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Abstract: The numerical simulation of neuromuscular
processes in skeletal muscles typically imposes high com-
putational costs, resulting in the need for techniques to
reduce these costs. One submodel in these types of multi-
physics multiscale simulations is the electrophysiological
model, describing the propagation of an action potential
(AP) in a muscle fiber. Involved in the simulation of the
propagation are two traveling waves, resulting in difficul-
ties for classical model order reduction (MOR) techniques
based on linear subspaces.
Instead, we apply the nonlinear MOR method shifted
Proper Orthogonal Decomposition (sPOD) to one state
variable only in order to construct dynamically trans-
formed reduced basis functions depending on time-de-
pendent paths spanning the adaptive reduced ansatz
space.
Our numerical experiments demonstrate that the con-
structed reduced ansatz space can accurately capture the
dynamics of two fully separated wavefronts and reduce
the degrees of freedom of the whole simulation. How-
ever, it cannot represent overlapping wave parts of the
hyperpolarization. The constructed reduced order model
outperforms the high-dimensional full order model in

terms of the computational costs while the accuracy is
maintained and reaches speedup factors between 2 and
73 depending on the time discretization.

Keywords: model order reduction, multiscale multi-
physics muscle activation simulation, electrobiophysi-
cal wave propagation, shifted proper orthogonal decom-
position

1 Introduction

A majority of tasks in human life can only be accom-
plished because of the complex muscular processes and
interactions of and between the approximately 220 in-
dividual muscles [17]. At the core of all movements are
voluntary contractions of skeletal muscles, allowing for
a large variety of different movements, covering fast,
persistent, finely controlled, but also exhausting actions.
This diversity is based on complex interactions between
the musculoskeletal and the neurological system.

Gaining insights into these systems is of immense
importance, for example, in medicine and healthcare.
Most incurable genetic disorders like myotonia con-
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genita stem from a malfunction in the electrical pro-
cesses regulating muscle contractions [23, 31]. A better
understanding of the mechanisms of the neuromuscu-
lar system can improve treatments and classification,
also for other muscular diseases and in post-stroke reha-
bilitation using patient-specific motorized prostheses
[24, 33]. In the field of engineering, the development
of bioinspired robots and artificial muscles, mimicking
the functionality of the human skeletal muscle, requires
deep knowledge about the involved neurological pro-
cesses [21, 30]. Increasing the functionality and usabil-
ity of such biomimetic systems can have advantages
in industrial robotics and the development of exoskele-
tons [2, 3].

Traditionally and empirically oriented approaches
in clinical studies have reached their limits regarding
the level of detail and the time requirements [10]. In-
stead, individualized, biophysics-based simulations can
be used to gain detailed insights into non-measurable
processes. The numerical treatment of the underlying
coupled, nonlinear partial differential equations (PDEs)
necessitates large-scale computation facilities to man-
age the extensive computational costs required for high
fidelity solutions. These computational costs are not
exclusively a problem in research because of long com-
putation times and high energy consumption. In envi-
sioned real-life applications, in medicine for example,
patient-specific simulations require low runtimes of the
detailed simulations to supply fast and exact diagnostics,
for example in adaptive surgery settings. To allow for ex-
ecution on resource-constrained devices and the treat-
ment of the envisioned scenarios, the computational
costs and the complexity of such simulations must be
reduced.

Outline and Contributions In this work, the simu-
lation of neuromuscular processes is based on a mul-
tiphysics, multiscale model capturing the processes in
the individual muscle fibers to the contraction of the
whole muscle, see Section 2.1. Since the number of
fibers comprising a skeletal muscle is typically high, the
simulations of the individual fibers are the dominating
factor in the overall computation. Simulating each fiber
involves the electrophysiological model capturing the
propagation of the cell membrane potential, defined as
action potentials (APs). Reducing the computational
complexity of this complex electrophysiological model
is of utmost interest.

One promising approach to reduce the computational
costs is model order reduction (MOR). Generally, in
MOR, the full order model (FOM) is replaced by a suit-
able reduced order model (ROM) with lower computa-

tional complexity while ensuring the accuracy of the
results as much as possible [4].

Recent works in the field of MOR for electrophysio-
logical simulations involve Proper Orthogonal Decom-
position (POD) and Deep Learning (DL) and show the
potential of these techniques for this kind of applica-
tion. In contrast to this work, these approaches were
applied to cardiac electrophysiology, the simulation of
the electrical activity of the heart, and not to single skele-
tal muscle fibers [9, 13, 14, 16].

This paper focuses on the derivation of a ROM with
transformed modes, based on shifted Proper Orthogo-
nal Decomposition (sPOD) for an electrophysiological
simulation of skeletal muscle fibers. In detail, the con-
tributions of this work are:

• The application of sPOD to construct a reduced
ansatz space capturing the wave propagations.

• The use of this reduced ansatz space in a finite
element approach to obtain the ROM.

• The evaluation of the reduced ansatz space and
the performance of the reduced simulation.

In doing so, this work shows that the application of
sPOD in the context of MOR for electrophysiological
simulations is a valid approach. Even by applying the
MOR approach to one state variable only, speedup fac-
tors between 2 and 73 can be reached with maintained
accuracy.

The remainder of this paper is structured as follows.
Section 2 deals with the necessary background of the
simulation model, the construction of the FOM via the
finite element method, and its simulation. Section 3
introduces the MOR approach, followed by the details
of the reduced ansatz space and the resulting ROM in
Section 3.4. Performance and accuracy of this MOR
approach are evaluated in Section 4. Finally, Section 5
summarizes the results and gives an outlook on future
work.

