
GAMMAS 2022, Vol. 1, No. 4, p. 36–48 DOI: 10.14464/gammas.v4i1.503

International Association
of Applied Mathematics and Mechanics

– Archive for Students –

A method for finding all connections in the
Pantelides algorithm for delay differential-algebraic

equations

Daniel Collina,?

a Institute of Mathematics, Technische Universität Berlin, Berlin, Germany

received 23.01.2022, accepted 10.06.2022, published 11.07.2022

? corresponding author: daniel.collin@web.de

supervisor: Ines Ahrens, Technische Universität Berlin, Berlin, Germany,

Benjamin Unger, Stuttgart Center for Simulation Science, Universität Stuttgart, Stuttgart, Germany, and

Volker Mehrmann, Technische Universität Berlin, Berlin, Germany,

Abstract: The Pantelides algorithm for systems of delay
differential-algebraic equations (DDAEs) is a method to
structurally analyse such systems with the goal to detect
which equations have to be differentiated or shifted to
construct a solution. In this process, one has to detect
implicit connections between equations in the shifting
graph, making it necessary to check all possible connec-
tions. The problem of finding these efficiently remained
unsolved so far. It is explored in further detail and a re-
formulation is introduced. Additionally, an algorithmic
approach for its solution is presented.

Keywords: delay differential-algebraic equation, Pan-
telides algorithm, structural analysis, enumeration algo-
rithm, spanning tree

1 Introduction

Delay differential-algebraic equations (DDAEs) are a
class of differential equations for a function x :R→R

n

on a time interval [0,T) ⊆R, T > 0, that, in their simplest
form, not only depend on the time derivative ẋ(t) but
also on a previous time state ∆−τx(t) := x(t − τ) with
a delay τ > 0. Additionally, the system may possess

algebraic constraints such that it can only be formu-
lated in implicit form. Here, the DDAE is assumed to
be a system of n ∈N equations F = (F1, ...,Fn) and vari-
ables x = (x1, ..., xn). Thus, consider a DDAE of the form

F (t , x(t), ẋ(t),∆−τx(t)) = 0, (1)

where

x : [−τ,T) →R
n and F : [0,T)×Dx ×Dẋ ×D∆x →R

n ,

with Dx ,Dẋ ,D∆x ⊆Rn open. Here, ẋ denotes the deriva-
tive of x with respect to t from the right. To obtain an
initial value problem, (1) has to be equipped with a con-
sistent initial condition

x(t) =φ(t) for t ∈ [−τ,0]. (2)

Equations of this form arise in many applications,
such as multibody control systems, electric circuits or
fluid dynamics (see [7, 18]). They combine features
of delay differential equations (DDEs) and differential-
algebraic equations (DAEs), which makes them particu-
larly difficult to solve. Solutions may depend on deriva-
tives of F and on evaluations of F at future time points

This is an open-access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.14464/gammas.v4i1.503
https://orcid.org/0000-0001-5426-3242
http://creativecommons.org/licenses/by/4.0/

GAMMAS 2022 D. Collin 37

(see [5, 9]). Therefore, the interplay of the differentia-
tion operator d

dt and the shift operator ∆−τ has to be
treated carefully (cf. [11]) and solutions have to be con-
structed by differentiating and shifting equations (cf.
[5, 9, 10, 11, 15, 16]). Even for linear DDAEs, general exis-
tence and uniqueness results can only be obtained using
a distributional solution concept (see [15, 18]) or impos-
ing further restrictions on the DDAE (see [9, 10, 16]) or
its initial function in eq. (2) (see [8, 16]). For nonlinear
DDAEs, the existence of solutions can be established for
certain classes (cf. [2, 17]).

In most cases, the construction of a solution for a
DDAE involves the method of steps. This means that
the equation is successively integrated over the time in-
tervals [iτ, (i +1)τ), i ∈ N. By substituting the delayed
variables with the already computed solution of the pre-
vious interval, the problem can be reduced to solve a
DAE in each step (cf. [3, 4, 10]). However, this method
does not always succeed and a reformulation of eq. (1) is
required such that the DAE that has to be solved in each
interval is regular and has a small index. Hereby, the
index is, roughly speaking, a measure of how often parts
of the DAE have to be differentiated to reformulate the
DAE as an ordinary differential equation. This reformu-
lation can be done by a compress-and-shift algorithm
(see [5, 15]) or by a combined shift and derivative ar-
ray (see [10]). The differentiation and shifting of certain
equations is necessary in both cases.

Determining which equations one has to differenti-
ate or shift is therefore a central aspect of the solution
process of a DDAE. In [1], the Pantelides algorithm for
DDAEs is presented as a tool to exploit the structure of
(1), i.e., the information about which variable appears
in which equation, to determine the number of differ-
entiations and shifts necessary to solve the DDAE. It is
based on the Pantelides algorithm for DAEs (see [14])
and will be simply referred to as Pantelides algorithm
from now on. The approach consists of defining differ-
ent bipartite graphs, where each equation and certain
equivalence classes of variables are represented by the
nodes. Edges exist between equation nodes and variable
nodes if and only if one of the variables of the equiva-
lence class appears in that equation. In other words,
the graphs represent the structure of the DDAE. Then,
matchings between equation nodes and variable nodes
of highest shift and differentiation order are constructed
in these graphs. This is achieved by following a specific
pattern of shifting and differentiating equations and the
variables belonging to it. At the end of the process, each
equation can be resolved for a variable of highest shift
and differentiation order. For more details on the whole
procedure and the algorithm, see the original paper [1].

