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1 Introduction
We study stiff Hamiltonian systems of the form

y ′(t ) = M y(t )+ f (y(t )), y(t0) = y0, t ∈ [t0,T ] (1)

with a Hamiltonian matrix M ∈ R2d×2d and a suitable
nonlinear function f : R2d → R

2d . Here M is called
Hamiltonian if M fulfills (J M)T = J M with the skew-
symmetric orthogonal matrix J = J2d =

[
0d Id
−Id 0d

]
. Fur-

thermore, M forms the main part of the stiffness in sys-
tem (1) by having only eigenvalues on the imaginary
axis with large magnitude. More precisely, if we denote
the spectral radius of a matrix M by ρ(M), we assume

ρ(M) ≫ ρ
(
∂ f
∂y (y)

)
for all y ∈R2d (see also [13, p.574]).

Exponential integrators are known to be useful for
integrating stiff systems as in (1). These integrate the
linear part of the differential equation exactly, which
can help to loose typical stability issues in the numerical
solution of stiff ordinary differential equations. Sym-
plectic methods are suitable for integrating Hamiltonian
systems because they preserve the symplectic flow of
the system [6]. Combining these two aspects, Mei and
Wu show in [13] starting from symplectic Runge-Kutta-
Methods how to generate symplectic exponential Runge-
Kutta-Methods. For large dimensions d , the evaluation
of the action of a matrix exponential on a vector is costly.
A standard approach to reduce these costs is the use of
Krylov subspace methods to approximate the matrix-
vector-products of the form eM v with M ∈ R2d×2d and
v ∈R2d . This idea is proposed in [13, p.577]. In [9] or [11],
the authors investigate systems like (1), without M hav-
ing to be Hamiltonian, and approximate the exponential
terms by the standard Arnoldi method [5, pp.499-500]
and the Lanczos method [5, pp.503-504]. Now, we will
also test other Krylov methods that focus on preserva-
tion of the Hamiltonian structure. We investigate dif-
ferent Krylov subspace methods such as the standard
Arnoldi method [5, pp.499-500] or different symplectic
methods like the symplectic Lanczos method [1]. Fur-
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thermore, we compare the resulting approximative in-
tegrators in terms of accuracy in the matrix exponen-
tial approximation, accuracy in solving the system and
preservation of the Hamiltonian structure.

This paper is structured as follows: In the first section
some aspects of Hamiltonian systems and its proper-
ties are treated. Then we briefly talk about the different
methods for solving (1) such as Runge-Kutta methods,
exponential Runge-Kutta methods and symplectic meth-
ods. In the next section, we present different Krylov sub-
space methods to approximate the exponential terms
appearing in the exponential Runge-Kutta methods. Af-
terwards, we test these approximation methods with
respect to approximating the matrix exponential term
itself. Then the exponential Runge-Kutta methods, ap-
proximated by different Krylov methods, are compared
in terms of accuracy of computing the solution of the
system and also in terms of preservation of the Hamilto-
nian.

2 Basics

2.1 Hamiltonian systems

Let us first take a closer look at (1). Setting M = J−1Q
with a symmetric matrix Q and f (y(t)) = J−1∇U (y(t))
with a smooth potential function U yields

y ′(t ) = J−1Q y(t )+ J−1∇U (y(t )) = J−1∇H(y(t )) (2)

which is the classical structure of a Hamiltonian system
with the Hamiltonian H :R2d →R, H (y) = 1

2 yT Q y+U (y)
[13, p.568-569]. In the following we refer to a Hamilto-
nian system as

y ′(t ) = J−1∇H(y(t )), y(t0) = y0 (3)

and to an autonomous differential system of order one
as

y ′(t ) = g (y(t )), y(t0) = y0. (4)

Definition 1 (Flow of a Hamiltonian system). [6, p.184]
For t ∈ [t0,∞) the map ϕt : R2d → R

2d which maps the
initial state of the system (3) to the solution at time t is
called flow:

ϕt (y0) = y(t ).

For Hamiltonian systems the flow is always symplectic
which implies for the Jacobian of the flow(

∂ϕt

∂y0

)T

J

(
∂ϕt

∂y0

)
= J . (5)

Moreover, the symplecticity of the flow is locally equiv-
alent to the system (4) being Hamiltonian, i.e. it exists
a Hamiltonian function H : R2d → R such that y ′(t) =
J−1∇H (y(t )). It can be shown that the Hamiltonian func-
tion H is preserved along solutions, i.e.: d

d t H(y(t)) = 0
[6, Section IV.1, Example 1.2, p.98]. The Hamiltonian
generally describes the energy of the system which is an
important quantity for such systems. So, we would like
to attach importance to this property of preserving the
Hamiltonian while solving the system. Therefore, we
will use symplectic methods to solve the system which
should approximate the flow of the system and preserve
the Hamiltonian [6, Section VI.2, pp.182-187].

Definition 2 (Symplectic/Hamiltonian matrix). [6, Defi-
nition 2.1, p.183], [7, p.381]
The matrix S ∈ R2d×2d is called symplectic if ST JS = J .
Similarly H ∈ R2d×2d is called a Hamiltonian matrix if
H T J =−J H or (J H)T = J H respectively.

Lemma 3. Let H ∈ R2d×2d Hamiltonian and λ ∈ C an
eigenvalue of H. Then, −λ, λ̄ and −λ̄ are eigenvalues of
H too.