2 Full Order Model

Before we present the technical details of our MOR ap-
proach, we first give some background to the original
full order simulation of the propagation of the APs.

The APs arrive at the neuromuscular junction located
in the center of each fiber and propagate along the fiber
to both ends. This propagation is triggered by biochem-
ical processes on the subcellular scale involving ion
movement through voltage-dependent ion channels.
To capture these complex processes we use the over-
all model described in [10, 27] and extended in [26].
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The model is based on two submodels, the 1D fiber
activation model and the 0D subcellular model. The
first one captures the propagation of the AP along a 1D
fiber, whereas the second one describes the chemical
reaction to this potential in the fiber cell. Hence, the 1D
fiber activation model and the 0D subcellular model are
strongly coupled, and we combine them in the electro-
physiological model. The 3D mechanics of the actual
muscle movement are not covered in this paper, and we
refer to [26].

2.1 Electrophysiological Model

The mathematical definition of the electrophysiological
model is based on [29] and described in [26]. Its deriva-
tion is mainly based on the electrical coupling between
intra- and extracellular spaces of the muscle fiber and
the Hodgkin-Huxley cell model, proposed in [19].

For each bounded fiber domain Ω = [0,ℓ] with the
muscle fiber length ℓ and simulation time 0 ≤ T0 < T ,
the 1D model captures the transmembrane potential
u :Ω× [

T0,T
]→R along the fiber and is a second-order

PDE of the form

∂t u = 1

AmCm
σeff︸ ︷︷ ︸

=:C

∆u − 1

Cm
Iion(u, y)︸ ︷︷ ︸

=: f (u,y)

inΩ. (1)

The first term in the 1D model describes the diffusion
of the electrical potential along the fiber and the second
one accounts for the transport of the potential, driven by
the ion movements. This potential-dependent current
of the ion movements Iion can be described by the model
of Hodgkin-Huxley [19]. The involved constants are the
fiber’s surface-to-volume ratio Am, the capacitance of
the muscle fiber membrane Cm, and the effective con-
ductivity σeff.

The Hodgkin-Huxley model describes the movement
of the k > 0 ions in terms of ion-specific conductivities
gi (y) and constant Nernst potentials Ei :

Iion(u, y) =
k∑

i=1
gi (y)(u −Ei ).

These conductivities depend nonlinearly on the activa-
tion probabilities of the ion channels y :Ω×[

T0,T
]→R

k

and describe the pass-through of the ions through the
membrane. Typically, k ≈ 50 activation probabilities
are involved in capturing the complex processes in our
muscle fibers. These probabilities are defined locally
on a subcellular scale, more precisely at approximately
100+ positions on the muscle fiber cell. Depending on
the transmembrane voltage, the activation probabilities
change over time. This process is captured by the 0D

subcellular model at every point on the fiber, formulated
in the Hodgkin-Huxley model as well

∂t y = g (u, y) inΩ. (2)

Prescribing initial and boundary conditions as follows

∇u = 0, on ∂Ω,

u(·,T0) = u0, y(·,T0) = y0 inΩ,

yields the final initial boundary value problem (IBVP)
of the electrophysiological model. Formally, we require
u(x, ·), y(x, ·) ∈ C 1 (

]T0,T [
)∩C 0 ([

T0,T
])

for all x ∈Ω as
well as u(·, t) ∈C 2 (Ω)∩C 0 (

Ω̄
)

and y(·, t) ∈C 0(Ω̄) for all
t ∈]T0,T [.

2.2 Finite Element Approach

The original full order simulation on the 1D fiber scale
is based on a finite element method and is used as a ref-
erence solution of the electrophysiological model prob-
lem from Section 2.1. Constructing this finite element
method results in the semi-discrete FOM, yielding a
finite-dimensional approximation to the weak solution
of the model problem.

For a fixed time t ∈ [
T0,T

]
, we seek the spatial weak

solution u(t) in the Sobolev space Y = H 1(Ω), more
precisely with (u(t), y(t)) ∈ Y ×Y k the weak forms of
(1) and (2)∫
Ω

∂t u(t )v dx =−C
∫
Ω

(
∇u(t )∇v + 1

C
f (u(t ), y(t ))v

)
dx

∫
Ω

∂t y(t ) ·w dx =
∫
Ω

g (y(t ),u(t )) ·w dx

must hold for all v ∈ Y and w ∈ Y k . To simplify the
notation, we take Y as the ansatz space for y(t) inten-
tionally, even though L2(Ω) would suffice.

We cover the spatial domainΩ by a triangulation Th

as a subdivision of equidistant subintervals with length
hs and use nodal basis functions

{
ψ1, ...,ψn

}
to con-

struct the finite dimensional ansatz space Vh where we
restrict ourselves to the Lagrange P1(Th) space for sim-
plicity in the following. Performing a Galerkin approx-
imation in space for uh ∈ Vh with uh = ∑n

i=1 ūiψi and

analogously yh ∈V k
h , we arrive at the semi-discrete for-

mulation

∂t ū =−M−1
h C Ahū −M−1

h Fh(ū, ȳ),

∂t ȳ = (Ik ⊗Mh)−1Gh(ū, ȳ),
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with matrices and vectors(
Mh

)n
i , j=1 :=

〈
ψi ,ψ j

〉
L2(Ω)

,(
Ah

)n
i , j=1 :=

〈
∇ψi ,∇ψ j

〉
L2(Ω)

,(
Fh(ū, ȳ)

)n
j=1 :=

〈
f (uh(t ), yh(t )),ψ j

〉
L2(Ω)

,(
Gh(ū, ȳ)

)n
j=1 :=

〈
g (uh(t ), yh(t )),ψ j

〉
L2(Ω)

.

