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Abstract: We study the problem of minimizing the
non-linear trace quotient tr(V T G(V )V )/tr(V T H(V )V )
over the Stiefel manifold St(p,n) of all n × p matrices
V with orthonormal columns. Hereby we assume G(V )
and H(V ) to be symmetric and positive definite for all
V ∈ St(p,n). In this way we generalize the robust Rayleigh
quotient optimization. This paper shows a possible way
to minimize this quotient by joining and generalizing
different known techniques, e.g. the self-consistent-field
(SCF) iteration, and examines it by testing a small exam-
ple.
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1 Introduction
The Rayleigh quotient vT Av

vT v
, for a given matrix A ∈Rn×n

and vector v ∈Rn , plays an important role in many dif-
ferent branches of mathematics, e.g. in eigenvalue algo-
rithms, machine learning techniques [4], control theory
and statistics [2, Sec. 1], [3]. In many cases it is also of in-
terest to find the minimum of the generalized Rayleigh

quotient vT Av
vT B v

with B ∈ Rn×n , where A and B have fa-

vorable properties such that the minimum exists. For
instance, often both matrices are symmetric and B is
additionally positive definite. In this case, the solution
of

min
v∈Rn \{0}

vT Av

vT B v
(1)

is given by a generalized eigenvector v∗ of the matrix
pencil λB − A, i.e. a solution of Av = λB v for some
λ ∈R [7]. Given the Cholesky factorization B =CC T , it
is easily seen that Av = λB v is equivalent to the stan-
dard symmetric problem C−1 AC−T v = λv . Therefore,
all generalized eigenvalues of λB − A are real and its
generalized eigenvectors for different eigenvalues are
B-orthogonal. Furthermore, if Av =λB v , it is true that

vT Av

vT B v
= λvT B v

vT B v
=λ,

so the minimizer v∗ of (1) corresponds to the smallest
generalized eigenvalue λ∗ of λB − A.

In many cases the matrices A and B are generated
from real-life data, which can be subject to all kinds of
errors. To take this inaccuracy into account, we could
use uncertainty-intervals instead of single data-points.
In consequence, this leads to matrices that do not have
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constant entries, but entries depending on parameters.
To find a solution analogue to the one used for con-
stant matrices, we intend to look for a minimum of the
Rayleigh quotient for the worst case of parameters. We
will see later that this results in a problem of the form

min
v∈Rn \{0}

vT G(v)v

vT H(v)v
, (2)

where G(·) and H (·) are matrix-valued functions, though
out of simplicity we will call the matrices sometimes,
with the same properties as the matrices before (i.e. sym-
metric positive definiteness) but depend on the vector
v . In [2] Bai et al. showed that, under suitable assump-
tions, a solution v∗ of (2) satisfies G(v∗)v∗ =λH(v∗)v∗,
i.e. the minimizer v∗ is a nonlinear generalized eigen-
vector of the matrix pencil λH(·)−G(·). Furthermore,
they demonstrated that v∗ is additionally an eigenvec-
tor corresponding to the smallest positive eigenvalue of
a related nonlinear matrix pencil. This fact is motivating
the use of the self-consistent-field (SCF) iteration (see [2,
Sec.4]) to find the smallest solution for this non-linear
eigenvalue problem and by that solve (2).

In some techniques for dimension-reduction (see [6])
we face a similar minimization-problem as in (1):

min
V ∈Rn×p

tr(V T AV )

tr(V T BV )
s.t. V T V = Ip . (3)

Here tr(·) means the trace of a matrix, i.e. the sum of
its diagonal entries. As before, A and B are assumed to
be symmetric and positive definite. Now we minimize
over the Stiefel manifold St(p,n) of all matrices V ∈Rn×p

with orthonormal columns1.
One way to find an approximate solution to (3) is to

replace it by the simpler, but not necessarily equivalent,
problem [3, Sec. 2]

min
V ∈Rn×p

tr(V T AV ) s.t. V T BV = Ip .

A minimizer V ∗ ∈Rn×p of this problem is a solution to
the equation AV = BVΛ, for some Λ ∈Rp×p . In particu-
lar, analogously to the solution of (1), the orthonormal
columns of any solution V ∗ span the same subspace as
the generalized eigenvectors of the matrix pencil λB − A
corresponding to its p smallest eigenvalues.

