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Abstract: The goal is to gain a non-dimensional for-
mulation of the complex wavenumber knowing the one-
dimensional partial differential equation for wave prop-
agation and the harmonic wave approach. This can be
disassembled into its components, namely the imagi-
nary part, showing the decay of a wave, and the real
part, showing its spatial propagation. Having an eye on
damping in waveguides including internal and external
damping, we discuss the resulting consequences, which
are frequency-dependent phase and group velocities (dis-
persion), as well as the energy transport and dissipation.
This bears relevance for many domains of physics such
as seismic and electromagnetic waves.
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1 Introduction

Waves are omnipresent. If we take look in our everyday
life, we notice that all sounds and noises, that we hear
or cause, travel as waves in space. We encounter waves
in the transmission of signals in radio communication
and they help us to heat food. In water, waves are visible
to humans. Light is visible in a certain spectral band

corresponding to different wavelengths. Seismic waves
let us detect subsurface phenomena and structures or
manifest themselves as earthquakes.

The occurrence of waves is linked to the occurrence
of dissipation. Dissipation is a process in a dynamic sys-
tem where internal, bulk kinetic and potential energy is
converted into heat and other forms of energy. In a vis-
coelastic bar, there are two kinds of dissipation. Internal
damping is caused by viscoelasticity. External damp-
ing is caused by the interaction with the surrounding
medium.

Dispersion means that the phase velocity of waves is
frequency-dependent. This is particularly visible with
light in a prism, where different colors, i.e., wavelengths,
are refracted differently. In addition, damping causes
dissipation, as we will see soon.

As geotechnical engineers, we draw special attention
to waves in porous media relevant for a wide range of
applications. During the work on my diploma thesis [7]
I considered two different approaches to the analysis of
soil dynamical tests, the oscillation-based (modal anal-
ysis in Sec. 3) and the wave-based (wave propagation
in Sec. 4) approach. In the case of the wave-based ap-
proach, it was noticed that apart from the one-dimensio-
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nal wave equation and the harmonic wave approach,
no other equations and correlations could be found in
textbooks. This is the motivation for this paper: the
formulaic description of the propagation of waves in a
dissipative medium. Both, external and internal damp-
ing, shall be considered along with their influence on
the phase and group velocity. Many of the features we
discover in this simple example, we will find again in
Biot waves occurring in fluid-saturated porous media.
[2, 3]

2 Mathematical model

As a starting point for further explanations, the viscoelas-
tic bar shall be considered, which can be seen as an ex-
tension of the well-known telegraph or wave equation.
The following dimensional equation describes the vis-
coelastic bar with linear external damping [5, p. 150], u
is the (axial) displacement,

ρA
∂2u

∂t 2 +dexρA
∂u

∂t
−E A

∂2u

∂x2 −dinE A
∂3u

∂x2∂t
= f (t , x).

(1)
The bar is characterized by its materials mass density
ρ, the cross-sectional area A and the Young’s modulus
E . As it can be seen in Eq. (1), a distinction is made
between internal [din] = s and external [dex] = 1/s dissi-
pation due to internal and external damping. Internal
damping occurs, for example, due to material models,
external damping can result from air friction, among
other things.

To be able to generalize the representation, the equa-
tion can be formulated non-dimensionally by introduc-
ing a reference length L and a reference time τ = L/c
with c =√

E/ρ, cf. Eq. (2). We refer to c as structural con-
stant to emphasize that it corresponds to the wave speed
only in the undamped (nondispersive) case. In mathe-
matical terms it is a linear partial differential equation
(PDE) with constant coefficients, specifically a hyper-
bolic PDE. We note that dissipation mechanisms are
often more complex than their description by linear
terms; however, linear descriptions turned out to be
good approximations in many cases and last but not
least “Because linear equations are easy to solve and
study, the theory of linear oscillations is the most highly
developed area of mechanics.”, as V.I. Arnold remarks
with slight skepticism [8]. The point of departure for the
analysis is the bar equation (1) without forcing ( f ≡ 0),
so its non-dimensional formulation can be written as

