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Abstract: We revisit the classical and solved problem of
the terrestrial brachistochrone, the fastest path between
two points in earth’s gravitation field, by an approach
we refer to as experimental numerics. By this term we
mean arriving at a qualified guess by deliberately tak-
ing inspiration from numerical results that are easily
available. Since in many cases verification is easier than
derivation, this approach may have some educational
merits. Current software tools such as Jupyter Notebooks
blend coding with documentation and allow leveraging
this approach to enable new ways in modern teaching.
The intended audience are graduate students with prior
knowledge of multivariate calculus, ordinary differential
equations (ODEs), calculus of variations and classical
physics, particularly mechanics.

Keywords: numerics, brachistochrone, variational
calculus, geophysics, teaching

1 Introduction

How to solve problems? And how to learn it? We try, we
wander, we may have some intuition about the solution.
Based on this insight or intuition we are willing to try
hard to solve certain integrals or differential equations
and further difficulties piling up until they once again re-
duce and “it clicks”. Seeing only the streamlined solution
or even end result may hide all the effort required in get-

ting there, so that reproducing the solution may appear
deceivingly easy. However, if you are faced with having
to solve the problem on your own without the proper
path being indicated to you, you may not even have an
idea where to start. Here, we discuss a way that may be
more intuitive for students, or generally of interest when
tackling a new problem with a yet unknown solution.
Along this way we depart from simpler related problems
and continue by exploiting numerical solutions to “see
what happens” until, finally, we have gained enough in-
sight to anticipate a possible solution. If we are lucky,
we can verify the guessed solution as being correct and
find motivation to look for alternative routes of solving
the problem. This entire procedure can be documented
conveniently in interactive notebooks, such as Jupyter1,
and used in a computer-based or demo-centred class.
As a precaution, we point out that numerics extend but
do not entirely replace analytical methods, especially,
but by no means exclusively, in teaching. Let’s follow this
way from start to end with the example of the terrestrial
brachistochrone.
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Figure 1 – Gravity train tunnel through the earth

2 The Departure – Stating the
Problem

As the translation of brachistochrone suggests, we are
looking for a path of shortest time, in common parlance
the fastest path. The path of a point mass in a force field
between two points, for example. The force field still
needs to be specified; with the attribute terrestrial we
refer to a radial field which approximates earth’s gravita-
tion well. Deliberately leaving some geotechnical prob-
lems to the practitioners, we may imagine a tunnel for a
gravity train [3]. At some point A the train slides down
into the ground and—under the action of gravity—first
accelerates while going deeper into the earth and then
decelerates on its path back towards the surface, until
it resurfaces at another point B as illustrated in figure 1.
Having learned how to describe extrema mathemati-
cally we go even further and look for the optimal tunnel
trajectory to get from one surface point to the other in
the shortest amount of time2. In order to arrive at the so-
lution, we need to solve several interesting integrals [6].
Of course, some of you may be intrinsically motivated
to take this challenge, but others, particularly practi-
cally motivated engineering students, might prefer to
anticipate the solution first before committing to any
mathematical adventures.

For students with a geophysical background we note
that the propagation of seismic waves is physically some-
thing completely different—but by invoking some com-
mon assumptions such as linear elasticity and depth-
dependent stiffening, we end up with a mathematically
equivalent problem.

1https://jupyter.org/
2The solution is already known [7]—to solve it by yourself never-

theless requires some endurance.

3 The First Steps – Writing Equations
We start from an analytical functional expressing the
quantity we wish to minimize; in our case the time re-
quired to move from point A to point B . Since we ac-
celerate fastest when going straight towards the earth’s
center—in other words we would have a less exciting
trip surfing equipotential surfaces3—we reduce the orig-
inally three-dimensional problem to two dimensions
on an orthodrome slice (figure 2) through an idealized
spherical (no, not flat) earth. Working with polar coordi-
nates r and θ for convenience, the travel time is given
by the functional of velocity v(r )

T =
B∫

A

ds

v(r )
. (1)

The arc-length s can be expressed geometrically. Like-
wise, we know the velocity due to the distributed mass
(or, alternatively, learn about it in Appendix A.1)

ds =
√

(dr )2 + (r dθ)2, (2)

v(r ) =C

√
R2 − r 2 with C =√

g /R, (3)

where g denotes gravitational acceleration and R earth
radius. Inserting Eqs. (2) and (3) in (1) specifies our task
to find the optimal path r (θ) that minimizes travel time

T = 1

C

θB∫
θA

√
(dr /dθ)2 + r 2

R2 − r 2︸ ︷︷ ︸
L

dθ.