The identity matrix is denoted as Ik ∈Rk×k and ⊗ corre-
sponds to the Kronecker product. The nonlinear terms
from (1) and (2) are represented in the ansatz space as
the maps f : Y ×Y k → Y and g : Y ×Y k → Y k . To
solve for the time-dependent solution ū and ȳ , we apply
an explicit Euler time-stepping scheme for simplicity.
For this, we partition the time interval [T0,T ] into m
equidistant subintervals with length ht .

3 Model Order Reduction
The simulation of the FOM is computationally expen-
sive due to the coupling between the two complex sub-
models and a large number of discretization nodes both
in space and time. In this section, we present a MOR
approach with the general aim to reduce the computa-
tional costs and allow for rapidly computable approxi-
mations, while still achieving a satisfactory accuracy of
the FOM, building on ideas from [4].
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Figure 1 – Illustration of the space-time cylinder of the
AP wave propagation for a muscle fiber of
length 12 cm, originating in the center of the
fiber. FOM simulation with the parameters
from Table 1 and ht = 0.001.

Our approach is based on the construction of a problem-
specific, time-dependent, low-dimensional subspace of
the full dimensional ansatz space and using this ansatz
space to derive the ROM. More precisely the reduced

ansatz space should be able to capture the dynamics of
the solution, in our case the two traveling wavefronts
in Figure 1. We focus on constructing and applying our
MOR approach for the transmembrane voltage u for
simplicity, not for the ion channel probabilities y .

3.1 Overview of MOR Approach

Since our problem is dominated by transport, we ap-
ply the sPOD introduced in [35, 36] and formalized in
[5, 6, 8]. To capture the transport terms, sPOD allows
the construction of multiple reduced ansatz spaces trav-
eling in the spatial domain. But instead of moving the
discretization nodes like in Moving Finite Element Meth-
ods [15, 28], the reduced basis functions {ϕi }r

i=1 evolve
over time themselves and the discretization is fixed. This
can be achieved by shifting the modes over time, intro-
ducing an additional variable p j (t ) for the shift amount.
From the full order simulation in Figure 1 we observe
that the wavefront of the transmembrane voltage travels
at an approximately constant speed through the spatial
domain. Following this observation, we only account for
constant shift velocities of the basis functions and con-
struct a constant-speed shifted reduced ansatz space, in
contrast to [5, 8] where also non-constant shift velocities
are allowed.

We use sPOD [8, 34], an adapted version of POD [18,
20, 22, 32], to obtain the reduced basis functions from
the results of the full order simulation, explicitly ac-
counting for the shift variables p j . To obtain the ROM,
we use these reduced basis functions instead while fol-
lowing the same Galerkin approach in comparison to
the FOM.

3.2 Adaptive Reduced Ansatz Space

With the general goal to construct a ROM, we aim to ap-
proximate the solution u(t ) ∈Y by the reduced solution
û(t) ∈R in some reduced space R ⊂Y . We construct
the basis functions {ϕ j }r

j=1 of the reduced space R as
elements of the finite dimensional ansatz space Vh of
the FOM to obtain continuous reduced basis functions.
Since they should capture the transport quantities, we
evaluate them in a shifted and time-dependent position
based on unknown paths p j :

[
T0,T

]→R [8].
Since the path functions describe the evolution of

the ansatz space and thus should capture the constant
velocities we can assume that the paths p ∈ H 1(T0,T ;Rr )
satisfy

∂

∂t
p(t ) = const and p(T0) = 0,

i.e. p(t ) = t p̄ with p̄ ∈Rr .
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With these preparations, we can define our modi-
fied reduced ansatz space. Let T (p j (t)) be a suitable
transformation operator, compare [8], with linear shifts
p j (t) = p̄ j t with the path coefficients p̄ ∈ Rr for all j =
1, ... ,r . We define the time-shifted reduced basis func-
tions {φ j }r

j=1 through

φ j (t ) =T (p j (t ))ϕ j =ϕ j (x − p̄ j t )

and use the periodic extension proposed in [5, Ex. 4.3
and 5.2] to keep the shifted basis functions

{
ϕ1, ...,ϕr

}
well-defined. With these time-shifted basis functions
we span the constant-speed shifted ansatz space V̂h(t )
with

V̂h(t ) = span
{
φ1(t ), ... ,φr (t )

}
,

and r = dimV̂h(t) < dimVh = n. This ansatz space trav-
els in the spatial spaceΩ depending on time.

3.3 Constant-Speed Shifted Proper
Orthogonal Decomposition

To use the constant-speed shifted reduced ansatz space
explicitly in our ROM, we need to determine the basis
functions φ j . Therefore, we follow the general idea of
snapshot decomposition to solve a similar minimization
problem as presented in [8]. The differences are hidden
in the details: Since we assume linear paths, it suffices
to optimize over the constant path velocities p̄ instead
of the paths themselves. However, the constant shift
velocities p̄ must be optimized nevertheless.