∂2ū

∂t̄ 2 +α∂ū

∂t̄
− ∂2ū

∂x̄2 −β ∂3ū

∂x̄2∂t̄
= 0, (2)

with α= dexτ for external and β= din
τ for internal damp-

ing.
For the sake of brevity, we will omit the bar denoting

non-dimensional quantities and note derivatives with
respect to non-dimensional time by dots and with re-
spect to non-dimensional coordinate by primes, so that
Eq. (2) reads from now on

ü +αu̇ −u′′−βu̇′′ = 0. (3)

3 Modal analysis
Now that the bar equation in its non-dimensional form
is known, we will first show how to solve it in terms of
oscillatory modes. On bounded domains with given
boundary conditions the first choice is a separation
ansatz [5]

u(x, t ) = X (x)T (t ), (4)

with the space-dependent function X (x) and the time-
dependent function T (t), where x and t are the non-
dimensional coordinate and time now. Inserting this
ansatz into Eq. (3) leads to

X (T̈ +αṪ )−X ′′(T +βṪ
)= 0. (5)

After performing the separation and assuming a wisely
chosen separation constant k, having gained this wis-
dom by trial and error, we obtain

X ′′

X
= T̈ +αṪ

T +βṪ
=−k2. (6)

Since k = const. the partial differential equation (3) re-
solves into two ordinary differential equations, a spatial
and a temporal one,

X ′′+k2X = 0, (7a)

T̈ + (α+k2β)Ṫ +k2T = 0. (7b)

Both equations correspond to free oscillations of a single-
degree-of-freedom-oscillator, (7a) to an undamped and
(7b) to a damped one. Their solutions are in the under-
damped system (common case) respectively

X (x) =CX cos(kx)+SX sin(kx), (8a)

T (t ) = T̂ sin(ωt +ϕ0)e−δt , (8b)

with the two constants CX and SX , the amplitude T̂ , the

angle ϕ0, the factor of decay δ= α+k2β
2 and the damped

radian eigenfrequency ω=
√

k2 −δ2.
Consequently, the final solution is

u(t , x) = (
C cos(kx)+S sin(kx)

)
sin(ωt +ϕ0)e−δt , (9)
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where the amplitude phase representation of the time
function merged into the constants of the space func-
tion (C =CX T̂ and S = SX T̂ ).

Depending on the boundary conditions there is an in-
finite number of eigenmodes i , which are given through
their spatial ki and their temporal radian frequency ωi .
The coefficients Ci and Si are determined by the initial
conditions. Known from Hagedorn [5] it can be said,
that oscillations are nothing else than standing waves,
emerging from waves interfering constructively, while
other waves, not contributing to an eigenmode, fade
away by destructive interference.

4 Wave propagation
Now that all the fundamentals are known, wave prop-
agation can be considered. Typically, wave propaga-
tion is studied on unbounded domains, such as the
(semi-)unbounded bar, but also helps gaining insight
into oscillations in bounded domains. It is noted that
the parameters as well as the dimensionless coordinate
and the dimensionless time are real numbers. For the
frequencyΩ, a more restrictive assumption is made, i.e.,
it must not be negative:

α,β ∈R, (10a)

x, t ∈R, (10b)

Ω ∈R+∪ {0}. (10c)

Assuming internal and external damping, the non-di-
mensional wave equation (3) from Sec. 2 can be used.
We adopt the approach of harmonic waves, that works
for non-dissipative media and we allow a complex wave-
number κ with the imaginary unit i

u = ûe i(κx−Ωt ), (11)

with the function u and its amplitude û, where u, û ∈
C is valid. Three principal cases can be studied: the
undamped, the externally damped and the internally
damped case.