This is a typical problem to be solved with the calculus of
variations. The integrand, also referred to as Lagrangian
for this kind of problems, is of the structure L(r,r ′). Con-
sequently, Noether’s theorem [4] applies and we know
that there is an associated conserved quantity

H = r ′ ∂L

∂r ′ −L

along the optimal curves. For those not familiar with
Noether’s theorem, we explain it for our specific case in
Appendix A.2. For reference, we refer to the lowest point
r0, or in other words the point of minimum distance
to earth’s center. Since it is a minimum, we have r ′ = 0
(necessary condition). So from H(r,r ′) = H(r0,0) we
obtain after some simplification

r ′ = Rr

r0

√
r 2 − r 2

0

R2 − r 2 . (4)

This equation determines the optimal path r (θ).

3By symmetry we assume all points of the same radius sharing the
same potential.

https://jupyter.org/
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Figure 2 – An orthodrome of a sphere is the intersection
of the sphere and a plane that passes through
the center point of the sphere [9]
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Figure 3 – The cycloid curve solves the classical brachis-
tochrone problem

4 En Route – Getting Ideas

Before we continue with our solution we take inspiration
from the landscape surrounding us to remember the
classical brachistochrone. After that we are going to
solve the ordinary differential equation (4) numerically.

4.1 Known Solution of a Simpler Similar
Problem

This section rather recaps the classical brachistochrone,
than explains it. Since it is part of almost any course
or textbook on calculus of variations, we refer to the
literature [4] for a detailed introduction.

This problem assumes a velocity, that depends on the

Figure 4 – Cycloids of different radii

Figure 5 – Numerical solutions for the path of shortest
time through earth for different values of the
minimal radius

r0
R ∈ {0.1, 0.3, . . . , 0.9} on the

domain θ ∈ [0, 3
2π]

vertical coordinate y only (conservation of energy)

v =√
2g y .

The travel time to be minimized reads

T =
sB∫

sA

ds

v
=

xB∫
xA

√
1+ y ′2√

2g y
dx.

Applying Noether’s theorem, as we did before, results in

H =− 1√
2g y

1√
1+ y ′2

= const.

Finally, expressing the slope via its angle of inclination
y ′(x) = cosα

sinα and setting forward-looking H = −1p
2g

p
2a

reveals a cycloid

p
y =p

2a sinα,

i.e., the motion of a point on a circle rolling along a
straight line, as shown in figure 3. The radius a is de-
termined by the locations of start- and endpoint; some
example paths are shown in figure 4.

4.2 Experimental Numerics

With this initial inspiration from the break, we now vi-
sualize the solutions for the terrestrial brachistochrone.
Although we may have no idea, yet, about an analytical
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solution, integrating the ODE (4) is a piece of cake when
you have numerical methods at your disposal. With-
out loss of generality, we consider r as a relative radius
and set earth radius to unity4 R = 1. Then, the prob-
lem is fully parameterized by the radius to the deep-
est point r0. So, we choose a set of plausible r0 values
that fit comfortably inside the earth, say 0 < r0 < 1, and
determine a corresponding range for the independent
variable θ = [0,π]. Of course, this range could also be
found by trial and error. But one may reason by the limit
case of passing through the earth’s center, r0 = 0, on a
straight trajectory connecting two points on opposite
sides of the world, that all curves for r0 > 0 should return
to the surface for some θ <π. Another issue is related to
the right-hand side of equation (4), which approaches
zero or infinity as r → r0 or r → R, respectively. In a
course on numerical methods for ODEs, this would be
the right moment to reiterate the necessity of Lipschitz-
continuity for uniqueness of a solution [1]. However,
our engineering approach starts numerical integration
slightly above r0 and stops shortly before reaching R,
thus avoiding the critical points.

Following the learning-by-playing paradigm, we en-
courage you to inspect the details on the implementa-
tion and to run your own numerical experiments with
the supplementary Jupyter script, which is linked in the
Code Availability section on page 33.

As we are eager for inspiration, the important moment
comes now, when looking at the solutions in figure 5.
We observe that the curves flatten the deeper we pass
by earth’s centre. The more shallow curves remind us
of the classical brachistochrone we just revisited. This
is, of course, entirely plausible as near-surface trajec-
tories match the assumption of the classical problem
quite well: constant gravity and earth’s curvature look-
ing locally essentially like a straight line. In other words,
we may also think of the classical brachistochrone as
limit case of a uniform gravitational field on a flat earth
(disc with zero curvature). In addition, we observe the
optimal paths starting and ending orthogonal to earth’s
surface, which may indicate ideal rolling (instantaneous
center of rotation). Since the classical brachistochrone
is solved by a circle rolling on a straight line (cycloid),
the evidence we now have may lead us to the bold con-
clusion that the terrestrial brachistochrone is solved by
a circle rolling inside a bigger circle as shown in figure 6,
a curve called the hypocycloid.