In this work, the focus is put on a specific subproblem
that appears in the Pantelides algorithm. During the
first part of the algorithm, called the shifting step, one
has to shift equations that are connected to each other
in a certain way through edges in a specific graph, called
the shifting graph. Generally, such a connection is not
unique and all possible connections have to be found
to allow for correct shifting. The identification of all of
these connections, however, may be computationally
very expensive, and no efficient algorithmic solution is
known so far.

The contribution of this paper is a deeper exploration
of the problem of finding all connections. First, the
problem is explained in further detail and all important
preliminaries are given in Section 2. Then, a new solu-
tion approach is proposed based on the reformulation
to a known enumeration problem from graph theory.
The equivalence of both problems is proven (Section 3).
Additionally, an algorithm from [6] for the solution of
the enumeration problem is presented (Section 4). This
algorithm is applied to the original problem, yielding
a method for finding all connections in the Pantelides
algorithm, and two detailed examples of its usage are
given (Section 5). Finally, a numerical demonstration
of the advantageous properties of the new method is
shown (Section 6) and the paper is concluded with a
summary and some final remarks (Section 7).

Notation:
The natural numbers, the non-negative integers, and
the reals are denoted by N, N0 and R, respectively. For a
differentiable function f : I→R

n , the notation ḟ := d
dt f

is used to denote the derivative with respect to the (time)
variable t and f̈ := d

d t ḟ for the second derivative. For

higher derivatives of order q ∈N0, the abbreviation f (q)

is used. Similarly, the shift operator ∆τ is defined as
∆τ f (t) = f (t +τ). The union of two sets A and B is de-
noted by A∪B . A disjoint union of sets is written as A∪̇B .
The cardinality of the set A is denoted by |A|.

2 Problem description

This section describes the overall problem of the paper
in detail and introduces the most important definitions
to give all preliminaries needed to understand the so-
lution approach. Since this paper can be seen as an ex-
tension of [1], most information of this section is based
on that work and all derivations can be found there. In
comparison, new concepts (which are not used in [1])
are introduced in Sections 3 and 4 and include Defini-
tion 5, Definition 6, Definition 9, and Definition 14, as
well as results based on those.

38 D. Collin GAMMAS 2022

The Pantelides algorithm translates the structural in-
formation of the DDAE into graphs. First, the shift-
ing graph GS is constructed by combining all variables
of the same index k (for each k = 1, ...,n) and shift or-
der p ∈N0 ∪ {−1} (but possibly different differentiation
order) into the same equivalence class, i.e.,

[∆pτxk] :=
{
∆pτxk ,∆pτẋk ,∆pτẍk , ...

}
.

Then, one can define the set of equation nodes, variable
nodes, and edges as

V S
E := {

F1, ...,Fn

}
,

V S
V :=

{
[∆pτxk]

∣∣∣ ∃k, p ∈N0 ∪ {−1} s.t. ∆pτx(q)
k

appears in DDAE for any q ∈N0

}
,

E S :=
{

{Fi , vk } ∈V S
E ×V S

V

∣∣∣ ∃x̃ ∈ vk that appears in Fi

}
,

respectively, which yields the shifting graph defined
as GS := (V S

E ∪̇V S
V ,E S). Note that although writing the

equivalence classes in the form [∆pτxk] makes the no-
tation more compact, the members of the equivalence
classes will be given explicitly in set form to enhance
comprehension for the reader in the examples through-
out this paper.

Example 1. Consider the DDAE from [1, Example 3.11,
p.17]:

ẋ1 = f1,

ẋ1 = x2 + f2,

0 = x1 +x2 +∆−τx3 + f3.

(3)

To construct the shifting graph, one defines the equiva-
lence classes

[x1] := {x1, ẋ1},

[x2] := {x2},

[∆−τx3] := {∆−τx3},

and the sets of equation nodes, variable nodes, and
edges as

V S
E :={

F1,F2,F3

}
,

V S
V :={

{x1, ẋ1}, {x2}, {∆−τx3}
}

,

E S :={{F1, {x1, ẋ1}}, {F2, {x1, ẋ1}}, {F2, {x2}},

{F3, {x1, ẋ1}}, {F3, {x2}}, {F3, {∆−τx3}}}.

Then, the shifting graph is given as GS := (V S
E ∪̇V S

V ,E S).
In Figure 1, an illustration of the graph can be found.

In the bipartite shifting graph, one successively as-
signs to each equation node Fi ∈ V S

E an equivalence
class vk ∈ V S

V of highest shift, i.e., if vk = [∆pτxk] is of

Figure 1 – The shifting graph of eq. (3).

highest shift and occurs in Fi , then [∆(p+`)τxk], for `> 0,
does not occur in any equation. By definition, a variable
node [∆pτxk] with negative shift p =−1 is never of high-
est shift and cannot be matched to an equation node.
Like that, a matching M is constructed, consisting of all
assigned pairs {Fi , vk }.

Example 2. Continuing with Example 1, one can as-
sign the equivalence classes [x1] = {x1, ẋ1} to F1 and
[x2] = {x2} to F2 in the shifting step. Thus, this yields
the matching

M = {
{F1, {x1, ẋ1}}, {F2, {x2}}

}
.