Proof. Let x ∈C2d be an eigenvector of H to the eigen-
value λ such that H x =λx. Therefore it holds

H T J x =−J H x =−Jλx =−λJ x.

Because H and H T possess the same eigenvalues, −λ is
also an eigenvalue of H . Hence, the statement follows as
the complex eigenvalues for real-valued matrices appear
always in pairs λ and λ̄.

To ensure the stability of the solution to the system
it is wise to restrict ourselves to matrices with eigenval-
ues with non-positive real part. Taking into account
Lemma 3, we assume the system matrix M to have only
purely imaginary eigenvalues as already stated in the
introduction.

With these definitions we can easily see that M = J−1Q
is Hamiltonian with Q symmetric as mentioned in the
introduction. A symplectic matrix is always nonsingu-
lar with inverse S−1 = J T ST J . Moreover, we see that a
similarity transformation of a Hamiltonian matrix with
a symplectic matrix yields a Hamiltonian matrix again.

Lemma 4. [2, p.2]
Let S ∈ R2d×2d be symplectic and H ∈ R2d×2d Hamilto-
nian. Then S−1HS ∈R2d×2d is a Hamiltonian matrix.

This aspect can be transferred to non-quadratic ma-
trices with so called symplectic by columns matrices.

Definition 5 (Symplectic by columns matrix). [2, p.3]
We call a matrix S2d ,2m ∈ R2d×2m ,m ≤ d symplectic by
columns if (S2d ,2m)T J2d S2d ,2m = J2m .
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Lemma 6. [2, p.3]
Let S2d ,2m ∈R2d×2m ,m ≤ d be symplectic by
columns and H ∈R2d×2d Hamiltonian. Then it holds

• J T
2m(S2d ,2m)T J2d ∈R2m×2d is the left inverse

of S2d ,2m .
• (J T

2m(S2d ,2m)T J2d )HS2d ,2m ∈ R2m×2m is Hamilto-
nian.

Thus the projection with symplectic by columns ma-
trices onto smaller dimensional spaces preserves the
property of being Hamiltonian.

2.2 Runge-Kutta methods

For solving the system (1) we will investigate some spe-
cial Runge-Kutta-methods which are made for the archi-
tecture of our problem.

Definition 7 (Runge-Kutta method (RK)). [13, p.574]
For the initial value problem

y ′(t ) = g (t , y(t )), y(t0) = y0 (6)

we call the one-step method

Yn,i = yn +h
s∑

j=1
ai j g (tn + c j h,Yn, j ), i = 1, . . . , s,

(7a)

yn+1 = yn +h
s∑

i=1
bi g (tn + ci h,Yn,i ) (7b)

with n = 0,1,2, . . . Runge-Kutta method of order s. Here,
yn is an approximation to y(tn) for equidistantly chosen
time points tn+1 = tn +h with a fixed time step h ∈R.

Considering the stiffness of the system, we better use
some other solving method developed for the designed
structure with the linear part. This help us to solve the
system more efficiently, e.g. with larger stepsizes, as we
will see later.

Definition 8 (Exponential Runge-Kutta method (ERK)).
[13, p.568-569]
For the initial value problem

y ′(t ) = M y(t )+ f (y(t )), y(t0) = y0

we call the one-step method

Yn,i = eci hM yn +h
s∑

j=1
āi j (hM) f (Yn, j ), i = 1, . . . , s,

(8a)

yn+1 = ehM yn +h
s∑

i=1
b̄i (hM) f (Yn,i ) (8b)

with n = 0,1,2, . . . exponential Runge-Kutta method of
order s. Here, āi j (hM) and b̄i (hM) are certain matrix
exponential terms. Moreover, yn is an approximation to
y(tn) for equidistantly chosen time points tn+1 = tn +h
with a fixed time step h ∈R.

In the case M → 0 the exponential Runge-Kutta
method reduces to a standard Runge-Kutta method
which then is called corresponding RK. Starting from
system (1), we can choose either the standard Runge-
Kutta method with g (t , y(t)) = M y(t)+ f (y(t)) or the
exponential Runge-Kutta method to solve the system.
The ERK integrates the linear part of the differential
equation with the matrix M exactly and uses an approxi-
mation for the nonlinear part. In contrast to that, the RK
approximates the whole nonlinear function g directly.
In the case of implicit methods, equation (8a) describes
implicit equations which have to be solved e.g. with
fixed-point iterations or Newton’s Method. After that,
equation (8b) can be simply evaluated. We choose to use
here the fixed-point iterations. Furthermore, we have
assumed in the introduction that the main part of the
stiffness of the system should be included in the linear

part with the Hamiltonian matrix, i.e. ρ(M) ≫ ρ
(
∂ f
∂y (y)

)
for all y ∈ R2d . Mei and Wu have used this in [13] to
show the following. In some cases where the fixed-point
iterations for solving the inner equations of RK do not
converge due to too large time steps, the ones for the
ERK do [13, pp.574-576]. By choosing ERK, we can there-
fore benefit from larger time steps for integrating the
system. Additionally, if the fixed-point iterations for
solving the inner equations converge for RK and ERK,
the ones for ERK converge much faster [13, pp.574-576].
In summary, ERK methods are well suited for integrating
stiff systems.

The matrix exponential terms can be chosen in a sim-
ple way as described in the next definition.

Definition 9 (Integrating Factor Runge-Kutta Method
(IFRK)). [3, p.A594]
The special exponential Runge-Kutta method with the
coefficients

āi j (hM) = ai j e(ci−c j )hM , b̄i (hM) = bi e(1−ci )hM

for i , j = 1, . . . , s is called Integrating Factor Runge-Kutta
Method.