a

r

Rr 0
θ

ϕ

ψ

Figure 6 – The hypocycloid curve solves the terrestrial
brachistochrone problem

5 The Finale – Verifying the Guess
We are now highly motivated to check whether our guess
of the hypocycloid satisfies the optimality criterion, equa-
tion (4). To do so, we read the Law of Cosines from fig-
ure 6.

r 2 = (R −a)2 +a2 −2(R −a)a cosψ (5)

The angles ϕ and ψ are related by the rolling condition

Rϕ= aψ

and the relation with the angle θ becomes visible via
the height of the triangle with the sides a, r and the
connection of the circles’ centre points

tan(θ−ϕ) = a sinψ

R −a(1+cosψ)
. (6)

Fully resolving r (θ) seems hard. So instead, we choose
ψ as an intermediate variable and apply the chain rule

dr

dθ
= dr

dψ

dψ

dθ
. (7)

It is tempting to differentiate the Law of Cosines (5) to
obtain dr

dψ , but this would leave us with sinψ. We did
this, but had trouble to continue. However, the tangent
half-angle formula

tan
ψ

2
=

√
1−cosψ

1+cosψ

contains only cosψ which we have as function of the ra-
dial coordinate, equation (5). Differentiation then gives

dψ

dr
=

2r

√
r 2−r 2

0

R2−r 2

r 2 − r 2
0

. (8)

4We could also formally non-dimensionalize the problem.
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To get the remaining second term of the chain rule (7),
we differentiate relation (6) with respect to the angle

ψ and then substitute cosψ and sinψ=
√

1−cos2ψ by
the Law of Cosines (5)

dθ

dψ
=

r0∆1

(
∆2 sin2ψ+2r0Σ1

(
1+cosψ

))
2R

(
Σ1 −∆1 cosψ

)(
Σ2 −∆2 cosψ

)
with

∆1 = R − r0

∆2 = R2 − r 2
0

Σ1 = R + r0

Σ2 = R2 + r 2
0

and on further simplification

dθ

dψ
= Rr0

2r 2 − r0

2R
. (9)

Inserting both factors, the reciprocals of (8) and (9), in
the chain rule (7) we see that the hypocycloid indeed
satisfies equation (4) and our guess is correct.

6 Summary
Based on the example of the terrestrial brachistochrone,
we have demonstrated a prototypical way of problem
solving in engineering mathematics and how numeri-
cal experiments may help us to come up with a quali-
fied guess. The verification of that guess is not trivial,
but at least we know what we are looking for, and this
often seems easier than the direct approach. In addi-
tion, this is how many engineers have come to work:
first running powerful simulation tools, recognizing pat-
terns and then reducing the problem to extract its es-
sentials. The Jupyter ecosystem we use for teaching5,
conveniently integrates theory with applied or even in-
teractive numerics and allows the students to experi-
ment with it (learning by playing). We believe this a
promising way of using and teaching both the subject
as well as the use of modern software tools.

Code Availability:
The source code of the implementations used to com-

pute the presented results is available as supplementary
material and can be obtained under the

doi: 10.14464/gammas.v4i1.512.

5For example:
https://github.com/nagelt/Numerical_Methods_
Introduction
https://github.com/nagelt/Teaching_Scripts
https://github.com/nagelt/soil_dynamics
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b

0
x

dx

Figure 7 – Two-dimensional projection of a hollow
sphere and a circle of latitude on this sphere

The code, as we use it for the course Soil Dynamics (in
German) at TU Bergakademie Freiberg, is also available
at GitHub and also at a ready-to-use web interface.

Acknowledgements: We are grateful to Matthew Van
Koevering for his inspiring video Terrestrial Brachistochrone
(Gravity Train) on YouTube.

A Appendix

A.1 Gravitational Force of a Spherically
Distributed Mass

Newton’s shell theorem is the bridge between Newton’s
law of universal gravitation

F =G
m1m2

c2 , (10)

where G denotes the gravitational constant and c the
distance between point masses m1 and m2, and for-
mula (3). The shell theorem states [2]: If an object lies
outside a thin, uniform shell of mass, then the vector
sum of all the gravitational forces exerted by all the parts
of the shell is the same as if all the shell’s mass was con-
centrated at its center. If the object lies inside the shell,
then all the gravitational forces cancel out exactly. Fi-
nally, it is straightforward to compose a solid earth of an
infinite number of infinitesimally thin shells and omit-
ted for sake of brevity.

The standard way would be the three-dimensional
integration over the distributed mass, however in the
illustrative spirit of this paper, we are happy to have
found the idea to proceed via the hat box theorem [5],
which we are going to summarize here.