The question we are interested in is what we can say
about the combination of (2) and (3). In mathematical
terms, we want to solve

min
V ∈Rn×p

tr(V T G(V )V )

tr(V T H(V )V )
s.t. V T V = Ip , (4)

1Note that, for p = 1 problems (3) and (1) are equivalent.

where G(V ) and H(V ) are symmetric and positive def-
inite matrices for all V ∈ St(p,n). Although this prob-
lem seems not to be studied in the literature so far, it
can be motivated by finding good dimension reductions
for real-life data-points, which might be flawed [3, 6].
Moreover, problem (4) is a direct generalization of the
problem (2) studied in [2].
In Section 2, we show how (4) arises from (3) if we as-
sume the matrices A and B not to be constant but para-
meter-dependent. As in [2] we use this parameter-de-
pendence to model the influence of uncertainty. There-
after we examine the first properties of (4) in Section 3,
before we calculate the derivatives of its numerator and
denominator in Section 4. We will use the knowledge
from these sections to approach a solution in Section 5.
In Section 6 our theoretical insights conclude in an new
algorithm, which is finally tested on a small example
in Section 7. As we will see, the new algorithm of this
paper is capable of finding good solutions for this small
example, motivating further investigations.

2 The problem
Let Ω⊂ Rm and Γ⊂ Rk be compact sets of parameters
and let the matrix-valued functions

A :µ ∈Ω 7→ A(µ) ∈Rn×n ,

B : ξ ∈ Γ 7→ B(ξ) ∈Rn×n ,

be smooth and symmetric positive definite for all µ ∈Ω
and ξ ∈ Γ. Subsequently, we will call

tr(V T A(µ)V )

tr(V T B(ξ)V )
,

the robust trace quotient of A(µ) and B(ξ). We want
to minimize this quotient over St(p,n) for the "worst
choice" of parameters µ and ξ, which leads to the min-
max problem

min
V ∈Rn×p

max
µ∈Ω,ξ∈Γ

tr(V T A(µ)V )

tr(V T B(ξ)V )
s.t. V T V = Ip . (5)

Throughout we will assume the parameters µ and ξ to
be independent from each other. This enables us to
solve the maximization problem by maximizing the nu-
merator and minimizing the denominator separately.
Therefore we define for fixed V ∈Rn×p

µ∗(V ) := argmaxµ∈Ω tr(V T A(µ)V ),

ξ∗(V ) := argminξ∈Γ tr(V T B(ξ)V ).

In the case of non-unique optimizers, µ∗ and ξ∗ denote
any of the optimizers. Recall that, as Ω and Γ are as-
sumed to be compact and A(µ) and B(ξ) are smooth,
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µ∗(V ) and ξ∗(V ) are well-defined for all V ∈ Rn×p . Via
G(V ) := A(µ∗(V )) and H(V ) := B(ξ∗(V )) problem (5) be-
comes

min
V ∈St(p,n)

maxµ tr(V T A(µ)V )

minξ tr(V T B(ξ)V )
= min

V ∈St(p,n)

tr(V T G(V )V )

tr(V T H(V )V )
.

(6)
From this point on, we will call tr(V T G(V )V )

tr(V T H(V )V )
the non-

linear trace quotient of (G(·), H(·)).

3 Basic properties

We start with some elementary properties of the non-
linear trace quotient of (G(·), H(·)) in (6).

Lemma 1. 1. For a fixed V ∈ St(p,n), G(V ) =G(V )T

and H(V ) = H(V )T are both positive definite.
2. For a fixed V ∈ St(p,n) and α ∈ R \ {0}, G(αV ) =

G(V ) and H(αV ) = H(V ) holds, i.e. G(·) and H(·)
are homogeneous in V .

3. For a fixed V ∈ St(p,n) and orthogonal Q ∈ Rp×p ,
G(V Q) =G(V ) and H(V Q) = H(V ). Furthermore
the non-linear trace quotient (6) is invariant under
such transformations.

Proof. 1. Since A(µ) and B(ξ) are symmetric and
positive definite for all µ ∈ Ω and ξ ∈ Γ and
µ∗(V ) ∈ Ω and ξ∗(V ) ∈ Γ, G(V ) = A(µ∗(V )) and
H(V ) = B(ξ∗(V )) holds and both matrices are
symmetric positive definite.

2. For α ∈R\ {0} we have

µ∗(αV ) = argmaxµ∈Ω tr((αV )T A(µ)(αV ))

= argmaxµ∈Ωα
2 tr(V T A(µ)(V ))

= argmaxµ∈Ω tr(V T A(µ)(V )) =µ∗(V ),

because we are interested in the maximizing pa-
rameter and not in the maximum itself. It follows
that G(αV ) = A(µ∗(αV )) = A(µ∗(V )) =G(V ). The
proof for H(·) is the same.