Figure 2a illustrates M by coloring the matching edges
in blue.

If a particular F j cannot be matched to a variable node
that is not in M yet, the node F j is called exposed with
respect to M . The corresponding equation is shifted,
together with all other equations that F j is connected

to via alternating paths with respect to M in GS . An
alternating path with respect to M is a sequence of edges({

Fi1
, vk1

}
,
{

vk1
,Fi2

}
,
{

Fi2
, vk2

}
, ...,

{
vkN−1

,FiN

})
in GS , where all i`, `= 1, ..., N , and all km , m = 1, ..., N−1,
are distinct, respectively, and that has alternating non-
matching and matching edges while starting with a non-
matching edge.

Example 3. Consider again Example 1 and the matching

M = {
{F1, {x1, ẋ1}}, {F2, {x2}}

}
,

illustrated in Figure 2a. Equation F3 is exposed and can-
not be matched directly to any equivalence class, but
it is connected via alternating paths to the other equa-
tion nodes. There are several possibilities to connect the
equation nodes via alternating paths, e.g., via the path(

{F3, {x2}}, {{x2},F2}, {F2, {x1, ẋ1}}, {{x1, ẋ1},F1}
)

,

or via the paths(
{F3, {x1, ẋ1}}, {{x1, ẋ1},F1}

)
and

(
{F3, {x2}}, {{x2},F2}

)
.

Here, all other equation nodes are connected to F3 via
alternating paths, and thus, all equations are shifted.
However, there are also scenarios where only a subset of
equation nodes is connected.

GAMMAS 2022 D. Collin 39

Simply shifting all connected equations may not be
sufficient, since the connection may be given only im-
plicitly through the equivalence classes of the variable
nodes. To see this, define G := (VE ∪̇VV ,E) as the graph
of the DDAE with

VE := {
F1, ...,Fn

}
,

VV :=
{
∆pτx(q)

k

∣∣∣ ∃k, p, q ∈N0 ∪ {−1} s.t.

∆pτx(q)
k appears in DDAE

}
,

E := {
{Fi , vk } ∈VE ×VV

∣∣ vk appears in Fi

}
.

In other words, the graph of the DDAE contains all vari-
ables explicitly as distinct nodes without using equiv-
alence classes. An implicit connection in the shifting
graph means that the involved equations contain vari-
ables with the same shift but a different differentiation
order. Thus, they belong to the same variable node in
the shifting graph but not to the same node in the graph
of the DDAE. There is an alternating path connecting
the exposed equation F j and the equation that has to

be shifted in GS but not in G . In this case, an explicit
connection has to be established by differentiating the
involved equations that do not depend on the highest
derivative in the equivalence class. To ensure that all im-
plicit connections are resolved, all possible connections
have to be identified and checked.

Example 4. The graph of the DDAE of eq. (3) is given as
G := (VE ∪̇VV ,E) with

VE :={
F1,F2,F3

}
,

VV :={
x1, ẋ1, x2,∆−τx3

}
,

E :={{F1, ẋ1}, {F2, ẋ1}, {F2, x2},

{F3, x1}, {F3, x2}, {F3,∆−τx3}}.

A visualization is shown in Figure 2d.
Since F3 is exposed with respect to the matching

M = {
{F1, {x1, ẋ1}}, {F2, {x2}}

}
,

in the shifting graph (Figure 2a), all possible connections
for F3 with respect to M have to be found. These are
given by the alternating paths presented in Example 3,
i.e.,

C1 =
{(

{F3, {x2}}, {{x2},F2}
)

,
(
{F2, {x1, ẋ1}}, {{x1, ẋ1},F1}

)}
(pictured red in Figure 2b) and

C2 =
{(

{F3, {x1, ẋ1}}, {{x1, ẋ1},F1}
)

,
(
{F3, {x2}}, {{x2},F2}

)}
(pictured red in Figure 2c). One can see that connection
C1 does also exist in G via the path(

{F3, x2}, {x2,F2}, {F2, ẋ1}, {ẋ1,F1}
)

(a) A matching in the shifting
graph of eq. (3).

(b) The first connection.

(c) The second connection.
(d) The graph of the DDAE of

eq. (3).

Figure 2 – Visualization of the problem of finding all con-
nections for F3 with respect to M in the shift-
ing step of the DDAE eq. (3) (figure taken from
[1, Figure 5, p.18]).

and hence, is an explicit connection. However, C2 is im-
plicit, as the alternating path

(
{F3, {x1, ẋ1}}, {{x1, ẋ1},F1}

)
does not connect F3 and F1 in G . One has to differenti-
ate F3 to establish an explicit connection. It can be seen
that checking one connection is not enough, all have to
be identified to resolve possible implicit connections in
the shifting graph.

Theoretically, one could identify all connections by
just checking all possible combinations of edges of E S

that yield alternating paths. In practice, however, this
approach is not feasible, because the amount of combi-
nations increases rapidly with the number of nodes and
edges of the graph GS . By reformulating the problem, it
can be solved much more efficiently.