Let us consider the total gravitational force by equa-
tion (10) exerted by a distributed mass on a point mass.
Figure 7 illustrates how we slice the hollow sphere into
circles of latitude (spherical segment). All force com-
ponents orthogonal to the line, connecting the sphere
center and the point mass m, cancel (opposite force
component on the opposite side of the circle). What

https://doi.org/110.14464/gammas.v4i1.512
https://github.com/nagelt/Numerical_Methods_Introduction
https://github.com/nagelt/Numerical_Methods_Introduction
https://github.com/nagelt/Teaching_Scripts
https://github.com/nagelt/soil_dynamics
https://github.com/nagelt/soil_dynamics
https://nagelt.github.io/soil_dynamics
https://www.youtube.com/watch?v=_KIvpr3X_bU
https://www.youtube.com/watch?v=_KIvpr3X_bU
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remains is the component parallel to this line

dFc =G
m dM

b2

c +x

b
. (11)

Note the sign of x determined by the coordinate axis.
The hat box theorem [8] states that all spherical seg-
ments with the same thickness have the same area. This
predestines dx in integration over the total mass, since
each spherical segment of thickness dx has the same
mass

dM = K dx.

The constant K is determined by the total mass

M =
R∫

−R

K dx = 2K R,

where we assumed a constant density. Since we made
our choice for x as independent variable, we need to
find b(x). From recognizing two right-angled triangles,
we obtain

b2 = c2 +R2 +2cx.

Inserting dM = M
2R dx and b(x) into (11) we are ready to

integrate

Fc =
GmM

2R

R∫
−R

c +x

(c2 +R2 +2cx)3/2
dx.

Interpreting numerator and denominator as u = c + x
and v ′ = (c2 +R2 +2cx)−3/2, we obtain on integration by
parts of

∫
uv ′dx

Fc =
GmM

2R2

 c +R√
(c +R)2

+ c −R√
(c −R)2

 .

On closer inspection of the terms in brackets we marvel
at the emergence of a discontinuous function

Fc =
GmM

2R2

(
sign(c +R)+ sign(c −R)

)
.

This is exactly Newton’s shell theorem. If c < R, so that
m is inside the shell, then |Fc | = 0. If c > R, so that m is
outside the shell, then |Fc | =GMm/R2. It goes without
saying that c,R ∈R and c,R > 0 on physical grounds.

The law of gravitation (10) is inversely proportional to
the squared radius and the effective mass direct propor-
tional to its third power. Consequently, the gravitational
force on a mass inside earth decreases linearly with the
radius. With earth’s surface as datum (g = 9.81m/s2) we
obtain for the gravitational force

Fg = r

R
mg

and the corresponding potential energy with zero level
at r = R

Epot =
1

2

mg

R
(r 2 −R2).

Conservation of energy with kinetic energy of a point
mass, at rest at r = R, leads to the position-dependent
velocity (3).

A.2 A Special Case of Noether’s Theorem

Noether’s theorem is very powerful and you may be-
come motivated to learn more about it by the benefit we
gain in our case with one scalar independent variable
and its derivative. Indeed, we merely demonstrate its
correctness and do not go into its motivation by con-
cepts of symmetry.

Consider a set of generalized coordinates and veloc-
ities x and x ′, respectively. For a Lagrangian without
explicit dependence on time (generalizable to function-
als that are invariant under time-translations of start
and end time)

S =
t1∫

t0

L
(
x(t ), x ′(t )

)
dt ,

the necessary condition for an extremum takes the form

δS = 0 =
t1∫

t0

(
∂L

∂x
δx + ∂L

∂x ′δx ′
)

dt .

By invoking arbitrariness of the variationsδx everywhere
but at the integration boundaries t0, t1 where we de-
mand δx = 0, partial integration leads to the celebrated
Euler-Lagrange equation

0 = d

dt

∂L

∂x ′ −
∂L

∂x
. (12)

Now, multiplying equation (12) by x ′ and adding a seem-
ingly useless zero 0 = x ′′ ∂L

∂x ′ −x ′′ ∂L
∂x ′ helps to recognize a

precious conserved quantity

0 = x ′
(

d

dt

∂L

∂x ′ −
∂L

∂x

)
,

0 = x ′′ ∂L

∂x ′ +x ′ d

dt

∂L

∂x ′ −x ′ ∂L

∂x
−x ′′ ∂L

∂x ′ ,

0 = d

dt

(
x ′ ∂L

∂x ′ −L

)
.

As example, consider a particle in a homogeneous gravi-
tational field with Lagrangian (x being the vertical coor-
dinate upwards)

L = Ekin −Epot =
1

2
mx ′2 −mg x.
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The Lagrangian as the difference between kinetic and
potential energy may appear somewhat obscure. On
the other hand the conserved quantity, refered to as
Hamiltonian

H = x ′ ∂L

∂x ′ −L = 1

2
mx ′2 +mg x

corresponds in this example to the total mechanical
energy, which is more obviously meaningful for the anal-
ysis of the particle motion.
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