For the next theorem, we need to introduce the local
truncation error and the order of a one-step method to
compare the local accuracy of the methods.

Definition 10 (Scaled local truncation error). [8, p.25]
For an one-step method of the form

yn+1 = yn +hφ(tn , yn , yn+1,h)
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we define the scaled local truncation error δ as

δ(tn+1, y(tn+1),h) = 1

h

(
y(tn+1)− y(tn)

−hφ(tn , y(tn), yn+1,h
)
.

Definition 11 (Consistency order/Order). [8, p.26]
If it holds

δ(tn+1, y(tn+1),h) =O (hp )

for largest possible p ∈N, then the one-step method has
the consistency order p.

For the consistency order of Runge-Kutta methods (7)
there exist order conditions to the coefficients ai j ,bi ,c j .
If the order conditions from Table 1 are fulfilled up to
order p ∈N, p ≤ 4, then the RK has the order p.

Table 1 – Order conditions up to order 4 [8, p.34]

No. Order Order condition

1 1
∑s

i=1 bi = 1

2 2
∑s

i=1 bi ci = 1
2

3 3
∑s

i=1 bi c2
i = 1

3
4 3

∑s
i , j=1 bi ai j c j = 1

6

5 4
∑s

i=1 bi c3
i = 1

4
6 4

∑s
i , j=1 bi ci ai j c j = 1

8

7 4
∑s

i , j=1 bi ai j c2
j = 1

12
8 4

∑s
i , j ,k=1 bi ai j a j k ck = 1

24

We assume an additional condition for Runge-Kutta
methods which appear later in Section 2.3:

ci =
s∑

j=1
ai j , i = 1, . . . , s. (9)

Now we state a short theorem about the consistency
order of the IFRK.

Theorem 12. We assume a Runge-Kutta method with
coefficients ai j ,bi ,c j for i , j = 1, . . . s to be of order p ∈N.
Then the associated IFRK, determined by

āi j (hM) = ai j e(ci−c j )hM , b̄i (hM) = bi e(1−ci )hM

for i , j = 1, . . . , s is also of order p.

Proof. With setting z(t ) = e−t M y(t ) we obtain out of

y ′(t ) = M y(t )+ f (y(t )), y(t0) = y0

the system

z ′(t ) = e−t M f (e t M z(t )), z(t0) = e−t0M y0,

where the applied Runge-Kutta method

Zn,i = zn +h
s∑

j=1
ai j e−(tn+c j h)M f (e(tn+c j h)M Zn, j ),

zn+1 = zn +h
s∑

i=1
bi e−(tn+ci h)M f (e(tn+ci h)M Zn,i )

is of order p. This means for the scaled local discretiza-
tion error δz of the Runge-Kutta method

δz =
1

h

[
z(tn+1)− z(tn)

−h
s∑

i=1
bi e−(tn+ci h)M f (e(tn+ci h)M Zn,i )

]
=O (hp ).

Hence, it holds for the discretization error δy of the ex-
ponential Runge-Kutta method by backtransformation

δy =
1

h

[
y(tn+1)−

(
ehM y(tn)+h

s∑
i=1

b̄i (hM) f (Yn,i )

)]
= 1

h

[
e tn+1M z(tn+1)

−
(

ehM e tn M z(tn)+h
s∑

i=1
bi e(1−ci )hM f (Yn,i )

)]
= 1

h
e tn+1M

[
z(tn+1)− z(tn)

−h
s∑

i=1
bi e−(tn+ci h)M f (Yn,i )

]
=e tn+1Mδz =O (hp ).

So the order of accuracy is transferred from standard
RK to the associated IFRK which simplifies investiga-
tions on the order of these special ERK methods. But the
order is not the only property which can be transferred.
As shortly mentioned in Section 2.1, we need symplectic
methods for solving Hamiltonian system.

Definition 13 (Symplectic method). [6, p.187]
An one-step method is called symplectic if the iteration
map φh , given by yn+1 =φh(yn), is symplectic applied
to a smooth Hamiltonian system. The symplecticity of
φh is meant in the sense of (5).

Theorem 14. [6, Theorem 4.3, p.192]
A Runge-Kutta method, applied to the system (1) or (6)
with g (y) = M y + f (y) = J−1∇H(y), is symplectic if (10)
holds for all i , j = 1, . . . , s.

bi b j = bi ai j +b j a j i . (10)
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These simple conditions for the Runge-Kutta methods
are replaced by some more complicated conditions for
the exponential Runge-Kutta methods.

Theorem 15. [13, Theorem 2.1, p.569]
Let an exponential Runge-Kutta method with coefficients
āi j = āi j (hM), b̄i = b̄i (hM) and ci for i , j = 1, . . . , s be

given. Furthermore, let S = ehM and Si = eci hM for i =
1, . . . , s. If it holds that

b̄T
i JSS−1

i = S−T
i ST J b̄i = γi J ,

b̄T
i J b̄ j = b̄T

i JSS−1
i āi j + āT

j i S−T
j ST J b̄ j ,

γi ∈R arbitrarily, i , j = 1, . . . , s,

then the exponential Runge-Kutta method is symplectic.

Theorem 16. [13, Theorem 3.2, p.573]
Starting from a symplectic RK the associated IFRK is sym-
plectic.