3. Let Q ∈Rp×p be orthogonal, then

µ∗(V Q) = argmaxµ tr((V Q)T A(µ)(V Q))

= argmaxµ tr(QT V T A(µ)V Q)

= argmaxµ tr(V T A(µ)V QQT )

= argmaxµ tr(V T A(µ)V ) =µ∗(V )

due to the cyclic invariance of the trace function.
As before, this implies

G(V Q) = A(µ∗(V Q)) = A(µ∗(V )) =G(V ).

The proof for H(·) follows similarly. We now ob-
tain

tr((V Q)T G(V Q)(V Q)) = tr(V T G(V )V )

and

tr((V Q)T H(V Q)(V Q)) = tr(V T H(V )V )

and therefore the non-linear trace quotient is in-
variant under such transformations.

For a rigorous mathematical treatment of (6) and in-
spired by [2, Def. 2.2] we restrict our choices for V ∈
St(p,n) even more by the following definition:

Definition 2. We call V ∈ St(p,n) regular if µ∗(V ) and
ξ∗(V ) are twice continuously differentiable at V . More-
over, we call problem (6) regular, if µ∗(V ) and ξ∗(V ) are
twice continuously differentiable for all V ∈Rn×p .

Regularity can a priori not be guaranteed from the
formulation of problem (5). However, if the parameters
µ∗(V ) and ξ∗(V ) have analytic expressions, it will not be
a severe restriction (see [2, Sec. 2]). However, this does
not mean that explicit expressions for µ∗(V ) and ξ∗(V )
can be easily evaluated or are even available. From now
on, we will assume problem (6) to be regular. In partic-
ular, this implies that tr(V T G(V )V ) and tr(V T H(V )V )
are differentiable for V . We will calculate these differ-
entials in Section 4 as they will be important for the
derivation of our solution strategy for problem (6) in the
subsequent sections.

4 Derivatives of numerator and
denominator

We now want to calculate the derivative of the numer-
ator g (V ) = tr(V T G(V )V ) and the denominator h(V ) =
tr(V T H(V )V ) of our non-linear trace quotient. As both
terms only differ in the label of their central matrix, we
focus on the numerator and apply the same results to
the denominator.

We start with the derivative of a single entry of V . For
i ∈ {1, . . . ,n} and j ∈ {1, . . . , p} we get

∂g (V )

∂vi j
= tr

(
∂

∂vi j
(V T G(V )V )

)

= tr

(
∂V T

∂vi j
G(V )V +V T ∂G(V )

∂vi j
V +V T G(V )

∂V

∂vi j

)

= tr

(
e j eT

i G(V )V +V T G(V )ei eT
j +V T ∂G(V )

∂vi j
V

)

= 2eT
i G(V )V e j + tr

(
V T ∂G(V )

∂vi j
V

)
, (7)
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where ei ∈ Rn and e j ∈ Rp are the i -th and j -th unit-

vectors of the respective spaces2. Before we continue,
we present a elegant property that results from the as-
sumption of our problem being regular and which will
be helpful in simplifying the derivative in (7).

Lemma 3. Let V ∈ St(p,n) be regular, then

tr

(
V T ∂G(V )

∂vi j
V

)
≡ 0 and tr

(
V T ∂H(V )

∂vi j
V

)
≡ 0

holds for 1 ≤ i ≤ n and 1 ≤ j ≤ p.

Proof. We will only show the first equation since the
second follows in the same way.

We define f (t) = tr(V T A(µ∗(V + tei eT
j ))V ) and ob-

serve that

f (0) = tr(V T A(µ∗(V ))V ) = max
µ

tr(V T A(µ)V )

≥ tr(V T A(µ∗(V + tei eT
j ))V ) = f (t )

holds. Moreover, according to our assumptions, f (t)
is continuously differentiable at t = 0. Thus f (t) has a
local maximum at t = 0 and therefore we obtain

0 = f ′(0) =
d tr(V T A(µ∗(V + tei eT

j ))V )

d t

= tr

(
V T

d A(µ∗(V + tei eT
j ))

d t

∣∣∣∣
t=0

V

)
= tr

(
V T ∂G(V )

∂vi j
V

)
.

