure 14, which is qualitatively similarly to S-waves.
A phase velocity of cP = 1 means as fast as the elastic
P-wave due to our choice for non-dimensionalization.
For information, the non-dimensional phase velocity of
undrained waves in our example is cun

P = 3.827.
What remains is to relate our non-dimensionalization

with Biot’s reference values, i.e., we come back to differ-
ent definitions of the reference velocity mentioned in
the beginning. Biot, as apparent from equations (5.4)
and (7.4) in his paper [1], refers to the velocity (30) of
P-waves in the undrained case, he uses the symbol Vc ,
and a characteristic frequency, given by equation (1),
which separates the low- from the high-frequency range.
In our example its non-dimensional value is fc = 29.312.
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Figure 11 – Phase velocity (asymptotic curve up) and
decay constant (asymptotic curve down) of
slow P-waves versus frequency.

Finally, we would like to give some interpretation
of the multibody-system parameters of the oscillator
shown in figure 7, particularly the interaction of the fluid
with the solid (relative motion between m1 represent-
ing fluid and m2 representing solid) shown in figure 15.
From the structure of the matrices we may recognize
that the parameters with index □∆ refer to key solid-
fluid interaction phenomena in porous media:

m∆ undirected acceleration / inertia due to redirec-
tion of flow along tortuous paths (viz. tortuosity
τ), cf. figure 15.

d∆ solid-fluid momentum exchange due to frictional
interaction between solid and fluid (viz. viscosity
µ and permeability κ).

c∆ expresses the differences in stiffness between fluid
and solid. When the fluid is incompressible, it has
to be squeezed out of the solid matrix due to vol-
umetric strain imparted by P-waves (not existent
in S-waves). On the other hand, when it is com-
pressible, the fluid can be compressed in the pore
space upon passage of the P-wave, reducing the
amount of flow necessary to comply with mass
balance considerations.

For further study we suggest to take a closer look at
the parameter dependencies and their effect on the fre-
quency characteristics, particularly of slow P-waves. For
this purpose the Jupyter Notebook accompanying this
article can serve as a valuable study aid in the sense of
experimental numerics [7].

6 Summary and Outlook

Oscillations are easier to describe than waves and still
capture crucial consequences of Biot’s theory. With this
approach, one perceives the slow P-wave as a motion of
the pore fluid relative to the solid with larger amplitude
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Figure 12 – Amplitude ratio fluid-to-solid (sigmoid
curve down) and phase angle (bell curve
down) of slow P-waves versus frequency, the
edgy beginning of the curves is due to the
discretization into modes (integer k).
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Figure 13 – Phase velocity (sigmoid curve up) and decay
constant (bell curve) of fast P-waves versus
frequency.
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Figure 14 – Amplitude ratio fluid-to-solid (sigmoid
curve up) and phase angle (bell curve) of
fast P-waves versus frequency, the edgy be-
ginning of the curves is due to the discretiza-
tion into modes (integer k).
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Figure 15 – Fluid flow between solid grains.

ratios and phase shifts than fast P-waves and thus being
much more dissipative.

We hope the simplified model of a two degree-of-
freedom oscillator is a helpful tool for understanding
waves in poroelastic media. Nevertheless, even this sim-
ple model raises further questions, the reader might find
worthy of investigation, that are beyond the scope of this
paper, e.g.: how does the illustrated behavior depend
on the poroelastic parameters, what is the meaning of
forced oscillations and its effects such as resonance and
absorption?

Code Availability: The code behind the simulations
is provided as a Jupyter notebook. It can be found on
GitHub2 or spun up on MyBinder3. The source code
is available as supplementary material and can be ob-
tained under

DOI:10.14464/gammas.v6i1.663
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A Numerical Values

As numerical values, except for tortuosity τ and one-
dimensional bulk compressibility mv, we use Verruijt’s
example, from chapter 5.4.4. of his textbook [14], for our
plots. Our numerical values are listed in Tables 1, 2, 3
and 4. Note, that the multibody-system (MBS) parame-
ters are non-dimensional, since they are derived from a
non-dimensional formulation.

2https://github.com/nagelt/soil_dynamics/blob/
master/extra_biot_oscillations.ipynb

3https://mybinder.org/v2/gh/nagelt/soil_dynamics/
HEAD?labpath=extra_biot_oscillations.ipynb

Table 1 – Dimensional parameters

length L 20m
solid density ϱs 2650kgm−3

fluid density ϱf 1000kgm−3

permeability κ 1×10−10 m2

fluid viscosity µ 1×10−3 Pas
bulk compressibility mv 2×10−9 Pa−1

storativity Sp 2×10−10 Pa−1

Table 2 – Non-dimensional parameters

bulk Poisson’s ratio ν 0.2
Biot coefficient α 1.0
porosity n 0.4
tortuosity τ 0.1

density ratio ρ 2.65
stiffness ratio M 10.00
dissipation ratio (S-wave) DS 113.49
dissipation ratio (P-wave) DP 69.50

Table 3 – MBS parameters of the S-wave model

fluid mass m1 0.0755
solid mass m2 0.3000
mass coupling (fsi) m∆ 0.0075
damping (fsi) d∆ 22.6985
solid stiffness c2 1.2337

Table 4 – MBS parameters of the P-wave model

fluid mass m1 0.0754
solid mass m2 0.3000
mass coupling (fsi) m∆ 0.0075
damping (fsi) d∆ 13.9000
fluid (channel) stiffness c1 4.9348
solid stiffness c2 8.6359
stiffness (fsi) c∆ −2.9609

https://github.com/nagelt/soil_dynamics/blob/master/extra_biot_oscillations.ipynb
https://github.com/nagelt/soil_dynamics/blob/master/extra_biot_oscillations.ipynb
https://mybinder.org/v2/gh/nagelt/soil_dynamics/HEAD?labpath=extra_biot_oscillations.ipynb
https://mybinder.org/v2/gh/nagelt/soil_dynamics/HEAD?labpath=extra_biot_oscillations.ipynb
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B Discriminant of Quartic
Polynomials

The ready-to-use formula is given by Schroeppel4

D4 = 256a3
4a3

0 −192a2
4a3a1a2

0 −128a2
4a2

2a2
0

+144a2
4a2a2

1a0 −27a2
4a4

1 +144a4a2
3a2a2

0

−6a4a2
3a2

1a0 −80a4a3a2
2a1a0 +18a4a3a2a3

1

+16a4a4
2a0 −4a4a3

2a2
1 −27a4

3a2
0 +18a3

3a2a1a0

−4a3
3a3

1 −4a2
3a3

2a0 +a2
3a2

2a2
1. (41)

Actually that is enough for us, but there are further sub-
discriminants to narrow down the root distribution. There
are things to learn here, too, such as the representation
as a determinant of the Sylvester matrix with coefficients
of the polynomial and of its derivative5, and the relation
with their greatest common divisor, e.g., computed by
(extended) Euklid’s algorithm (algebra meets analysis!).
Since discrimination of roots is not the main purpose of
the paper, we encourage interested readers to explore
this interesting topic in greater depth on their own ini-
tiative [11].
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