So, we see that the order of a RK and the property of be-
ing symplectic is directly transferred to the correspond-
ing IFRK. In this work, we focus on implicit symplectic
methods because (10) cannot be fulfilled for explicit
methods.

2.3 Convergence of exponential Runge-Kutta
methods

In addition to consistency the concept of convergence
of one-step methods is important too. An one-step
method is called convergent of order p ∈ N if for the
approximated values yn ≈ y(tn) at time points tn = n ·h,
n = 1,2, . . . ,⌊T /h⌋ it holds that∥∥yn − y(tn)

∥∥≤C hp . (11)

C > 0 should be independent of the iteration number
n or the time step h, but it is allowed to depend on
the length T of the interval. For standard systems (6),
this can be deduced from the consistency of an one-step
method and a Lipschitz condition on the nonlinear func-
tion g . But the occurring Lipschitz constant can become
very large for stiff systems, so the constant C can become
even larger. If we want to keep the error

∥∥yn − y(tn)
∥∥

small, we have to choose very small time steps h which
is not useful in practice. Another approach is to use
the structure of our starting equation (1). We assume
that the main part of the stiffness is contained in the
matrix M , so we can use smaller Lipschitz constants
or bounds at f and its derivatives. So we seek for an
expression (11) for exponential Runge-Kutta methods.
This section is oriented to [10] and [13], but in [10] only
explicit methods are investigated.

As assumed in the beginning, M shall possess only
eigenvalues on the imaginary axis. Then e t M is bounded
for 0 ≤ t ≤ T with a constant which is independent of h.
Next, we define for an ERK the expressions
ϕ j (hM),ψi , j (hM) and ψ j (hM) by

ϕ j (hM) = 1

h j

h∫
0

e(h−τ)M τ j−1

( j −1)!
dτ,

ψ j ,i (hM) =ϕ j (ci hM)c j
i −

s∑
k=1

āi k (hM)
c j−1

k

( j −1)!
,

ψ j (hM) =ϕ j (hM)−
s∑

k=1
b̄k (hM)

c j−1
k

( j −1)!

with i , j = 1, . . . , s. These terms are bounded because
āi k (hM) and b̄k (hM) are built from exponential terms
according to Definition 8.

Under certain conditions on the derivatives of f we
can find order conditions on the exponential terms for
an ERK to be convergent. Hence we define Table 2
where J and K should represent bounded operators. The
proofs of the following theorems are omitted from this
paper due to space limitations but can be found in [14,
Kapitel 4].

Theorem 17. Let there be a sufficiently smooth solution
to (1) and let all occurring derivatives be bounded. We
apply an ERK to solve (1) and assume that its coefficients
fulfill the order conditions from Table 2 up to order p ∈
N, p ≤ 4. Then it holds∥∥yn − y(tn)

∥∥≤C hp

with 0 ≤ nh ≤ T for the solution yn computed by ERK.
C > 0 is a suitable constant which does not depend on n
or h, only on T .

If we focus now on IFRK, these large amount of con-
ditions can be simplified and traced back to the order
conditions of their corresponding RK.

Theorem 18. Let a given Runge-Kutta method fulfill the
order conditions from Table 1 up to order p ∈N, p ≤ 4 and
additionally the condition (9). Then the order conditions
for the corresponding IFRK from Table 2 are fulfilled up
to order p too.

The following corollary adds these two results
together to receive the desired equation (11).

Corollary 19. Let there be a sufficiently smooth solution
to (1) and let all occurring derivatives be bounded. We
apply an IFRK to solve (1) and assume that the coeffi-
cients of its corresponding RK fulfill the order conditions
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Table 2 – Stiff order conditions up to order 4

No. Order Order condition

1 1 ψ1(hM) =O (hp )

2 2 ψ2(hM) =O (hp−1)
3 2

∑s
i=1 b̄i (hM)Jψ1,i (hM) =O (hp−1)

4 3 ψ3(hM) =O (hp−2)
5 3

∑s
i=1 b̄i (hM)Jψ2,i (hM) =O (hp−2)

6 3
∑s

i=1 b̄i (hM)J
∑s

j=1 āi j (hM)Jψ1, j (hM) =O (hp−2)

7 3
∑s

i=1 b̄i (hM)ci Kψ1,i (hM) =O (hp−2)

8 4 ψ4(hM) =O (hp−3)
9 4

∑s
i=1 b̄i (hM)Jψ3,i (hM) =O (hp−3)

10 4
∑s

i=1 b̄i (hM)J
∑s

j=1 āi j (hM)Jψ2, j (hM) =O (hp−3)

11 4
∑s

i=1 b̄i (hM)ci Kψ2,i (hM) =O (hp−3)
12 4

∑s
i=1 b̄i (hM)J

∑s
j=1 āi j (hM)J

∑s
k=1 ā j k (hM)Jψ1,k (hM) =O (hp−3)

13 4
∑s

i=1 b̄i (hM)J
∑s

j=1 āi j (hM)c j Kψ1, j (hM) =O (hp−3)

14 4
∑s

i=1 b̄i (hM)ci K
∑s

j=1 āi j (hM)Jψ1, j (hM) =O (hp−3)

from Table 1 up to order p ∈N, p ≤ 4 . Additionally, the
condition (9) should be satisfied. Then it holds∥∥yn − y(tn)

∥∥≤C hp

with 0 ≤ nh ≤ T for the solution yn computed by IFRK.
C > 0 is a suitable constant which does not depend on n
or h, only on T .