We can use the result from Lemma 3 to simplify the
derivative of our numerator in (7) to

∂g (V )

∂vi j
= eT

i 2G(V )V e j ,

for regular V , which in matrix notation directly leads to
∇V g (V ) = 2G(V )V. Similarly we have
∇V H(V ) = 2H(V )V . Notice that these compact expres-
sion resemble the ones for the derivative in case of con-
stant matrices, i.e.

∇V tr(V T AV ) = 2AV

whenever A ∈Rn×n . However, do not overlook that this
is due to the assumed regularity of the problem.

In the next section we reformulate our minimization
problem of the non-linear trace quotient to obtain a
non-linear eigenvalue problem. Solving this eigenvalue
problem will be an intermediate step in our solution
strategy to problem (6) presented in Section 6.

2Although from different spaces, we want to denote both this way
out of simplicity, ignoring the danger of confusion.

5 Approaching a solution
We now want to follow an approach similar to the one
Saad et al. took in [3] for the case of constant matrices
G and H . Over all V ∈ St(p,n) we want to minimize

tr(V T G(V )V )

tr(V T H(V )V )

and assume the problem is regular. Since H(V ) is posi-
tive definite the denominator is never zero. Moreover,
as G(V ) and H(V ) depend continuously on V , the non-
linear trace quotient is continuous in V . As St(p,n)
is compact [1], we know that there exists some V ∗ ∈
St(p,n) such that for all V ∈ St(p,n)

ρ∗ := tr(V ∗T G(V ∗)V ∗)

tr(V ∗T H(V ∗)V ∗)
≤ tr(V T G(V )V )

tr(V T H(V )V )
,

i.e. ρ∗ = minV ∈St(p,n)
tr(V T G(V )V )
tr(V T H(V )V )

and V ∗ is a correspond-

ing minimizer. Using the linearity of the trace, this leads
to

0 ≤ tr(V T (G(V )−ρ∗H(V ))V ) (8)

for all V ∈ St(p,n) where zero is attained for V = V ∗.
From (8) we define the scalar-valued function

f (ρ) = min
V ∈St(p,n)

tr(V T (G(V )−ρH(V ))V ) (9)

and notice that (8) implies that (the value of) our min-
imal trace quotient ρ∗ is a root of f . We will show in
corollary 5 that in fact ρ∗ is the only root of this func-
tion.

Our search for a matrix V ∈ St(p,n), such that the non-
linear trace quotient corresponding to G(·) and H(·) is
minimal, has become the search for a root of a scalar
function with, as we will see below, helpful properties.
Before we continue on this path, we will have to bring
the function f in (9) into a more elegant shape, as for
now it consists of an implicit optimization problem.

5.1 The evaluation of f (ρ)

As a first step, we consider the problem of finding f (ρ)
for a given ρ ∈R. That is, we intend to solve

min
V ∈Rn×p

tr(V T (G(V )−ρH(V ))V ), s.t. V T V = Ip , (10)

where G(V ) ∈Rn×n and H (V ) ∈Rn×n are symmetric pos-
itive definite and ρ ∈ R. Again, as this is a continuous
function on St(p,n), there has to exist a minimal value
and a corresponding minimizer V ∗. The Lagrangian
function for this problem is

L(V ,Λ) = tr(V T (G(V )−ρH(V ))V )− tr(Λ(V T V − Ip )),
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whereΛ denotes the matrix of Lagrange multipliers [8].
For the derivative of L we need the derivatives of both
trace terms. Due to the linearity of the trace, we know
the former from Section 4 and conclude

∇V tr(V T (G(V )−ρH(V ))V ) = 2(G(V )−ρH(V ))V.

In a similar way we calculate the derivative of the lat-
ter term and since Λ has to be symmetric due to the
symmetric constraint, we obtain

∇V tr(Λ(V T V − Ip )) = 2VΛ.

This leads to the condition that a minimizer V ∗ of (10)
satisfies

(G(V ∗)−ρH(V ∗))V ∗ =V ∗Λ̂ and (V ∗)T V ∗ = Ip ,
(11)

for a matrix Λ̂ ∈Rp×p (notice that Λ̂ is necessarily sym-
metric). In other words, the columns of the minimizer
span an invariant eigenspace of the orthonormal eigen-
vectors of the symmetric matrix G(V ∗)−ρH(V ∗). Since
we are looking for a minimum, the corresponding eigen-
values (i.e. the eigenvalues of Λ̂) should be as small as
possible, since it follows from (11) that

(V ∗)T (G(V ∗)−ρH(V ∗))V ∗ = Λ̂ (12)

and, according to (8),

tr((V ∗)T (G(V ∗)−ρH(V ∗))V ∗) = tr(Λ̂) =λ1 +·· ·+λp

where λ1, . . . ,λp ∈ R are the eigenvalues of Λ̂. In other
words, this condition could be interpreted as a non-
linear eigenproblem of the matrix G(·)−ρH(·). One op-
tion to find V ∗ is the use of the SCF iteration. As our
solution strategy to problem (6), which will be outlined
in Section 6, is based on Newton’s method for finding
a root of f (ρ), we will discuss the derivative of f (ρ) in
the next section and postpone the discussion of the SCF
iteration for the solution of (11) to Section 6.1.