3 Reformulation of problem
First, a connection has to be technically defined. To
simplify the notation, let G = (VE ∪̇VV ,E) be a bipartite
graph with equation nodes VE and variable nodes VV ,
where E contains only edges between VE and VV , not
between nodes of one set. Further, let a matching

M =
{{

Fi1
, vk1

}
, ...,

{
FiM

, vkM

}}
∈ E M

be given in G with M < n and F j ∈ VE as an exposed
equation node with respect to M . Then,

CF j
:= {

Fk ∈VE

∣∣ ∃ alternating path

between F j and Fk in G
}

40 D. Collin GAMMAS 2022

denotes the equation nodes that are connected to F j

via an alternating path. This set is automatically gener-
ated by the algorithm Augmentpath (see [1, Algorithm 1,
p.10], [14, Algorithm 3.2, p.217]).

Definition 5. Let G = (VE ∪̇VV ,E) be a bipartite graph
and M a matching in G . Further, let F j ∈VE be exposed
with respect to M and CF j

as defined above. A con-
nection for F j with respect to M is defined as a set of
connected alternating paths (Fi , vk ,F`) ∈VE ×VV ×VE ,
with {Fi , vk } ∈ E \ M and {vk ,F`} ∈ M . Additionally, it
has to hold that for all F` ∈CF j

the corresponding match-
ing edge {vk ,F`} ∈M occurs exactly once and there is at
least one alternating path starting in F j .

Note that the definition of a connection for F j with
respect to M has been changed in comparison to the
definition from [1, p.18]. That is reasonable because
the previous definition is not sufficient and allows sets
of alternating paths that contain cycles and not nec-
essarily the exposed node F j , two aspects that do not
make sense in this context. Therefore, the definition was
expanded to exclude these cases. In the forthcoming
Corollary 13, it is shown that a connection in the sense
of Definition 5 is indeed cycle-free. Also, a connection
for F j with respect to M will simply be referred to as a
connection when it is clear which node is exposed and
which matching the connection is based on.

With the exact definition of a connection, one can
further define the connection graph by interpreting the
alternating paths from this definition as directed edges
between the equation nodes.

Definition 6. Let G = (VE ∪̇VV ,E) be a bipartite graph
and M a matching in G . Further, let F j ∈VE be exposed
with respect to M and CF j

as defined above. Define the
set of nodes VH :=CF j

∪̇{F j } and directed edges

EH := {
(Fi ,F`) ∈VH ×VH

∣∣ (Fi , vk ,F`) is an alternating

path with {Fi , vk } ∈ E \M , {vk ,F`} ∈M
}
.

Then, the directed graph H := (VH ,EH) is called connec-
tion graph for F j with respect to M .

Remark 7. Denoting the alternating path (Fi , vk ,F`)
as (Fi ,F`), it might seem as if information is lost about
which variable node vk connects the equation nodes Fi

and F`. However, since each F` is uniquely matched
to one vk in M , the variable node can easily be recon-
structed from the directed edge (Fi ,F`) using M . A sec-
ond approach to not lose information is to define edge
weights wi` = k for the edges (Fi ,F`), i.e., if vk is to be
reconstructed from (Fi ,F`), it holds that vk = vwi`

.

Similar to before, the connection graph for F j with
respect to M will be referred to simply as connection
graph when it is clear which node is exposed and which
matching the connection graph is based on.

Example 8. Consider again the DDAE eq. (3) from Ex-
ample 1 and the shifting graph from Figure 2a. Based on
the matching

M = {
{F1, {x1, ẋ1}}, {F2, {x2}}

}
and CF3

= {F1,F2}, the connection graph for F3 with re-
spect to M can be defined according to Definition 6
as H = (VH ,EH) with

VH = {F1,F2,F3},

EH = {
(F2,F1), (F3,F1), (F3,F2)

}
.

A picture of H can be seen in Figure 3.

Figure 3 – The connection graph for F3 with respect
to M of the DDAE eq. (3).

The connection graph facilitates to reformulate the
problem of finding all connections in the sense of Defi-
nition 5 by transferring it from the shifting graph to the
connection graph. It translates to finding all spanning
trees (defined below) with root F j in H . To prove this,
some definitions and lemmas from graph theory are
needed (see [12, p.71-73] for reference and proofs; note
that the term arborescence in [12] has been changed to
spanning tree for consistency with the rest of the paper).

Definition 9. [12, Definition 6.15, p.71, Definition 6.20,
6.22, p.73]

i) An undirected graph is called forest if it contains
no cycles.

ii) An undirected graph is called tree if it is a forest
and connected.

iii) Given a directed graph G , one can replace every di-
rected edge by an undirected edge to get an undi-
rected graph. The arising graph is called the un-
derlying undirected graph of G .

iv) A directed graph is called branching if its under-
lying undirected graph is a forest and every node
has at most one edge ending in it.

GAMMAS 2022 D. Collin 41

v) A directed graph is called spanning tree if it is a
connected branching.

Lemma 10. [12, Theorem 6.18, p.72] Let G be an undi-
rected graph with n vertices. Then, G is a tree if and only
if G has n −1 edges and is connected.

The underlying undirected graph of a spanning tree
has to be a connected forest, i.e., a tree. According to
Lemma 10, a spanning tree with n nodes thus has n −1
edges and, according to Definition 9, every node has at
most one edge ending in it. Therefore, there is exactly
one node r with no incoming edge. Let δ−(v) be the
set of incoming edges of a vertex v of G . Then, this
condition can be formulated as δ−(r) =;. In this case, r
is called root of the spanning tree. For any edge (u, v)
of a spanning tree, v is called a child of u and u the
predecessor of v . Vertices with no children are called
leaves (see [12, p.73]).