3 Approximation and Krylov subspace
methods

In this section, which is based on [2, pp.1-2], we talk
about the approximation of eM v via different Krylov
subspace methods. For large dimensions, the exact com-
putation of matrix exponentials is very costly and takes
a lot of time, so we would like to approximate the expres-
sion eM v with the aim to evaluate the matrix exponen-
tial on a matrix with much smaller dimension.

We start with a matrix M ∈Rp×p and v ∈Rp and seek
for an approximation of f (M)v with a matrix function
f :Rp×p →R

p×p . We assume M to be sparse and f (M) =
eτM ,τ ∈R. Now we want to perform a dimension reduc-
tion to a smaller dimension k ≪ p using

V ,W ∈Rp×k ,W T V = Ik , M̃ =W T MV ∈Rk×k (12)

such that

f (M)v ≈V f (M̃)W T v. (13)

Additionally, if V is constructed by the choice of V e1 =
v/∥v∥ for the first canonical unit vector e1 ∈Rp , (13) can

be simplified to

f (M)v ≈V f (M̃)W T v

=∥v∥V f (M̃)W T V e1

=∥v∥V f (M̃)e1

with no need to compute W explicitly.
M is Hamiltonian in our starting equation, so we want

to preserve this property for the reduced model. But
in general, for chosen matrices V and W after equa-
tion (12) the projected matrix M̃ is not Hamiltonian
again. In the following, set p = 2d ,k = 2m. Now, we
use the symplectic by columns matrices from Defini-
tion 5. Let S2d ,2m ∈R2d×2m be a symplectic by columns
matrix and M ∈R2d×2d a Hamiltonian matrix. With the
help of Lemma 6, we see that the reduced matrix M̃ is
Hamiltonian using V = S2d ,2m ,W T = J T

2m(S2d ,2m)T J2d :

M̃ =W T MV = J T
2m(S2d ,2m)T J2d MS2d ,2m ∈R2m×2m .

For the construction of these projection matrices, we
use different Krylov subspace methods. These methods
are well known for constructing subspaces with large
and sparse matrices because they only require cheap
matrix-vector products. But first, we give a short defini-
tion of a Krylov subspace.

Definition 20. Let M ∈ Rp×p , v ∈ Rp and k ∈ N. Then
the Krylov subspace Kk (M , v) is defined by

Kk (M , v) := span{v, M v, M 2v, . . . , M k−1v}.

This is a list of Krylov subspace methods used here:
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• Arnoldi Method(A) [5, pp.499-500]:
This standard well known Krylov subspace
method produces a sequence like

MVk =Vk Hk +hk+1,k vk+1eT
k ,

where the columns of Vk ∈Rp×k ,V T
k Vk = Ik form

the orthonormal basis of the Krylov subspace
Kk (M , v) and Hk ∈Rk×k is an upper Hessenberg
matrix. In this case, the matrices introduced in
(12) are V =Vk and M̃ = Hk .

• Symplectic Lanczos Method (SL) [1]:
This method yields a sequence

MS2d ,2m = S2d ,2m M̃ 2m,2m +ξm+1vm+1eT
2m

with ξm+1 ∈R and a symplectic by columns matrix
S2d ,2m ∈R2d×2m whose columns span the Krylov
subspace K2m(M , v). Here, the matrices from (12)
are given as V = S2d ,2m ,W T = J T

2m(S2d ,2m)T J2d

and M̃ = M̃ 2m,2m .
• Symplectic Arnoldi Method (SA) [4, p.65]:

In this method the orthogonal vectors from the
standard Arnoldi method are reorthogonalized
with respect to the standard scalar product and
additionally with respect to the skew-symmetric
bilinear form induced by J .

• Isotropic Arnoldi Method (IA) [4, pp.65-66]:
In comparison to the Symplectic Arnoldi method,
here the vectors are directly reorthogonalized in
the Arnoldi method with respect to the standard
scalar product and the skew-symmetric bilinear
form induced by J .

• Hamiltonian Extended Krylov Subspace
Method (HEKS) [2]:
In this algorithm we look at the Krylov subspaces
K2r (M , v) and K2s(M−1, M−1v). It yields a sym-
plectic by columns matrix Sr+s ∈R2n×2(r+s) such
that its columns span the subspace K2r (M , v)+
K2s(M−1, M−1v).

• Block-J-orthogonal Method (BJ) [12]:
This method constructs an orthonormal and sym-
plectic by columns block matrix

[
W 0
0 W

]
from the

standard Arnoldi method applied to Kk (M , v).

It needs to be mentioned here that the Arnoldi method
is the only method which yields a standard basis for the
Krylov subspace whereas the other methods use differ-
ent approaches to construct the symplecticity of the ba-
sis vectors. In the symplectic Lanczos method, the sym-
plectic Arnoldi method, the isotropic Arnoldi method
and the HEKS breakdowns can occur. To be more pre-
cise, in some cases these algorithms lead to a division
by nearly zero. This requires to stop the algorithms even

if the desired accuracy is not already reached. Due to
these breakdowns we will see that we cannot use all of
the methods in all cases.

For the Arnoldi method there exist some approxima-
tion theorems which give an upper bound on the ap-
proximation error. The following one is appropriate for
Hamiltonian matrices treated here.