5.2 The derivative of f

Since it is obvious that the solution V ∗ of (11) depends
on the chosen parameter ρ, we may write V (ρ) instead
of V ∗ and express f in the form

f (ρ) = tr(V (ρ)T (G(V (ρ))−ρH(V (ρ)))V (ρ)),

where V (ρ) ∈ St(p,n) denotes a matrix, which satisfies
the eigenproblem condition (12) from above for the p
smallest eigenvalues. To continue our analysis, we want
f (ρ) to be a differentiable function. In particular, this
means that the solution matrix V (ρ) of (12) has to vary
in a differentiable way with ρ. Certainly, whenever V (ρ)

is a solution to (10), then so is V (ρ)Q for any orthogonal
matrix Q ∈ Rp×p . However, Kato showed for a more
general case in [5, Ch.II,Sec.6.2] that in fact a basis of
orthogonal eigenvectors, varying in a differentiable way
with ρ, exists. Therefore we can calculate the derivative
of f . Before we get to do this, we want to note a result,
which is a small variation of Theorem 3 and will be quite
useful in a moment.

Corollary 4. Let V (ρ) ∈ St(p,n) be regular and differen-
tiable in ρ, then

tr

(
V (ρ)T dG(V (ρ))

dρ
V (ρ)

)
≡ 0 and

tr

(
V (ρ)T d H(V (ρ))

dρ
V (ρ)

)
≡ 0

holds.

Proof. The proof is very similar to the one for Theorem
3. Since V (ρ) is continuous in ρ, we examine the func-
tion h(t ) = tr(V (ρ)T A(µ∗(V (ρ+ t )))V (ρ)) and follow the
same steps as before.

With this in mind we can start differentiating f . We
start with a useful observation. Since V (ρ) consists of
orthonormal columns V (ρ)T V (ρ) = Ip holds and we get

0 =
d Ip

dρ
= dV (ρ)T V (ρ)

dρ
= dV (ρ)T

dρ
V (ρ)+V (ρ)T dV (ρ)

dρ
,

(13)

which implies that dV (ρ)T

dρ V (ρ) is skew-symmetric and
thus its diagonal elements must all be zero. Since the
columns of V (ρ) span an invariant eigenspace, V (ρ)
fulfils

(G(V (ρ))−ρH(V (ρ)))V (ρ) =V (ρ)Λ(ρ),

whereΛ(ρ) is a diagonal matrix with the corresponding
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eigenvalues. We now conclude

d f (ρ)

dρ
= d

dρ
tr(V (ρ)T (G(V (ρ))−ρH(V (ρ)))V (ρ))

= tr

(
dV (ρ)T

dρ
(G(V (ρ))−ρH(V (ρ)))V (ρ)

)

+ tr

(
V (ρ)T d(G(V (ρ))−ρH(V (ρ)))

dρ
V (ρ)

)
+ tr

(
V (ρ)T (G(V (ρ))−ρH(V (ρ)))

dV (ρ)

dρ

)
= tr

(
dV (ρ)T

dρ
V (ρ)Λ(ρ)

)
+ tr

(
Λ(ρ)V (ρ)T dV (ρ)

dρ

)
+ tr

(
V (ρ)T dG(V (ρ))

dρ
V (ρ)

)
−ρ tr

(
V (ρ)T d H(V (ρ))

dρ
V (ρ)

)
− tr(V (ρ)T H(V (ρ))V (ρ))

=− tr(V (ρ)T H(V (ρ))V (ρ)). (14)

The last equality follows from corollary 4 and our previ-
ous observation from (13)3. This leads to the following
corollary:

Corollary 5. The function f (ρ) = tr(V (ρ)T (G(V (ρ))−
ρH(V (ρ)))V (ρ)) has exactly one root.

Proof. Since H(V (ρ)) is positive definite for every ρ by
assumption, we easily see that the derivative f ′(ρ) is
always less than zero and thus f is monotonically de-
creasing. So f can have at most one root, which (as we
saw before) it has.