Lemma 11. [12, Theorem 6.23, p.73] Let G be a directed
graph with n vertices and r a vertex of G. Then, the
following statements are equivalent:

i) G is a spanning tree with root r .
ii) G is a branching with n −1 edges and δ−(r) =;.

iii) δ−(r) =; and there exists a uniquely determined
directed path from r to every vertex in G.

Theorem 12. Let G = (VE ∪̇VV ,E) be a bipartite graph,M
a matching in G, F j ∈ VE exposed with respect to M ,
and H = (VH ,EH) the connection graph for F j with re-
spect to M . Then, the following statements are equiva-
lent:

i) The set

C :=
{(

Fi1
, vk1

,F`1

)
, ...,

(
FiM

, vkM
,F`M

)}
is a connection for F j with respect to M .

ii) The directed subgraph

H :=
(
VH ,

{(
Fi1

,F`1

)
, ...,

(
FiM

,F`M

)})
⊆ H

is a spanning tree with root F j .

Proof. i) ⇒ ii): Let F j ∈VE be exposed, denote a connec-
tion for F j as C = {(Fi1

, vk1
,F`1

), ..., (FiM
, vkM

,F`M
)}, and

let H be the connection graph for F j , with respect to M ,
respectively. Additionally, denote

H = (VH ,EH), EH :=
{(

Fi1
,F`1

)
, ...,

(
FiM

,F`M

)}
⊆ EH ,

as a subgraph of H , and

Hu := (VH ,Eu), Eu :=
{{

Fi1
,F`1

}
, ...,

{
FiM

,F`M

}}
,

as the underlying undirected graph of H . According to
Definition 6, it holds that |VH | = |CF j

|+1 and therefore,

M = |C | = |CF j
| = |VH |−1.

It follows that Hu has |VH |−1 edges. According to Def-
inition 5, the alternating paths (Fi , vk ,F`) ∈C are con-
nected and each F` ∈ CF j

occurs exactly once. The
variable nodes vk are uniquely determined by the equa-
tion nodes F` via the matching M . This implies that
each vkm

, for m = 1, ..., M , also occurs only once in C

and the alternating paths must be connected via the
equation nodes Fi and F`. Thus, the edges in Eu are
connected and thereby, Hu is connected as well.

In summary, Hu has |VH |−1 edges and is connected.
Therefore, according to Lemma 10, the underlying undi-
rected graph of H is a tree (and also a forest). Addi-
tionally, VH = CF j

∪̇{F j } and it was already mentioned
that each F` ∈CF j

occurs exactly once as second equa-
tion node in the alternating paths (Fi , vk ,F`) ∈C . The
node F j itself has no alternating path leading to it be-
cause it is exposed. Therefore, every node of H has at
most one edge ending in it. According to Definition 9,
the graph H is a branching and, as mentioned above, it
has |VH |−1 edges.

Finally, one can choose the exposed node F j as the
root of H because δ−(F j) =;. By Lemma 11, it follows
that H is a spanning tree with root F j .

ii) ⇒ i): Let H = (VH , {(Fi1
,F`1

), ..., (FiM
,F`M

)}) ⊆ H be
a spanning tree with root F j , and denote

C =
{(

Fi1
, vk1

,F`1

)
, ...,

(
FiM

, vkM
,F`M

)}
.

Since H is a subgraph of the connection graph for F j

with respect to M , it follows that all (Fi , vk ,F`) ∈C are
alternating paths with {Fi , vk } ∈ E \ M , {vk ,F`} ∈ M ,
where vk is uniquely determined by the matching M

(see Definition 6 and Remark 7). From Lemma 11, it is
known that the root F j of the spanning tree is a vertex
of H with δ−(F j) =; and, therefore, is also included as
the starting node in an alternating path from C .

Additionally, there exists a uniquely determined di-
rected path from the root F j to every vertex in H . Thus,
the same property applies to the alternating paths in C ,
which yields that they are connected and each F` ∈CF j

occurs exactly once as final node of an alternating path.
Hence, C fulfills all properties of a connection for F j

with respect to M . �

Corollary 13. All connections for F j with respect to M

are cycle-free.

Proof. The proof follows directly from Theorem 12, using
the equivalence of a connection for F j with respect to M

42 D. Collin GAMMAS 2022

to a spanning tree in the connection graph for F j with
respect to M . Spanning trees are by Definition 9 cycle-
free. �

In the literature (e.g., [6, 12]), a spanning tree of a di-
rected graph is also referred to as an arborescence. The
sort of problem where all possible solutions to a com-
putational problem have to be computed and explicitly
returned as an output is called enumeration problem.
Methods for solving these problems are called enumera-
tion algorithms.

With Theorem 12, a reformulation of the initial prob-
lem (finding all connections) has been derived by show-
ing that it is equivalent to the problem of enumerat-
ing all spanning trees in the corresponding connection
graph. Each spanning tree can then be interpreted as a
connection. There are efficient algorithms to solve this
enumeration problem, one of which is discussed in the
next section.

4 Enumeration of spanning trees
One enumeration algorithm for finding all spanning
trees of a directed graph was published in [6]. It turns
out to be an effective method for the purpose of this
work and is therefore implemented in the (overall) Pan-
telides algorithm to solve the subproblem of finding all
connections. In this section, a short summary is given
of how this algorithm works. For further details of the
implementation as well as theoretical results and their
proofs, see [6].