Theorem 21. [9, Theorem 4, p.1918]
Let M ∈Cp×p , v ∈Cp withσ(M) ⊆ i [α−2ρ,α+2ρ] where
α,ρ ∈R and σ(M) denotes the spectrum of the matrix M.
Furthermore, let Vk and Hk be generated by the Arnoldi
method with Vk e1 = v

∥v∥ . Then it holds for the approxi-
mation error εm :

εm =
∥∥∥eτM v −∥v∥Vk eτHk e1

∥∥∥
=∥v∥

∥∥∥∥eτM v

∥v∥ −Vk eτHk e1

∥∥∥∥
≤12∥v∥e−(ρτ)2/k

(eρτ

k

)k
, k ≥ 2ρτ.

Because we have assumed M to have purely imagi-
nary eigenvalues, the eigenvalues lie in a suitable in-
terval with α = 0. An important aspect is that there is
no decrease in the error for k < ρτ in general, but for
k ≥ 2ρτ a rapid decay can be observed. So this theorem
is strongly dependent on the spectral radius of the ma-
trix. Our numerical experiments will demonstrate this
later.

4 Numerical Experiments

In this section we compare the different Krylov meth-
ods in terms of accuracy in approximating the matrix
exponential via (13) and then also their effects on the
accuracy of the exponential Runge-Kutta integrators.
We also investigate the preservation of the Hamiltonian
regarding the different methods.

We test here mainly the Gauß-Legendre method of or-
der 4 (RK4) which is an implicit and symplectic method
with the following coefficients:

A =
[

1/4 1/4−p
3/6

1/4+p
3/6 1/4

]
,

b =
[

1/2
1/2

]
, c =

[
1/2−p

3/6
1/2+p

3/6

]
.
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The associated IFRK of order 4 (ERK4) is then given by

Ā(hM) =
[

ā11(hM) ā12(hM)
ā21(hM) ā22(hM)

]

=
 1

4 I
(

1
4 −

p
3

6

)
e−

p
3

3 hM(
1
4 +

p
3

6

)
e

p
3

3 hM 1
4 I

 ,

b̄(hM) =
1

2 e

(
1
2+

p
3

6

)
hM

1
2 e

(
1
2−

p
3

6

)
hM

 , c =
[

1/2−p
3/6

1/2+p
3/6

]
.

For some treated examples there exist no analytic so-
lutions, so we use the solution by the associated IFRK
(ERK6) of the Gauß- Legendre method of order 6 (RK6)
as a reference solution. Its coefficients can be found
in [6, p.34]. Furthermore, we use fixed-point iterations
for solving the inner equations of the methods in (7)
and (8). Then we approximate the ERK4 by the men-
tioned Krylov subspace methods which is abbreviated
by "ERK4 with A/SL/SA/IA/HEKS/BJ". The experiments
are performed on an Intel(R) Core(TM) i7-1255U CPU @
1.70 GHz with 16GB RAM. We work here with MATLAB
2022b and its exponential method expm for computing
the matrix exponential.

4.1 Examples

We investigate three different examples for the system

(1) and split the state as y(t ) =
[

y (1)(t )

y (2)(t )

]
assuming an even

state dimension 2N . Their components are indexed as
follows:

y (1) =
[

y (1)
(1) . . . y (1)

(N )

]T
, y (2) =

[
y (2)

(1) . . . y (2)
(N )

]T
.

The occurring functions and operations are meant to
be evaluated componentwise and 1 : N should abbre-

viate the vector
[
1 2 . . . N

]T ∈ RN , similarly 1 :=[
1 1 . . . 1

]T ∈ RN . Also, the system matrix in all ex-
amples is given by

M =
[

0 D
I 0

]
where D ∈RN×N is the sparse differentiation matrix for
the second derivative from [4, p.68]:

D = 1

(∆x)2


−2 1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 1 −2

 .

Furthermore, the time integration over [0,T ] is depen-
dent on the parameters h and T , so in later discussions
we will compute solutions yn at a certain time step tn ,
so that yn ≈ y(tn), tn = n ·h,n = 1, . . . ,T /h.

1. Sine-Gordon equation (SG)[13, p.580]:
A discretization of the Sine-Gordon equation leads
us to the system with

f (y(t )) =
[−sin(y (2)(t ))

0

]
,

y0 =
[p

N
(
10−2 + sin

(
2π(1:N )

N

))
π ·1

]
.

Moreover, we use N = 28,∆x = 10/N and for the
time integration h = 1/40,T = 100. The Hamilto-
nian for this system is given by

H(y) =1

2
(y (1))T y (1) − 1

2
(y (2))T D y (2)

−
N∑

i=1
cos(y (2)

(i ) ).

2. Nonlinear Klein-Gordon equation (NLKG)
[13, p.580]:
Similarly to the first example, we obtain a system
with

f (y(t )) =
[−y (2)(t )− (y (2)(t ))3

0

]
,

y0 =
[

0

20
(
1+cos

(
2π(1:N )

N

))] .

Furthermore, we use N = 29,∆x = 1.28/N ,h =
1/100,
T = 10. The Hamiltonian is given by

H(y) =1

2
(y (1))T y (1) − 1

2
(y (2))T D y (2)

+
N∑

i=1

1

2
(y (2)

(i ) )2 + 1

4
(y (2)

(i ) )4.

3. Linear wave equation (LW) [4, pp.68-69]:
Here the system is described by

f (y(t )) =
[

c
0

]
,

y0 =
[

0(
1+ sin2

(
πL(1:N )

N+1

))−1 −1

]

with a time-independent vector c ∈ RN . We use
N = 400,∆x = 2/(N +1),h = 2.5 ·10−2,T = 50. The
Hamiltonian is given by

H(y) =1

2
(y (1))T y (1) − 1

2
(y (2))T D y (2)

− (y (2))T c.