The available snapshot data in our case are function
samples from the FOM simulation and denoted as u ∈
L2(T0,T ;Y ). In addition, let L := L2(T0,T ;Rr )×Y r ×Rr

be the space of the optimization variables. Since the
overall goal is to represent the solution u in the reduced
space, the error of the representation should be as small
as possible. To this end, we define the cost functional
J : L →R as the mean squared distance to the function
sample u

J (û,ϕ, p̄) = 1

2

∥∥∥∥∥u −
r∑

i=1
ûi T (pi )ϕi

∥∥∥∥∥
2

L2([T0,T ],L2(Ω))

. (3)

The optimization problem then reads: Find (û,ϕ, p̄) ∈L

such that

(û,ϕ, p̄) ∈ argmin
(û′,ϕ′,p̄ ′)∈L

J (û′,ϕ′, p̄ ′) (4)

holds. We solve this optimization problem using a quasi-
Newton method for limited memory, the L-BFGS-B al-
gorithm [12, 25]. Similar to [8], we provide the explicit
discretized cost function and the corresponding gradi-
ent by using the same discretization from the FOM.

3.4 Reduced Finite Element Method

Solving the discrete optimization problem from Sec-
tion 3.3, we obtain the coefficients p̄i and ϕ̄ to construct
the shifted ansatz space V̂h . Similar to the derivation
of the FOM, we insert the reduced basis representa-
tion of the Galerkin approximations ûh =∑r

i=1 ûiφi and
yh = ∑n

i=1 ȳiψi into the weak formulation of the origi-
nal problem. Here Vh =P1(Th) is the full-dimensional
discrete ansatz space of Y with nodal basis

{
ψ1, ...,ψn

}
.

The resulting semi-discrete ROM is thus given by

∂t û = M̂−1
h (−C Âh − N̂h)û − M̂−1

h F̂h(û, ȳ),

∂t ȳ = (Ik ⊗Mh)−1Ĝh(û, ȳ),

with the time-dependent matrices and vectors(
M̂h

)r
i , j=1 :=

〈
φ j ,φi

〉
L2(Ω)

,(
Âh

)r
i , j=1 :=

〈
∇φ j ,∇φi

〉
L2(Ω)

,(
N̂h

)r
i , j=1 :=

〈
∂tφ j ,φi

〉
L2(Ω)

,(
F̂h(û, ȳ)

)n
j=1 :=

〈
f (ûh , yh),φ j

〉
L2(Ω)

,(
Ĝh(û, ȳ)

)r
j=1 :=

〈
g (ûh , yh),ψ j

〉
L2(Ω)

.

To assemble the reduced matrices, we need to compute
the L2(Ω)-inner products with the time-shifted basis
functions φ(t ). The major difference in comparison to
the FOM from Section 2.2 is the time dependency of the
basis functions. Since the paths account for the constant
velocity shift and are thus given by the reduced space,
they do not occur as unknowns of the ROM thus the
paths are not recalculated in the online phase.

3.5 Computation of the ROM

Solving the semi-discrete ROM from Section 3.4 involves
the application of the explicit Euler scheme, similar to
the FOM. This time-stepping scheme depends on the
model matrices and for the FOM it is sufficient to as-
semble these model matrices once due to their time
independence. However, the model matrices for the
ROM depend on the shifted reduced basis functions
and thus on the time-dependent paths. This requires
their reassembly in every time step, which can be com-
putationally expensive.

In our implementation, we evaluate the terms F̂h and
Ĝh using the nonlinear terms Fh and Gh , defined on
the full-dimensional ansatz space Vh . To do so, we
have to project the transmembrane voltage from the
constant-speed shifted ansatz space ûh ∈ V̂h to the full
order ansatz space uh ∈ Vh . We call this up-projection
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and use an L2 projection to define it. Starting at the con-
dition 〈uh − ûh ,ψi 〉L2 = 0 for all i = 1, ...,n we can obtain
the coefficients ū of the basis representation in the full
order space Vh based on the coefficients û of the basis
representation in the reduced space V̂h . This transfor-
mation is defined as

ū = M−1
h P̂hû,

with the projection matrix
(
P̂h

)n,r
i , j=1 = 〈φ j ,ψi 〉L2 . Based

on these coefficients we can easily represent a function
ûh = ∑n

i=1 ûiφi ∈ V̂h in the space Vh through the basis
representation uh =∑n

i=1 ūiψi .

Following the same procedure, we can also construct
the so-called down-projection mapping from Vh to V̂h

with P̄h = P̂ T
h to obtain the evaluations F̂h and Ĝh . These

additional steps must be taken into account in the algo-
rithm when solving the ROM.

Typically, the evaluation of the ROM still scales with
the dimension of the FOM and for that reason hyper-
reduction techniques like discrete empirical interpo-
lation method (DEIM) are commonly used to reduce
the computational complexity. However, in our setting,
we solely focus on the sPOD without applying hyper-
reduction techniques and note that the performance of
the ROM can be further improved by using these meth-
ods.

4 Numerical Experiments

In this section, we present the application of the MOR
scheme defined in Section 3 to the electrophysiological
model. All computations are performed on an 11th Gen
Intel® Core™ i7-11700 @ 2.50GHz with 8 cores and a
total DDR4 RAM capacity of 16 GB @ 3200 MHz. The
implementation in Python is strictly sequential and the
sparsity of the matrices is exploited by using CSR matri-
ces.