4.1 Undamped waveguides

The undamped case is a purely theoretical one, since
a complete absence of damping is technically impos-
sible. For completeness as well as for repetition and
comparison, the well-known hyperbolic partial differen-
tial equation of the undamped case is included

ü = u′′. (12)

Eq. 12 follows from Eq. 3 when α = β = 0. The wave
ansatz from Eq. (11) solves Eq. (12) with κ=Ω, whereΩ

denotes a prescribed excitation frequency (radian, non-
dimensional). Referring back to dimensional quantities
we see wave propagation as x = ct with constant and
thus frequency-independent phase velocity cp = c and
group velocity cg = c.

4.2 Externally damped waveguides

Now that we have gone through the basics we are going
to tackle the real, i.e., damped problem, the raison d’être
of this paper. Knowing the wave equation and the har-
monic wave ansatz we are investigating the wavenum-
ber κ for the externally damped waveguide at first. With
β= 0, Eq. (3) reduces to

ü +αu̇ −u′′ = 0 (13)

and on insertion of the wave ansatz (11) gives the dis-
persion relation

−Ω2 − iΩα+κ2 = 0. (14)

From this the complex and frequency-dependent wave-
number κ is determined by

κ=±Ω
√

1+ i
α

Ω
, (15)

from which we pick the positive root in the sequel, i.e.,
the wave traveling in positive x-direction.

Eq. (15) can also be written as

κ=Ω
p

a + ib, (16)

where a is the real part and b the imaginary part of the
radicand. The real part κR and the imaginary part κI of
the wavenumber can also be viewed individually. We
introduce Zα as absolute value in the externally damped
case. By a transformation of the complex number with

r =
√

a2 +b2 = Zα =
√

1+
(α
Ω

)2
(17)

from the Cartesian coordinates into polar coordinates
the following representation appears

κ=Ωp
r ei ϕ2 =Ωp

r

(
cos

(ϕ
2

)
+isin

(ϕ
2

))
= κR(Ω)+iκI(Ω).

(18)
Using trigonometric relations in the complex number
plane, where the real part a and the imaginary part b
of the number are the cathetes to the hypotenuse (or
radius) r of the complex number

cos(ϕ) = a

r
= 1

Zα
(19)
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and using the half-angle formulas

cos
(ϕ

2

)
=

√
1

2
(1+cos(ϕ)), (20a)

sin
(ϕ

2

)
=

√
1

2
(1−cos(ϕ)) (20b)

leads to expressions for the real and imaginary part of
the complex wavenumber depending only onΩ and on
α.

This leads to expressions for the real and imaginary
part of the complex wavenumber κ= κR + iκI

κR =Ω
√

1

2
(Zα+1), (21)

κI =Ω
√

1

2
(Zα−1). (22)

4.3 Internally damped waveguides

Using again the harmonic wave ansatz (11), now for the
wave equation without external damping, α= 0,

ü −u′′−βu̇′′ = 0 (23)

leads to the dispersion relation

−Ω2 +κ2 − iΩβκ2 = 0. (24)

From this the complex and frequency-dependent wave-
number κ is determined by

κ=Ω
√

1+ iΩβ

1+ (Ωβ)2 . (25)

Exactly as in the externally damped case the same rules
can be used to transform the complex number.

Using trigonometric relations in the complex num-
ber plane and again using the half-angle formulas (20)
leads to expressions for the real and imaginary part of
the complex wavenumber depending only onΩ and on
β. We introduce Zβ as absolute value in the internally
damped case. Setting

r = Zβ =
√

1+ (Ωβ)2 (26)

and

cos(ϕ) = 1

Zβ
, (27)

we obtain along the lines of the arguments provided for
the case of externally damped waveguides

κR =Ω
√√√√1

2

Zβ+1

Z 2
β

, (28)

κI =Ω
√√√√1

2

Zβ−1

Z 2
β

(29)

for the real and imaginary part of the complex wavenum-
ber in an internally damped waveguide.
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Figure 1 – Phase velocity, externally (left) and internally
damped (right), each line corresponds to a
damping coefficient,α or β, in the range from
0 (transparent) to 1.5 (opaque).