GAMMAS 2024 T.Peters 9

Figure 1 – Approximation of the matrix exponential for
the Sine-Gordon equation

4.2 Approximation of the matrix exponential

In this section, we investigate the error in the approx-
imation of the matrix exponential eM y0 for the three
different examples. Referring to (13) we use the relative
error

er rr el =

∥∥∥eM y0 −V eM̃ W T y0

∥∥∥∥∥∥eM y0

∥∥∥
and compare the errors for the different methods for
each example with increasing Krylov subspace dimen-
sion. This chosen subspace dimension is even because
of the comparability between the standard Arnoldi and
the other methods from Section 3.

For the first example (see Figure 1), all of the consid-
ered methods work very well. With a Krylov subspace
dimension of no more than 8, a relative error of 10−11 is
reached. The spectral radius of M is here approximately
51.2 so we can choose 2ρ = 51.2 in Theorem 21. Then,
this theorem for the approximation via the Arnoldi algo-
rithm yields only an assertion for k ≥ 51.2 which is not
useful for our small choices of subspace dimensions.

In contrast to this, in the second example (see Fig-
ure 2) not all of the considered methods can be used
to approximate the exponential term because of seri-
ous breakdowns in some of the algorithms. But for the
three remaining methods, the Arnoldi, the HEKS and
the BJ method we can see a decrease of the relative error
with increasing subspace dimension. From a Krylov sub-
space dimension 22 all errors are approximately 10−11.
For this example, the spectral radius of M is approxi-
mately 200, so Theorem 21 is not useful, only for k ≥ 200.

The last example (see Figure 3) shows a different be-
havior of the relative errors with increasing subspace
dimension. Except for the HEKS method, no method

Figure 2 – Approximation of the matrix exponential for
the nonlinear Klein-Gordon equation

Figure 3 – Approximation of the matrix exponential for
the linear wave equation

produces decreasing errors for larger subspace dimen-
sions. Again, not all Krylov methods can be applied to
this problem. The Symplectic Arnoldi and the Isotropic
Arnoldi method cause some serious breakdowns. This
behavior of not decreasing errors can be reasoned by
the even larger spectral radius of M compared to the ex-
amples before. The eigenvalues with largest magnitude
are here approximately ±401i, so Theorem 21 yields only
a statement for subspace dimensions larger than 401.

In conclusion to this section, we have seen that not
all of the methods are applicable due to some break-
downs in the algorithms themselves. The spectral ra-
dius has a big influence on the course of the graph, so
that due to the larger spectral radius, a decrease of the
relative errors with increasing subspace dimension for
the dimensions we have chosen can not be guaranteed.
Theorem 21 only yields a helpful statement for larger
subspace dimensions. As the authors note in [9, p.1918],
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Figure 4 – Approximation of the reference solution for
the Sine-Gordon equation

in some cases we do not see a significant reduction in
errors for smaller dimensions here. But the required
dimensions imply many more computations, so that
the time benefit of using the Krylov methods would no
longer be useful. Even with smaller dimensions, the ap-
proximations often lead to satisfactory results. All in all,
we stick to our choice of the small subspaces to benefit
from the time advantage of the approximations by the
Krylov methods.

4.3 Testing the approximated integrators on
the systems

In this section, we analyze the effects on the computa-
tions of solutions of the systems if we approximate the
exponential terms appearing in ERK4 with the differ-
ent Krylov subspace methods. We will compute yn ≈
y(tn), tn = n ·h,n = 1, . . . ,T /h. So for each example, we
plot the relative error in approximating the true solution
of the ODE as

er rr el ,sol (tn) =
∥∥yn − y(tn)

∥∥∥∥y(tn)
∥∥

and also the relative error in preserving the Hamiltonian

er rr el ,ener g y (tn) =
∣∣H(yn)−H(y0))

∣∣∣∣H(y0)
∣∣

over time. Here we have selected fixed subspace di-
mensions for each example and the supremum norm to
compute the errors.

First, we take a look at the first example (see exam-
ple 1) where we have reduced the system dimension
from 512 to 8. An exact solution is not given so we com-
pute the relative solution error to the reference solution

Figure 5 – Preservation of energy for the Sine-Gordon
equation

Figure 6 – Approximation of the reference solution for
the nonlinear Klein-Gordon equation

computed by ERK6 with the exact exponential. The sym-
plectic and the isotropic Arnoldi, the HEKS and the BJ
methods are not applicable due to breakdowns again.
We can see in Figure 4 that the ERK4 method, approxi-
mated by the Arnoldi and the symplectic Lanczos, per-
form the best with respect to the solution error. The
non-exponential RK4 is slightly worse. Regarding the
relative energy error, the methods produce similar re-
sults with an approximate error of about 10−7 to 10−8

(see Figure 5). Furthermore, we see in Table 3 that RK4
is the fastest method. Its exponential variant, the ERK4
without approximations, is much slower. In comparison
between the two applicable approximation methods,
the symplectic Lanczos method requires slightly more
time.