The accuracy of the presented methods, especially of
the constructed reduced basis in Section 4.2 and the re-
sulting ROM in Section 4.3, is evaluated based on the rel-
ative error in the L2-norm and the maximal error in the
maximum norm. We define the global errors between
a function z ∈ L2(T0,T ;L2(Ω)) with ∥z∥L2(T0,T ;L2(Ω)) ̸= 0

and its approximation zh with z − zh ∈ L∞(T0,T ;L∞(Ω))

as follows

erel(z, zh) :=
∥∥z − zh

∥∥
L2(T0,T ;L2(Ω))

∥z∥L2(T0,T ;L2(Ω))

,

e∞(z, zh) := ∥∥z − zh

∥∥
L∞(T0,T ;L∞(Ω)) .

We refer to the local absolute error as eabs and define it
as

eabs(t , x) := ∣∣z(t , x)− zh(t , x)
∣∣ ,

for almost all (t , x) ∈ [T0,T ]×Ω. In addition, we denote
the arithmetic mean of the absolute error over the entire
spatial and time domain as ēabs, i.e.

ēabs := 1

T −T0

1

|Ω|

T∫
T0

∫
Ω

eabs(t , x)dxdt .

If not stated otherwise, all the following errors refer to
the transmembrane voltage state z = u only, where u is
the solution from Section 4.1. To compare this function
with approximations in the reduced setting, we project
the reduced functions to the full dimensional space

zh(x, t ) =
(
M−1

h P̂hû(t )
)T
ψ(x),

where û are the amplitudes in the basis representation
of the reduced space and ψ is the vector containing the
nodal basis functions of Vh .

Furthermore, we differentiate the errors in offline er-
rors and online errors. The offline errors are the errors
of the reduced ansatz space based on the optimal am-
plitudes resulting from the optimization problem (4),
which correspond to the orthogonal projection onto
the (time-dependent) reduced ansatz space. These of-
fline errors are used to evaluate the quality of the results
from the sPOD. We denote the online errors as the errors
based on the solution of the ROM as amplitudes. This
separation allows analyzing if the errors stem from the
ROM or the reduced ansatz space.

4.1 FEM Simulation

The model parameters used in all our simulations are
taken from [26] and listed in Table 1. In all the simu-
lations we use k = 3 as the number of voltage states
and for the simulation of the FOM we use a time-step

Table 1 – Parameters of the electrophysiological simulations

ℓ [cm] hs [cm] T0 [ms] T [ms] Cm

[
µF/cm2

]
Am [1/cm] σeff [mS/cm] Veql [mV] PNa+ PK+ PL

11.9 0.01 0 22 0.58 500.0 3.828 −74.985 0.05 0.6 0.325
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width of ht = 0.001. To activate the propagation of the
AP we initialize the voltage state by a scaled and shifted
Gaussian function

u0(x) = 50

2π
e
− (x−µ)2

2ς2 (Vmax −Veql)+Veql,

ith µ = ℓ/2, ς2 = 0.02 cm2 and Vmax = 35 mV for all
x ∈ Ω. Furthermore, we set the ion channel states to
their equilibrium probabilities given in Table 1 with
y0 =

[
PNa+ ,PK+ ,PL

]T for all x ∈Ω.

The resulting voltage snapshots are visualized in Fig-
ure 1 and show the AP defined by the voltage as two
wavefronts traveling through the spatial domain in both
directions from its origin. The solution for all states can
be seen in Figure 2, where the propagation in time is
visualized by the color gradient ranging from red (t = 0)
to green (t = T ).
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Figure 2 – States for a time range of [0,22] visualized
from red to green with 1 ms between the
curves. The first and last states are visualized
in black.

4.2 Quality of Reduced Ansatz Space

The reduced ansatz space should capture the propa-
gation of the voltage state in the spatial domain, and
thus we only use the snapshots for the voltage to con-
struct the reduced basis functions. To determine these
reduced basis functions we numerically minimize the
cost functional (3). This subsection corresponds to the
offline phase and hence all errors are offline errors. The
optimization problem (4) is carried out by SciPy’s mini-
mize function using the L-BFGS-B algorithm [37].

Based on the numerical experiments in [7], we expect
it to be challenging to achieve a good approximation
of the initialization of the wave, also called activation,

when using a sPOD-based ROM. For this reason, we
focus on determining the reduced basis functions for
the cases where the waves are separated and extract the
initial values and the snapshot data from the full order
simulation results for different start times T0.

Typically, an AP consists of a narrow peak at the wave-
front and a wide hyperpolarization part afterwards, char-
acteristic for the decrease of the potential below the rest-
ing potential [1]. We furthermore differentiate between
two different cases of the snapshot data. In the first one
with T0 = 5 ms only the wavefronts are separated but the
hyperpolarization parts overlap. In the second one with
T0 = 18 ms the waves are almost completely separated,
and the hyperpolarization parts only slightly overlap.

To reduce the offline computation time for sPOD, we
do not use the whole time domain of the snapshot data
for the optimization problem. Instead, we use the snap-
shot data until the fourth millisecond, respectively for
the two cases

[
T0,T0 +4

]
.

Generally, we expect the cost functional of the op-
timization problem of sPOD to be highly non-convex.
Hence, a good choice of initial values is crucial for the
success of sPOD. Since we assume a constant propaga-
tion speed, we initialize the paths by linear regression
over the whole time domain separately for both waves,
similar to [7, Algorithm 1].

4.2.1 Completely Separated Waves

We start with the less challenging scenario based on the
snapshot data for T0 = 18 ms with completely separated
waves and two basis functions. For the initialization,
we split the snapshot data at t = T0 in the center of the
domain and use each half separately for different basis
functions with the other half evaluated to zero. We take
these values as the amplitudes in the linear combination
of the basis functions

{
ψ1, ...,ψn

}
to construct the initial

basis functions
{
ϕ1, ...,ϕr

}
. In accordance with the the-

oretical construction in Section 3, these basis functions
are continuous over the whole domainΩ.