First, the important concept of so-called bridges has
to be introduced.

Definition 14. [6, p.280] Let G = (V ,E) be a directed
graph and r ∈V a vertex.

i) G is called rooted at r if there exists a spanning
tree with root r in G .

ii) An edge e ∈ E is called a bridge for r if G is rooted
at r but G \ {e} is not rooted at r .

iii) Equivalently, an edge e ∈ E is a bridge for r if it is
part of every spanning tree rooted at r in G .

Assume a directed graph G = (V ,E) and a root vertex r
are given and all spanning trees of G rooted at r have to
be computed. This goal is accomplished by finding all
spanning trees containing different subtrees T ⊆G , also
rooted at r .

Given a subtree T , the approach consists of succes-
sively adding edges to T in the following way: A new
edge ei := (u, v) ∈ E , directed from a vertex u ∈ T to a ver-
tex v ∉ T , is added to T , and all spanning trees contain-
ing T ∪{ei } are computed. When this is done, the edge ei

is deleted from G and T and another edge e j ∈ E \ {ei }
(directed from T to a vertex not in T), is added to T .
Again, all spanning trees containing T ∪ {e j } are com-
puted, then e j is deleted from G and T . The same pro-
cess continues with the next edge and is repeated until
an edge is processed that is a bridge for r in the modified
graph G\{ei ,e j , ...}. Each spanning tree containing T has
now been found exactly once.

A key point in this approach is to discover efficiently
if an edge e is a bridge. Assume all spanning trees con-
taining T ∪ {e} have been computed and let L be the last
found spanning tree. It has to be checked if e := (u, v) is
a bridge.

There are several possibilities. The idea that is pur-
sued in this algorithm is to consider the descendants
and nondescendants of v in L. Descendants of v in L
are vertices that can be reached following a directed
path starting in v and using only edges of the spanning
tree L. Contrary, nondescendants of v in L are vertices
for which there cannot be constructed such a path using
edges from L.

Clearly, if there is an edge in G \ {e} that goes from
a nondescendant of v (in L) to v , then e cannot be a
bridge, since one could delete e and replace it with that
edge to construct another spanning tree. Thus, G \ {e}
is still rooted at r and e could not have been a bridge.
On the other hand, if no edge that goes from a nonde-
scendant of v in L to v can be found, e must be a bridge,
because deleting e leads to a graph G \ {e} where there
does not exist a path to vertex v anymore.

For this to hold true, the way edges are added plays an
important role. Here, the algorithm adds edges depth-
first. The depth of a vertex contained in a tree is the
length of the path between the vertex and the root of
the tree it is contained in. Thus, adding an edge depth-
first means that it is added to the vertex of T ∪ {e} that
has the greatest depth possible, i.e., that has the great-
est distance from the root node. Particularly, this en-
sures that the last computed spanning tree that contains
T ∪ {e} (namely the tree L) has the fewest descendants
of v amongst all spanning trees containing T ∪ {e}. This
fact can be used to prove that this bridge test works
correctly (see [6, Lemma 2, p.284] for more details).

Thus, it is important for the implementation to grow T
depth-first. To do so, a stack F is used, where edges are
stored that are directed from vertices in T to vertices
not in T . Note that the action of removing an element
from the top of a stack is referred to as popping, whereas
the action of adding an element to the top of a stack
is referred to as pushing. An edge e := (u, v) is always
popped from the top of F if it is added to T and then,
outgoing edges from v (that are not directed to vertices

GAMMAS 2022 D. Collin 43

already contained in T ∪ {e}) are pushed onto the top
of F . Also, some edges might be removed from the inner
part of F while growing T . This is necessary for all edges
in F that are directed to v , the newest leaf of T . To
ensure the depth-first property, these edges have to be
restored at the exact same place in F after all spanning
trees containing T ∪ {e} have been found.

A second stack F F is used to store already processed
edges since they are temporarily deleted from G but
have to be restored later.

The full algorithm is stated in Algorithm 1. Note that
the pseudo code uses MATLAB notation for indexing,
i.e., array indexing begins at 1 and the index "end" of an
array points to the last element of it or to the top of a
stack. The symbol "." indicates a comment in the code.
Algorithm 2 illustrates how to initialize the method.

To conclude this section, the complexity of the al-
gorithm is stated. For a directed graph G = (V ,E) that
has N spanning trees, the time complexity is O(|E |N)
and the space or memory complexity is O(|E |) (see [6,
Lemma 4, p.285]). Next, it is shown how to use this
method in the Pantelides algorithm.

5 Algorithm for computation of
connections

The enumeration algorithm from the previous section
has to be applied to the initial problem of finding all con-
nections. This would replace the computation stated
in line 1 of Algorithm 3 from [1, p.20]. Thus, transfer-
ring the notation, the shifting graph GS = (V S

E ∪̇V S
V ,E S),

the exposed equation F j ∈V S
E and the matching M are

given. It has been shown that finding all connections
for F j with respect to M is equivalent to enumerating
the spanning trees with root F j in the connection graph
for F j with respect to M .

Therefore, the connection graph H is constructed ac-
cording to Definition 6 and used as input to Algorithm 2,
together with F j as the root r . All spanning trees in H
are returned. Given a spanning tree, one can reconstruct
the corresponding connection by taking its edges (Fi ,F`)
and inserting into each directed edge the variable node
that was assigned to the equation node F` by M . That
yields a set of alternating paths (Fi , vk ,F`) as desired.
The method is summarized in Algorithm 3.