5 Discussion
If we take now a closer look at wave ansatz (11), we
can see the roles of the real and imaginary part of the
complex wavenumber. For the chosen sign in positive
x-direction (opposite direction for negative sign) we get
the following representation

e i
(

(κR+iκI)x−Ωt
)
= e−κIx e i(κRx−Ωt ), (30)

where κI leads to decay and κR to propagation in space.
We confirm that κR,κI ∈R+, since the value of the com-
plex number Z ≥ 1 by the assumptions (10) made on α,
β andΩ.

5.1 Dispersion

Dispersion is a common phenomenon when dealing
with waves. In this context, the phase and the group ve-
locity have to be distinguished. In a dispersive medium
the phase velocity, defined by

cp = cp(Ω) = Ω

κR
(31)

depends on the frequency. The specific expressions for
externally and internally damped waves are

cex
p =

√
2

Zα+1
, (32)

c in
p =

√√√√ 2Z 2
β

Zβ+1
(33)

by using equations (21) and (28). At this point we have
to remember thatΩ= κun, where κun is the undamped
wavenumber, leads to cun

p = 1.
For the group velocity cg in non-dissipative media

there is an undisputed definition [1], whereas for dissi-
pative media there exist different definitions [4]. We fo-
cus on the propagation, i.e., κR. In other words, we look
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Figure 2 – Group velocity, externally (left) and internally
damped (right), each line corresponds to a
damping coefficient,α or β, in the range from
0 (transparent) to 1.5 (opaque).

at the waves through imaginary glasses that compen-
sate the decay by κI so that we can apply the common
definition of group velocity in non-dissipative media.
For the evaluation we use the inverse function rule

cg =
∂Ω

∂κR
=

(
∂κR

∂Ω

)−1

(34)

for externally and internally damped waves

cex
g = 2

p
2 Zα

√
Zα+1

Z 2
α+2Zα+1

, (35)

c in
g =

2
p

2 Z 3
β

√
Zβ+1

Z 3
β+Zβ+2

. (36)

Both relations as seen in Eqs. (32), (33), (35) and (36)
give a velocity of one in the undamped case, consis-
tent with what has been discussed above. This applies
to both cp and cg as shown in Figs. 1 and 2. For ex-
ternal damping the asymptote for decreasing damping
coefficients approaches one. So the higher the damp-
ing, the more extended the relevant frequency range is.
The group velocity in externally damped waveguides
shows non-monotonic behaviour with a maximum. A
standard analyis of Eq. (35) reveals that this maximum
is located at argmax

(
cex

g (Ω)
) = αp

3
and has the value

max
(
cex

g (Ω)
) = 4

9

p
6 for a positive frequency Ω. For in-

ternal damping we find that the higher the damping
coefficient the higher the group or phase velocities are
for a given frequency. This can be related to the ap-
parent stiffening of viscoelastic materials at increasing
strain rates. We further observe that the increase with
frequency gets more pronounced. In other words, the
more damping the stronger the dispersion.

5.2 Dissipation

Since the total energy of a wave is proportional to its
squared amplitude, we find the same decay with e−κIx
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Figure 3 – Imaginary part of wavenumber (decay), ex-
ternally (left) and internally damped (right),
each line corresponds to a damping coeffi-
cient,α or β, in the range from 0 (transparent)
to 1.5 (opaque).

along x for both externally and internally damped cases.
As shown in Fig. 3 the imaginary part of our complex
wavenumber is, in the externally damped case, asymp-
totic for each damping coefficient. The higher the damp-
ing coefficient, the higher the decay of the wave. How-
ever, as apparent from Fig. 3, there is a difference in the
asymptotic behavior for internal and external damping.
For external damping, κI approaches a constant value
at higher frequencies.