We obtain a relative error of erel = 0.405 and a maximal
absolute error of e∞ = 102.646. From comparing the
coefficients of the initial paths p(0)

i and the optimized
paths pi ,

p̄(0)
1 =−0.245, p̄(0)

2 = 0.245,

p̄1 =−0.187, p̄2 = 0.187,

we observe that the wave is inhibited from traveling
through the spatial domain to remedy the hole in the
center resulting from shifting the basis functions in op-
posite directions to the sides.

This is a general problem because the resting potential
Veql is not zero, consequently, the chosen initialization is



24 N. Hornischer GAMMAS 2023

0 2 4 6 8 10 12
x [cm]

80

60

40

20

0

20
1

2

(a) r = 2 without transformation

0 2 4 6 8 10 12
x [cm]

0

20

40

60

80

100 1

2

(b) r = 2 with transformation

Figure 3 – Spatial parts ϕ of reduced basis functions from sPOD for completely separated wavefronts initialized with the
snapshot data.

not optimal for this case but shows an underlying prob-
lem. Shifting basis functions away from one another
results in an area in the center where the basis functions
evaluate to zero by construction, compare Figure 3(a).

To deal with this problem, we define the so-called
equilibrium transformation that transforms the abso-
lute voltage u(t , x) to the relative voltage urel(t , x), such
that urel(t , x) evaluates to zero in the equilibrium state.
This transformation can easily be carried out by sub-
tracting the resting potential from the data

urel(t , x) = u(t , x)−Veql.

This transformation also has to be applied during the
projection between the reduced and original space, and
we continue under the assumption that the equilibrium
transformation is applied in any necessary case.

With the transformed setting we observe a signifi-
cantly smaller relative error of erel = 0.0027 and a maxi-
mal absolute error of e∞ = 1.2607, see additionally Ta-
ble 2. A further evaluation using the absolute errors is
visualized in Figure 4. It shows that the wavefronts are
captured accurately; however, a small amount of the
overlapping wave parts in the center cannot be repre-
sented.

We increase the number of basis functions to r = 4 and
use the two already optimized basis functions as initial-
ization and initialize the two additional basis functions
such that they evaluate to zero with a non-zero gradi-
ent. However, this leads to no improvement due to the
non-convergent behavior of the optimizer and results
in unchanged basis functions. In order to increase the
accuracy by adding additional basis functions, investi-

gating different approaches to the optimization problem
might be necessary.

Since the cost function of the optimization problem
is expected to be highly non-convex, it is likely that the
optimization algorithm starts close to a local minimum
by initializing the basis functions with the snapshot. To
analyze this aspect, we initialize r = 2 basis functions
such that they constantly evaluate to zero in the whole
domain. These experiments result in the relative and
absolute errors listed in Table 2 as the undivided case.

0 2 4 6 8 10
x [cm]

18.0

18.5

19.0

19.5

20.0

20.5

21.0

21.5

22.0

t [
m

s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

e a
bs

Figure 4 – Absolute error of sPOD for completely sepa-
rated wavefronts with r = 2, initialized with
snapshot data, and using the equilibrium
transformation over the short time interval[
T0,T0 +4

]
.

From the basis functions of the reduced spaces in Fig-
ure 5(a), we conclude that the basis functions are not
divided into the wavefronts. This results in wavefronts
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Figure 5 – Spatial parts ϕ of reduced basis functions from sPOD for completely separated wavefronts with r = 2, zero-
initialized for the undivided and divided domain case.

Table 2 – Errors of sPOD for completely separated wave-
fronts with r = 2, with equilibrium shift for
snapshot initialized and zero-initialized for the
undivided and divided domain case

erel e∞ ēabs

Snapshot (undivided) 0.0027 1.2607 0.0762
Zero (undivided) 0.2271 106.401 7.0244

Zero (divided) 0.0031 14.2877 0.0785

that cannot be captured accurately. However, for a di-
vided domain in Figure 5(b), the shape of the wavefront
is reconstructed properly.

To analyze this problem further, we follow the ap-
proach of separately constructing basis functions for the
divided domain mentioned in [7]. Therefore, we divide
the snapshot data along its center axis, set the corre-
sponding other half to the equilibrium state, construct
the reduced space with one basis function r = 1 each for
the left and right wave separately and merge the reduced
spaces to obtain a merged space with r = 2. In that way,
we obtain much smaller relative and maximal absolute
errors as listed in Table 2 as well. We observe that the rel-
ative errors are similar to the results from the snapshot
data initialization for r = 2 in Table 2. However, using
the snapshot data initialization for r = 2 yields smaller
maximal absolute errors.

Conclusions Transforming the snapshots to the equi-
librium state allows to remedy the numerical impact of
shifting basis functions in opposite directions, leading to
zero evaluations of the reduced ansatz space in the cen-

ter of the domain. Constructing the reduced space for
both wavefronts at once with zero-initialized reduced
basis functions leads to high relative and maximal abso-
lute errors. In addition, by splitting up the wavefronts
and separately constructing reduced spaces for them
with zero initialization, the wavefronts can be accurately
captured. We conclude that with the sPOD and the cho-
sen optimizer, the assignment of the reduced basis func-
tions to the two different wavefronts strongly depends
on the initialization. The optimizer could converge to
a local minimum due to the non-convexity of the cost
functional, causing this effect.
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Figure 6 – Absolute error of sPOD for partly overlap-
ping wavefronts with r = 2, initialized with
snapshot data, over the short time interval[
T0,T0 +4

]
.
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Figure 7 – Comparison of the original wavefront (solid line) and reconstructed wavefront (dots) of sPOD for partly
overlapping wavefronts with r = 2, initialized with snapshot data for the short time interval

[
T0,T0 +4

]
.