Next, we see for the second example, that only the
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Table 3 – Times (in sec) for the experiments of Section 4.3 for each example

Method Sine-Gordon equation Nonlinear Klein-Gordon equation Linear wave equation

ERK4 90.8441 254.6947 139.6264
ERK4 with A 4.2468 5.8492 3.9903
ERK4 with SL 16.0963 - 13.3427
ERK4 with HEKS - - 55.8899
ERK4 with BJ - 7.1846 4.337
RK4 1.1647 - -

Figure 7 – Preservation of energy for the nonlinear Klein-
Gordon equation

Arnoldi and the BJ method can be used to approximate
ERK4. The reference solution is computed by ERK6
again and the RK4 method does not work either because
the fixed-point iterations for the inner equations do not
converge. In Figure 6 the approximation with BJ is in-
accurate while the Arnoldi approximation works reli-
ably. This can be transferred to the preservation of the
Hamiltonian in Figure 7. It needs to be mentioned that
the errors for this example are a bit worse than for the
first which can be justified by the bigger dimension and
also the different architecture of the example, e.g. the
zero entries in y0. If we look at the computation times
in Table 3, we again observe the large acceleration of
the ERK4 method due to the approximations using the
Krylov methods.

In the last example, we reduce the dimension from
800 to 20. Here the RK4 and the ERK4 with symplec-
tic Arnoldi and the isotropic Arnoldi do not work due
to breakdowns. An analytic solution does not exist ei-
ther but we can compute the solution of the system via
the exponential Euler rule which is exact for this linear
problem (see [4, p.60]). Regarding the relative solution

Figure 8 – Approximation of the reference solution for
the linear wave equation

error in Figure 8 the not-approximated version of ERK4
performs the best while its approximations with the
Arnoldi and the symplectic Lanczos method are sim-
ilar and about two orders of magnitude worse. The
HEKS and BJ approximations of ERK4 are not useful
with respect to approximating reference solution and
the preservation of the Hamiltonian, portrayed in Fig-
ure 9. In this figure, it can be seen that the ERK4 works
best again, but here the ERK4 with the symplectic Lanc-
zos method is slightly better than its Arnoldi variant. For
the comparison of the computation times of the differ-
ent methods the results of example 3 are collected in
Table 3. The time benefit by the approximation is clearly
visible where the Arnoldi approximation is the fastest.
This can be justified by the additional effort used in the
other methods to create the symplecticity. For larger
column dimensions of the basis matrix it is often useful
to re-J-orthogonalize/reorthogonalize to maintain the
symplecticity/orthogonality of the columns which un-
fortunately costs additionally.

As a short conclusion, we have observed that the RK4
does not work in all examples because the fixed-point
iterations do not converge. In contrast to that, these
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Figure 9 – Preservation of energy for the linear wave
equation

problems do not occur with the ERK4, but the associ-
ated computations take considerably more time. This
can be a problem with even larger examples. Among the
different Krylov methods for approximating the ERK4 to
speed up the computations, the Arnoldi and the sym-
plectic Lanczos method are suitable. The Arnoldi
method can be used in all treated examples and is a bit
faster than the symplectic Lanczos method. But if we
would like to attach more importance to the preserva-
tion of the Hamiltonian, we may choose the symplectic
Lanczos method as we have seen in Figure 9. Regarding
the accuracy of the computation of the solution of the
system, they are approximately on the same level.

5 Summary
In this article, we approximated symplectic exponen-
tial Runge-Kutta methods by different Krylov subspace
methods and then applied the resulting methods to
three test examples. First, we treated some basic prop-
erties of Hamiltonian systems in the first section and
introduced Hamiltonian and symplectic matrices. Next,
we spoke about different variants of standard and expo-
nential Runge-Kutta methods for solving (1). We focus
on the IFRK methods because their properties can be
easily deduced by their corresponding RK. After that,
Krylov subspace methods were presented and how to
use them for approximating the exponential terms in the
exponential Runge-Kutta methods. In the last section,
we tested these methods on three test examples.

A standard symplectic Runge-Kutta method is not us-
able in all presented examples. This is because the fixed-
point iterations do not converge due to the large stiff-
ness of the system. So, exponential Runge-Kutta meth-

ods are more suitable as they integrate the main part of
the system stiffness exactly. But for large system dimen-
sions it is very costly to evaluate the matrix exponential
terms. Therefore we sought for an approximation of the
appearing exponential terms in the ERK method to gain
a time benefit.

We saw that the accuracy of approximation of the ma-
trix exponential differs strongly from example to exam-
ple which can be reasoned by the different spectral radii
of the system matrices. Among all treated Krylov sub-
space methods, the Arnoldi and the symplectic Lanczos
methods provide the most reliable and best approxima-
tions. The symplectic or isotropic Arnoldi method lead
often to breakdowns while the approximation of the ex-
ponential integrators with the HEKS or BJ method yield
bad results.This can be seen on the one hand with re-
spect to the accuracy of the computation of the solution
itself and on the other hand regarding the preservation
of the Hamiltonian. In comparison between the two re-
maining Krylov subspace methods, the Arnoldi method
is a bit faster than the symplectic Lanczos method. It
can also be applied in all examples whereas the sym-
plectic Lanczos method fails in one case. Regarding
the accuracy of computing the solution of the system
they perform both similarly well. But with respect to the
preservation of the Hamiltonian the symplectic Lanc-
zos has small advantages. So if additional importance
to the preservation of the Hamiltonian is required, we
suggest to choose the symplectic Lanczos method. In
these cases where this method cannot be used, a slight
increase of the subspace dimension in the Arnoldi ap-
proximation leads to satisfying results too.

Code Availability: Source Code for the experiments
and methods in this paper is available from

DOI: 10.5281/zenodo.8379737.
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