6 The Newton-SCF algorithm

The next natural question is: How do we find the root
of f (ρ) and thus the minimum of our non-linear trace
quotient? Since we have just seen that f is differentiable
in ρ, we want to utilize one of the most classic methods
for such a task, Newton’s method. As an iteration we get
directly from (14)

ρk+1 = ρk −
f (ρk )

f ′(ρk )
= tr(V (ρk )T G(V (ρk ))V (ρk ))

tr(V (ρk )T H(V (ρk ))V (ρk ))
,

which is surprisingly the non-linear trace quotient at
V (ρk ). At this point it is important to notice that ρk+1 is
a root of the function

f̃k (ρ) = tr(V (ρk )T (G(V (ρk ))−ρH(V (ρk )))V (ρk )),

3Since their diagonals are zero andΛ(ρ) is diagonal, the same holds
for the diagonals of the products and thus the trace vanishes.

as one can see by simply plugging ρk+1 into f̃k . There-
fore one needs to be cautious when checking the size
of f (ρk+1) (for example, to examine the quality of our
solution), to not accidentally calculate f̃k (ρk+1), which
will in finite arithmetic always give a value near zero,
whether ρk+1 is a good approximation to the root of f
or not.

The question remains how to get V (ρ) for a certain ρ.
This is exactly the problem (10) we derived in Section
5.1. We want V (ρ) to satisfy the eigenproblem condition
(11) for G(·)−ρH(·). To find such a matrix, we want to
construct a generalization of the SCF iteration.

6.1 The Generalized SCF Iteration

We are now looking at a broader problem which includes
our problem as a special case. We want to find a solution
V ∈Rn×p for

A(V )V = B(V )VΛ with V T B(V )V = Ip , (15)

where Λ ∈ Rp×p is a diagonal matrix and A(V ),B(V ) ∈
R

n×n are smooth functions of V ∈Rn×p . In other words,
we want to solve the generalized non-linear eigenvalue
problem for the matrix pencil λB(·)− A(·). Notice that
this is exactly our problem from (11) for A(V ) =G(V )−
ρH(V ) and B(V ) = In .

To do this, we want to generalize the SCF Iteration,
which is used to solve this problem for the case p = 1,
see [2, Sec.4]. The idea is rather simple. We start with a
matrix V0 ∈Rn×p , which could be arbitrary or an initial
guess, with B(V0)-orthonormal columns and plug it into
our matrices A(·) and B(·). Then we calculate p general-
ized eigenvalues and corresponding eigenvectors of this
standard matrix pencil λB(V0)− A(V0) and use them to
build V1. In general, we follow the rule

Vk+1 ← B(Vk )-orth. eigenvec. of λB(Vk )− A(Vk ). (16)

Notice that generalized eigenvectors vi , v j ∈ Rn for ei-
genvalues λi ̸= λ j of λH(Vk )−G(Vk ) are indeed B(Vk )-
orthogonal, since

λ j (vT
i B(Vk )v j ) = vT

i A(Vk )v j = vT
j A(Vk )vi

=λi (vT
j B(Vk )vi )

=λi (vT
i B(Vk )v j ),

so ifλi ̸=λ j we necessarily have vT
i B(Vk )v j = 0. Further-

more, recall that all eigenvalues of λB(Vk )− A(Vk ) are
real (see Section 1). Since the non-linear eigenvalues we
are looking for should be as small as possible, it seems
reasonable to choose the eigenvectors corresponding
to the smallest p eigenvalues of λB(Vk )− A(Vk ) in every
iteration.
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A necessary condition for the iteration (16) to con-
verge is that there exists a matrix Ṽ ∈Rn×p consisting of
eigenvectors corresponding to the p smallest general-
ized eigenvalues of λB(Ṽ )− A(Ṽ ). It could be the case
that the columns of V are indeed generalized eigenvec-
tors of this matrix pencil, but the corresponding eigen-
values are not the p smallest, in which case our iteration
could get stuck in a loop. For a detailed analysis of this
phenomenon in the case p = 1 see [2, Sec. 4]. To prevent
this, we propose the following transformation of (15),
generalizing [2, Sec.4.1]:

Aσ(V ) = B(V )VΛσ with V T B(V )V = Ip ,

with

Aσ(V ) := A(V )−σ(V )
p∑

i=1

B(V )vi vT
i B(V )

vT
i B(V )vi

,

where vi denotes the i -th column of V and σ(V ) is a
scalar function. Let us see what happens if we multiply
Aσ(V ) with v j if V is a solution of (15):