4.2.2 Partly Overlapping Wavefronts

We continue with the more challenging scenario of the
partly overlapping wavefronts based on the snapshot
data from T0 = 5 ms. For an initialization with the snap-
shot data, we obtain larger relative and maximal abso-
lute errors, listed in Table 3, compared to the scenario
of the completely separated wavefronts.

Table 3 – Errors of sPOD for partly overlapping wave-
fronts with r = 2 for different initializations

erel e∞ ēabs

Snapshot (undivided) 0.0372 9.6404 0.9552
Zero (undivided) 0.2325 100.2865 6.8009

Zero (divided) 0.0178 14.9812 0.4595

Figure 6 shows that these larger errors mostly stem
from the center part and not from the wavefront. In
addition, we can see that the wavefront is captured ac-
curately by comparing the reconstructed waves with
the original waves, visualized in Figure 7. However, by
zooming into the center, we observe that the hyperpo-
larization part of the AP is almost completely cut off and
cannot be represented by the reduced space. This be-
havior is similar to the reduced space for the completely
separated wavefronts with snapshot data initialization,
where the center part is the cause of the errors but has
less impact. Following that, we can deduce that with an
increase in the overlap of the hyperpolarization parts of
the two waves, the error in the center increases as well
and information about the hyperpolarization is lost.

For the zero initialization, we obtain the relative and
absolute errors listed in Table 3. Splitting the snapshot
data and constructing two reduced spaces reduces both

the relative and maximal absolute error. Constructing
both reduced ansatz spaces separately leads to a smaller
relative error compared to the snapshot data initializa-
tion. Looking at the shape of the reduced basis functions
in Figure 8 we notice that this decrease in the errors most
likely stems from a better approximation of the hyper-
polarization part. The initialization with snapshot data
most likely got stuck in a local minimum.
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Figure 8 – Spatial parts ϕ of reduced basis functions
from sPOD for partly overlapping wavefronts
with r = 2 with zero initialization for the di-
vided parts separately.

Conclusions We conclude that in this scenario, using
the split snapshot as initialization allows us to capture
the non-overlapping wavefront, similar to the scenario
of completely separated wavefronts. In addition, the
reduced space cannot reproduce the overlapping parts
of the wave, especially the hyperpolarization part can-
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not be represented in the reduced space. Using a snap-
shot initialization is the best option if we are only inter-
ested in capturing the wavefronts. Thus, based on the
presented approach, we can only approximate the full
waves accurately after they are completely separated.

4.3 Simulation with the Reduced Order
Model

With the constructed reduced space for the two scenar-
ios, we can now evaluate the accuracy and efficiency of
the ROM. To this end, we distinguish between the two
scenarios from Section 4.2 with the different starting
times T0 = 18 ms and T0 = 5 ms and use the reduced
ansatz space with r = 2 reduced basis functions con-
structed with snapshot initialization. In the following,

Table 4 – Offline errors of the reduced ansatz space
with r = 2 and runtime of the full order
simulation

T0 [ms] erel e∞ time [s]

18 2.70×10−3 1.26 39.60
5 3.72×10−2 9.64 168.00

we determine the accuracy of the ROM in comparison
to the FOM and compare these online errors with the
offline errors in Table 4. Additionally, we use the compu-
tation time of the FOM simulations to calculate speedup
factors, indicating the efficiency of the ROM. We round
these speedup factors to the nearest integer and use the
computation times of the FOM listed in Table 4.

4.3.1 Completely Separated Waves

We start with the first scenario (T0 = 18 ms) for com-
pletely separated waves. We simulate the ROM for five
time-step widths ht ∈ {0.001,0.005,0.01,0.05,0.1} and
immediately observe the instability of the explicit Euler
time-stepping scheme for a time-step width of ht = 0.1.
From the results in Table 5, we observe a slight increase
in the relative errors while the computation time is dras-
tically reduced. Even if the simulation of the ROM uses
the same time-step width of the FOM, the simulation
time is two times faster.

Exploiting the possibility of increasing the time-step
width up to 0.05 ms, the computation time can be re-
duced by a factor of 73, with online errors of the same
order of magnitude as the offline errors, compare Ta-
ble 4. Hence, the error from the reduced ansatz space
dominates the error in the simulation. We only have to
accept an increase of approximately 10% in the maxi-
mal absolute errors and an increase between 3% and

Table 5 – Online errors and performance analysis of the
ROM for completely separated wavefronts and
various time-step widths

ht erel e∞ time [s] Speedup

0.001 2.80×10−3 1.39 19.41 2
0.005 2.80×10−3 1.39 3.97 9
0.01 2.82×10−3 1.39 2.06 19
0.05 3.32×10−3 1.39 0.53 73

22% for the relative errors depending on the chosen
time-step width.
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Figure 9 – Absolute error of the ROM for completely sep-
arated wavefronts simulated with ht = 0.001.