To illustrate the new method, a simple and a slightly
more complex example are given in the following.

Example 15. Consider again the DDAE eq. (3) from Ex-
ample 1 with the shifting graph Figure 2a. In Exam-
ple 8, it has been shown how to construct the connec-

Algorithm 1 GROW

Input: directed graph G = (V ,E), directed subgraph
T = (VT ,ET) ⊆G , stack of edges F , set of spanning
trees S
Output: set of spanning trees S, last computed span-
ning tree L

1: if |VT | = |V | then
2: L ← T . store spanning tree in L and S
3: S ← S ∪̇ T
4: else
5: F F ← [;]
6: while b = 0 do
7: e ← F (end) . pop an edge e from F , add it to T
8: v ← e(2)
9: F ← pop({e})

10: T ← (VT ∪̇ {v},ET ∪̇ {e})
11: F ← F \ {(u, w) ∈ E | u ∈ T, w = v} . update F
12: F ← push({(u, w) ∈ E | u = v, w ∉ T })
13: (S,L) ← GROW(G ,T,F,S) . recurse
14: F ← pop({(u, w) ∈ E | u = v, w ∉ T }) . restore F
15: F ← F ∪̇ {(u, w) ∈ E | u ∈ T, w = v} . restore in

same place as before
16: T ← (VT \ {v},ET \ {e}) . delete e from T and G ,

add it to F F
17: G ← (V ,E \ {e})
18: F F ← push({e})
19: if {(u, w) ∈ E | w = v, u is a nondescendant

of v in L} 6= ; then
20: b ← 0 . bridge test
21: else
22: b ← 1
23: end if
24: end while
25: while F F (end) 6= ; do
26: e ← F F (end) . reconstruct G
27: F ← push({e})
28: F F ← pop({e})
29: G ← (V ,E ∪̇ {e})
30: end while
31: end if

Algorithm 2 Enumeration of spanning trees of a directed
graph

Input: directed graph G = (V ,E), root node r ∈V
Output: set of all spanning trees S

1: T ← ({r },;)
2: F ← push({(u, v) ∈ E | u = r })
3: S ←;
4: S ← GROW(G ,T,F,S)

44 D. Collin GAMMAS 2022

Algorithm 3 Find all connections for F j with respect
to M

Input: shifting graph GS = (V S
E ∪̇V S

V ,E S), exposed
node F j ∈ V S

E , matching M stored in assign, colorE,
colorV
Output: set of all connections P

1: CF j
← {Fk ∈ V S

E | ∃ alternating path between F j

and Fk in GS}
2: VH ←CF j

∪̇{F j }
3: EH ← {(Fi ,F`) ∈VH ×VH | (Fi , vk ,F`) is an alterna-

ting path with (vk ,F`) ∈M , (Fi , vk) ∈ E S \M }
4: H ← (VH ,EH) . construct connection graph
5: P ← Algorithm2(H ,F j) . enumeration algorithm
6: for all T = (VT ,ET) ∈ P do
7: T ← ET . replace spanning trees by connections
8: for all e = (Fi ,F`) ∈ T do
9: e ← (Fi , vk ,F`) such that (vk ,F`) ∈M

10: end for
11: end for

tion graph for F3 with respect to the matching

M = {
{F1, {x1, ẋ1}}, {F2, {x2}}

}
.

It is given as H = (VH ,EH) with

VH = {F1,F2,F3},

EH = {
(F2,F1), (F3,F1), (F3,F2)

}
,

and is visualized in Figure 3.
Hence, one defines G := H and r := F3 as the input

to Algorithm 2 and enumerates all spanning trees of G
rooted at r . To initialize the process, set

T = ({F3},;),

F = [
(F3,F2), (F3,F1)

]
,

and execute Algorithm 1.
The recursion process of Algorithm 1 can be visualized

by the tree structure in Figure 4. Note that the nodes of
the computation tree will be called bisections and the
edges arrows to not confuse them with the nodes and
edges of T or G . In general, the notion of the tree is
as follows: each bisection represents the current sub-
graph T ⊆G , indicated by its edges ET . As described in
Section 4, one then adds an edge e ∈G from the stack F
to T and computes all spanning trees containing T ∪ {e}.
Adding an edge e is represented by an arrow pointing
away from a bisection, i.e., if

ET =
{

(Fi1
,F`1

), ..., (Fim
,F`m

)
}

and e = (Fim+1
,F`m+1

) is added, then this is visualized in
the computation tree by an arrow pointing from{

(Fi1
,F`1

), ..., (Fim
,F`m

)
}

to{
(Fi1

,F`1
), ..., (Fim

,F`m
), (Fim+1

,F`m+1
)
}

.

Thus, the computation of all spanning trees contain-
ing T , or T ∪ {e}, is represented by the subtree (of the
computation tree) rooted at the bisection represent-
ing T , or T ∪ {e}, respectively. The arrows pointing away
from T are, from left to right, all edges from the stack F
that are added to T . Also, remember that after the com-
putation of all spanning trees containing T ∪{e}, it has to
be checked if e is a bridge. If it is not, e is deleted from T
and G . This is depicted by the red arrows pointing to the
bisection that represents the addition of the next edge,
together with the corresponding label indicating which
edge is deleted. If it is a bridge, then all spanning trees
containing T have been found and that iteration comes
to an end. This is similarly depicted by a red arrow point-
ing to "END". Finally, each leaf in the lowest level of the
computation tree is a complete and unique spanning
tree.