Aσ(V )v j =A(V )v j −σ(V )
p∑

i=1

B(V )vi vT
i B(V )v j

vT
i B(V )vi

=B(V )v jλ j −σ(V )
p∑

i=1
B(V )viδi j

=B(V )v jλ j −σ(V )B(V )v j

=B(V )v j (λ j −σ(V ))

We see that the columns of V are also eigenvectors of
λB(V ) − Aσ(V ), but with their eigenvalue shifted by
−σ(V ). We can also conclude that generalized eigen-
values of λB(V )− A(V ), of which eigenvectors are not
columns4 of V , are not effected by this shift, because the
latter term in the first row of the equation chain above
is equal to zero. The following theorem tells us how we
can use this to our advantage.

Theorem 6. Let the columns of V ∈Rn×p be non-linear
generalized eigenvectors of λB(·)− A(·) with correspond-
ing eigenvalues λ1, . . . ,λp . Let

σ(V ) =βλmax −λmi n ,

where λmax and λmi n denote the largest and smallest
generalized eigenvalues of λB(V )−A(V ) respectively and
β> 1. Then the columns of V are generalized eigenvectors
corresponding to the p smallest eigenvalues of λB(V )−
Aσ(V ).

4To be more precise, we mean the linear span of the columns.

Proof. We have seen that the j -th column of V is an
eigenvector of λB(V )− Aσ(V ), corresponding to the
eigenvalue λ j −σ(V ) and that other eigenvectors w of
this matrix pencil keep their eigenvalues µ. We now get

λ j −σ(V ) =λ j −βλmax +λmi n <λ j −λmax︸ ︷︷ ︸
≤0

+µ≤µ,

which shows that the eigenvalues corresponding to the
columns of V are smaller than the remaining eigenval-
ues of λB(V )− Aσ(V ).

As we have seen λB(V ) − A(V ) and λB(V ) − Aσ(V )
share the same eigenvectors but with shifted eigenval-
ues corresponding to the eigenvectors in V . By this we
can ensure, that the eigenvectors in V belong to the p
smallest eigenvalues of the eigenproblem and so pre-
venting the iteration (16) to get stuck in a loop.

Summarizing our results, we get the generalized SCF
Iteration (see Algorithm 1).

Algorithm 1 Generalized SCF Iteration

1: Input: A(·),B(·), p,V0,β
2: Output: Vk = SC F (A,B , p,V0)
3: while no convergence do
4: λmax =λmax (λB(Vk−1)− A(Vk−1))
5: λmi n =λmi n(λB(Vk−1)− A(Vk−1))
6: σ=β ·λmax −λmi n

7: Aσ(Vk−1) = A(Vk−1)−σ∑p
i=1

B(Vk−1)vi vT
i B(Vk−1)

vT
i B(Vk−1)vi

8: Vk ← B(Vk−1)-orth. eigenvectors to the p small-
est eigenvalues of (Aσ(Vk−1),B(Vk−1))

9: end while
10: return Vk

In practice we use β= 1.01, but other choices might
work as good or even better.

6.2 Putting the pieces together

As we mentioned at the beginning of this section, we
want to use Newton’s method to find the root of f . To
calculate V (ρ), which corresponds to the minimizer we
are looking for, we want to use the generalized SCF It-
eration. Basically our algorithm only consists of these
two parts, therefore we want to call it the ’Newton-SCF
Algorithm’ (see Algorithm 2).
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Algorithm 2 Newton-SCF

1: Input: G(·), H(·), p,V0,β
2: Output: Vk = Newton-SCF(G , H , p,V0,β)

3: ρ← tr(V T
0 G(V0)V0)

tr(V T
0 H(V0)V0)

4: while no convergence do
5: Vk ← SC F (G(·)−ρH(·), In , p,Vk−1)

6: ρ← tr(V T
k G(Vk )Vk )

tr(V T
k H(Vk )Vk )

7: end while
8: return Vk

Notice that, since we want to have non-linear eigenvec-
tors of a single matrix instead of generalized eigenvec-
tors of a matrix pencil, we initialize our SCF iteration
with G(·)−ρH(·) and the constant identity matrix In .