To further investigate these errors, we focus on the so-
lution of the ROM for the time-step width ht = 0.001 ms.
From Figure 9, we observe that the center, and thus the
end of the hyperpolarization part, has a large impact
on the errors even for the small time-step width and
can not be represented accurately. However, since we
cannot expect that the ROM can capture dynamics that
the reduced space cannot represent, this effect was ex-
pected in the online phase as well since it has occurred
in the offline phase. Comparing the voltage wavefronts
of the ROM solution and the original wavefront in Fig-
ure 10, we note that the wavefront is captured accurately.

4.3.2 Partly Overlapping Waves

We perform the same experiments for the more chal-
lenging part with partly overlapping waves and obtain
the results listed in Table 6. Comparing the online and
offline errors, we observe that they have the same order
of magnitude but with 50 % larger relative online error
and an approximately three times larger maximal abso-
lute online error. In addition, we can see in Figure 11
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Figure 10 – Comparison of the original wavefront (solid line) and reconstructed wavefront (dots) of the ROM for com-
pletely separated wavefronts simulated with ht = 0.001 over the whole time interval [T0,T ].

Table 6 – Online errors and performance analysis of the
ROM for partly overlapping wavefronts and var-
ious time-step widths

ht erel e∞ time [s] Speedup

0.001 5.72×10−2 23.29 78.11 2
0.005 5.72×10−2 23.30 15.63 10
0.01 5.72×10−2 23.32 7.88 21
0.05 5.72×10−2 23.42 1.49 112

that the wavefront is not captured accurately, and the
hyperpolarization part cannot be represented. Since we
know that the reduced ansatz space cannot represent
the hyperpolarization part, the high absolute errors in
the center are no surprise. Despite the loss in accuracy,

the ROM simulation is up to 112 times faster than the
FOM simulation.

Ion Channel Probability States

Since the voltage state directly affects the ion channel
probability states, we analyze the impact of the errors
in the voltage state on these other states as well. There-
fore, we exemplarily use the ROM for completely sepa-
rated wavefronts simulated with ht = 0.001. From the
absolute error snapshots for these states, visualized in
Figure 12, we observe a small error in the center for all
states y1, y2, y3. In addition, a small absolute error at the
wavefronts for the sodium ion channel probability y1 is
present. The error in the center is caused by the lack of
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Figure 11 – Comparison of the original wavefront (solid line) and reconstructed wavefront (dots) of ROM for partly
overlapping wavefronts simulated with ht = 0.001 over the whole time interval [T0,T ].
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(b) State y2
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(c) State y3

Figure 12 – Absolute error snapshots for the ion channel probability states of the ROM for completely separated wave-
fronts simulated with ht = 0.001.

expressiveness of the reduced ansatz space for the end
of the hyperpolarization in the center. Depending on
the time step size these errors increase but the shape of
the front profile of the traveling waves is maintained.

5 Discussion

We have applied the sPOD, which is based on dynam-
ically transformed basis functions, to the electrophys-
iological simulation of the propagation of APs in mus-
cle fibers. The reduced approximation ansatz has been
based on a linear combination of transformed basis
functions with constant transport velocity.

The propagation of the AP through the spatial domain
originates from the center of the muscle fiber, resulting
in overlapping wavefronts in the activation area. The
ROM with the constructed reduced ansatz space can
capture the wavefront accurately with a small relative
error. However, the complete wave, especially the large
hyperpolarization part, can only be captured for the
completely separated waves.

We have observed a drastic reduction in the simu-
lation time compared to the FOM computation. One
important aspect is the possibility of using larger time-
step widths for the time-stepping scheme resulting in
fewer iterations. In that way, we have shown that ap-
plying MOR techniques in biophysical simulations for
medical applications is indeed a valid approach to dras-
tically reduce the computation time while still achieving
a satisfactory accuracy of the simulation results.

Despite the achieved performance under mostly pre-
served accuracy, some difficulties still need to be ad-
dressed in the future. First, the activation of the AP
in the center of the fiber must be integrated into the
ROM. One promising approach follows [7], combining
the presented ROM for the wavefront with another ap-

proach for the activation in the center. Another critical
topic is the hyperpolarization part of the wave. Biologi-
cally, this part is essential for activating another AP and
thus should be captured by the ROM. Since the hyper-
polarization parts make up a large percentage of the
complete wave and are nearly separated after 18 ms,
using different reduced basis functions for the wave-
fronts and the hyperpolarization parts could increase
the approximability. To enable predictions in the on-
line phase using parameter settings that have not been
used in the offline phase, the ROM has to be extended
to paths being treated as time-dependent unknowns of
the ROM, instead of being fixed. In that way, the propa-
gation depends on the other states of the ROM, similar
to the wildland fire simulation in [7]. In addition, ex-
tending the ROM to the ion channel probabilities in the
electrophysiological model can also potentially increase
the simulation performance further. Despite that the
ion channel probabilities behave similarly to the voltage
and result in a wave traveling through the spatial do-
main, the presented approach is not optimal due to the
solely nonlinear model equations for the ion state prob-
abilities and the additional costs of projecting between
the reduced and full dimensional space. Instead, an
approximation of the nonlinearity, for example, by the
DEIM [11] can be adapted to the setting of the dynami-
cally transformed basis functions, similar to [7, Chapter
3.2]. Furthermore, since the electrophysiological model
is embedded in a multiscale skeletal muscle simulation,
including the contraction of the muscle, the ROM can
be integrated into this much more complex framework.

Code Availability: The Python code for the simula-
tions is available as supplementary material and can be
obtained under

DOI: 10.5281/zenodo.8282665.
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