The high-frequency limit can be taken by

lim
Ω→∞

κI(Ω) = lim
Zα→1

√
1

2

α2

Zα+1
= α

2
. (37)

Internal damping leads to monotonic increase of κI

with Ω. In the internally damped case, the imaginary
parts of the wavenumber are all close together for the
different damping coefficients. For lower frequencies,
the imaginary part increases with a higher damping co-
efficient. But with increasingΩ there is a reversal point
where higher damping coefficients lead to lower imagi-
nary parts which means a lower decay. We assume that
this is related to the apparent viscoelastic stiffening and
the resulting different amplitudes, translating into dif-
ferent dissipated work.

5.3 Relation between oscillations and waves

The position of the spatial radian frequency k and the
real part of the wavenumber κR in solutions (9) and (30),
respectively, suggests a relation between them. Note
that the discrete values of k are determined by the bound-
ary conditions. Similarly, knowing the wave velocity,
we may want to compare the decay constant δ with
the product κIcp. Indeed, in the undamped case we
have k = κ= κR and trivially δ= κIcp = 0. However, this
should not mislead us to the incorrect conclusion k and
κR , as well as δ and κI cp were generally equal. Com-
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Figure 4 – Wavelength characteristics (left figure) and
decay characteristics (right figure) depend-
ing on external (black solid line) and internal
(black dotted line) damping. The gray line
indicates the constant spatial frequency k in
the left figure and the decay constant δ in the
right figure. Note that the decay character-
istics (right figure) for internal and external
damping coincide for chosen k = 1. Also note
that the dashed line for δ> 1 does not corre-
spond to an oscillatory solution anymore, as
it is overdamped.

paring them in Fig. 4 for k = 1 reveals that they approx-
imately go together for slightly damped cases (δ≪ 1),
but generally they differ. The decisive difference is, that
in the modal analysis the damping enters as a function
of time e−δt whereas in the wave ansatz it enters as a
spatial function e−κIx . If we want to describe the simple
case of a base mode oscillation with the wave ansatz,
then we would have to represent the initial conditions
as a series, e.g. u0(x) = û sin(kx) =∑

n ûne iκn x . Having
made some first steps in the supplementary material,
we leave this comparison, including interpretations of κ
in terms of oscillations in the overdamped regime, for
future work.

6 Summary

Waves and oscillations are two manifestations of the
same phenomenon. Typically modal analysis is used
for bounded domains, whereas the wave ansatz is used
for unbounded domains or the transient phase until
reflected waves start interfering.

Here we showed a qualitative comparison between ex-
ternally and internally damped waveguides in terms of
different velocities and similar decay. Their dispersion
and dissipation characteristics are qualitatively differ-
ent, namely the dependence of velocity and decay on
frequency.

For dispersion, the phase and the group velocity, which
are both depending on the frequency, have to be distin-
guished. The phase and the group velocity are one in the
undamped case. For external damping the asymptote

for decreasing damping coefficients approaches one,
whereby a non-monotonic behavior can be observed
for the group velocity. In the internally damped case,
the velocities increase with increasing damping coeffi-
cients. For dissipation, the imaginary part of the com-
plex wavenumber is asymptotic for each damping co-
efficient in the externally damped case. The higher the
damping coefficient, the higher the decay of the wave.
Internal damping leads to a monotonic increase of the
imaginary part, i.e., the decay.

The qualitative difference can be used to guide mod-
elling efforts based on experimentally observed scaling
behaviour, in particular the choice of damping models
for real systems with complex dissipation mechanisms.
As suggestions for future work, an explanation in terms
of physics of the maximal group velocity for externally
damped waveguides and of the crossing points of the
decay (imaginary part of wavenumber) for internally
damped waveguides would be interesting, as well as a
more detailed conversion from oscillation to wave pa-
rameters.

Code Availability: Jupyter-notebooks (Python) for the
simulation, are available as supplementary material and
can be obtained under the

DOI:10.14464/gammas.v5i1.587

This format has been used for teaching at TU Bergakade-
mie Freiberg [6].
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