6.3 Effort management

Since we call an SCF iteration in every iteration of the
Newton-SCF-algorithm, it is reasonable to ask how
much we should invest in these iterations and whether
it makes sense to adjust this investment over time.
The first thought could be that in the beginning we in-
vest less in the SCF iteration, since we do not need high
precision when our main iteration is far from converg-
ing. However, small and easy examples suggest that the
opposite might be the case and this could be explained
as follows:

If ρk−1 and ρk are not far apart, the matrices V (ρk−1)
and V (ρk ) will also be "close" to each other, since V (ρ)
depends continuously on ρ. Also the non-linear eigen-
value problems G(·) − ρk−1H(·) and G(·) − ρk H(·) are
pretty similar. But then V (ρk−1) should be a good ap-
proximation for the eigenvectors of G(·)−ρk H(·) and
since we start our SCF iteration with V (ρk−1), we should
only need a few steps to get V (ρk ). So, approaching our
solution ρ∗, we should need fewer and fewer steps for
the SCF iterations.

7 A small experiment
In this section, we want to give a proof of concept how
the Newton-SCF-Algorithm works in a small experiment.
We also want to show that the classic SCF Iteration with
the generalized SCF-Algorithm is not capable to mini-
mize the non-linear trace quotient in general.

To set up our experiment, we construct the parameter
dependent matrices as follows: We choose A0, A1, A2 ∈
R

n×n with random entries uniformly distributed
between 0 and 1 and define

Ã(µ) := A0+g1(µ)A1+g2(µ)A2 and A(µ) := ÃT (µ)Ã(µ).

We proceed with B in the same way with functions de-
noted h1(ξ) and h2(ξ). To continue, we have to solve
two optimization problems to obtain µ∗(V ) and ξ∗(V ).
We determine µ∗(V ) and ξ∗(V ) numerically, i.e. we use
a discretization of the parameter spaces, calculate the
value for each of the candidates and determine the pa-
rameter with the smallest or largest value.

As parameter spaces we use Ω= Γ= [−1,1]2 and µ=
ξ= (x, y) ∈ [−1,1]2. The discretization of the parameter
spaces for the determination of µ∗(V ) and ξ∗(V ) is done
with a ∆= 0.02 step-size. For A we use g1(µ) = ex+y and
g2(µ) = −ex+y as "parameter functions" and for B we
use h1(ξ) = x+10

y+10 and h2(ξ) = y+10
x+10 . To give our solutions

found by the Newton-SCF-Algorithm something to com-
pare with, we also try to calculate a solution by simply
applying the (generalized) SCF iteration to our problem
(6), in the same way [2] did for (2). In [2] it is shown
that this leads to good results for p = 1. Both procedures
need (approximately) the same number of iterations
to converge. The SCF iteration does 500 iterations and
the Newton-SCF-Algorithm does 25 newton steps and
within each step up to 20 SCF-Iterations. We also show
the value of our non-linear trace quotient for 100 ran-
dom matrices W ∈Rn×p with orthonormal columns, to
check whether the Newton-SCF-Algorithm is better or
worse than simply guessing a solution.

As we can see, the Newton-SCF-Algorithm is superior
to simply applying the SCF iteration or guessing random
matrices (see Figure 1 left plot). Inspecting the develop-
ment of the trace quotient values for each iteration for
the SCF iteration, it seems that they indeed converge,
but very slowly and maybe not to a value which could be
considered a minimum for the trace-quotient (see Fig-
ure 1 central plot). However the Newton-SCF-Algorithm
has a very decent convergence speed and the values
seem to be (in comparison to the random values) pretty
small (see Figure 1 right plot).

Since this example is rather small, further investiga-
tions and experiments in this regard should be made to
validate this approach.
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Figure 1 – Left: Comparison of found solutions of the SCF Iteration (blue), our Newton-SCF-Alg. (red) and in comparison
the value of the non-linear trace quotient for random matrices (black). Middle: Values of the trace quotient in
each iteration of the SCF Iteration. Right: Values of the trace quotient in each iteration of the Newton-SCF-Alg..

8 Summary

In this paper we investigated the optimization of the
non-linear trace quotient (6) and derived a new algo-
rithm to solve this problem. We reformulated the prob-
lem as a non-linear eigenvalue problem and used an
approach based on the ideas of [2] and [3] for its so-
lution. We gave proof to some results regarding this
non-linear eigenvalue problem in a broader context and
showed how the SCF Iteration and an involved shift tech-
nique from [2] can be adapted to the multidimensional
case. Finally, we demonstrated the performance of the
algorithm in a small experiment.

Code Availability: The MATLAB source code of the
implementation used to compute the presented results
is available as supplementary material and can be ob-
tained under

DOI:10.14464/gammas.v5i1.540.
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