In the case of the present example and as stated above,
one starts with T containing no edge (ET =;) and pops
the last element from F to add it to T , yielding

e = (F3,F1),

T = (
{F3,F1}, {(F3,F1)}

)
, and

F = [
(F3,F2)

]
.

(4)

As all spanning trees containing T shall be computed,
one pops the next edge from F , here (F3,F2). This results
in

e = (F3,F2),

T = (
{F3,F1,F2}, {(F3,F1), (F3,F2)}

)
, and

F = [;].

The tree T is now a complete spanning tree as it has n−1
(here, n = 3) edges. Thus, one sets L = T and tests
if e = (F3,F2) is a bridge. The nondescendants of F2 in L
are F3 and F1, and there is no edge in G that goes from
a nondescendant of F2 to F2 besides e itself. Conse-
quently, e is categorized as a bridge and indeed, all span-
ning trees containing the subtree with ET = {(F3,F1)}
have been computed. The iteration ends and the algo-
rithms returns to the setting of (4). Doing the bridge
test here reveals that e = (F3,F1) is not a bridge, since L
remains unchanged and there exists the edge (F2,F1)
in G where F2 is a nondescendant of F1 in L. Therefore,
the edge (F3,F1) is deleted from G and T and the next

GAMMAS 2022 D. Collin 45

iteration begins, meaning that the next edge from F is
added to T :

e = (F3,F2),

T = (
{F3,F2}, {(F3,F2)}

)
, and

F = [
(F2,F1)

]
.

(5)

Again, all spanning trees containing T have to be com-
puted and the next edge is popped from F , resulting
in

e = (F2,F1),

T = (
{F3,F2,F1}, {(F3,F2), (F2,F1)}

)
, and

F = [;].

The tree T is a new and distinct spanning tree. One
sets L = T and a test reveals that e is a bridge: F3 is the
only nondescendant of F1 in L that does not belong to e
itself, and the edge (F3,F1) was just deleted from G , so it
does not exist anymore in the current graph (although it
will be restored later). All spanning trees containing the
subtree with ET = {(F3,F2)} have been found. The cur-
rent iteration is terminated and the algorithm returns
to the iteration with the setting (5). Here, one checks if
e = (F3,F2) is a bridge and again, it is. The edge e is the
only edge leading to F2 in G . Hence, this iteration ends
as well, which means that all spanning trees containing
the subtree with ET =; have been computed success-
fully, or in other words, all spanning trees existing in G .
The original graph G is restored (i.e., the edge that was
deleted, (F3,F1), is added once again to G), the whole
algorithm terminates and returns

S = {(
{F3,F1,F2}, {(F3,F1), (F3,F2)}

)
,(

{F3,F2,F1}, {(F3,F2), (F2,F1)}
)}

.

One can easily check by hand that these two spanning
trees are the only ones existing in G .

Finally, the result, still in tree structure, has to be con-
verted back to a set of connections. Inserting the vari-
able nodes stored in the matching M gives

P = {{
(F3, {x1, ẋ1},F1), (F3, {x2},F2)

}
,{

(F3, {x2},F2), (F2, {x1, ẋ1},F1)
}}

.

By comparing P to Figure 2b and Figure 2c, it can be
seen that the algorithm successfully determined all de-
sired connections for F3 with respect to M .

Example 16. Consider the DDAE

ẋ1 = x2 +x3,

ẋ2 = x3 +∆−τx2,

ẋ3 = x2 +∆−τx3,

0 = x1 +x2 +x3 +∆−τx4.

(6)

Figure 4 – Computation tree of Algorithm 1 for the con-
struction of connections for F3 with respect
to M in the shifting step of the DDAE eq. (3).

(a) The shifting graph of
eq. (6).

(b) The connection graph for
F4.

Figure 5 – Visualization of the construction of connec-
tions for F4 with respect to M in the shifting
step of the DDAE eq. (6).

The shifting graph, after assigning {x1, ẋ1} to F1, {x2, ẋ2}
to F2 and {x3, ẋ3} to F3, is shown in Figure 5a. The equa-
tion F4 is exposed and cannot be matched directly to
any equivalence class, but it is connected via alternating
paths to all other equation nodes. Therefore, it holds
that CF4

= {F1,F2,F3} and all possible connections for F4

with respect to

M = {
{F1, {x1, ẋ1}}, {F2, {x2, ẋ2}

}
, {F3, {x3, ẋ3}}}

have to be found. The connection graph H = (VH ,EH)
for F4 with respect to M is given in Figure 5b with

VH = {F1,F2,F3,F4},

EH = {
(F1,F2), (F1,F3), (F2,F3), (F3,F2), (F4,F1), (F4,F2),

(F4,F3)
}
.

46 D. Collin GAMMAS 2022

Figure 6 – Computation tree of Algorithm 1 for the DDAE eq. (6).

After defining G := H and r := F4 as the input to Algo-
rithm 2 and initializing

T = ({F4},;), and

F = [
(F4,F3), (F4,F2), (F4,F1)

]
,

Algorithm 1 is executed to enumerate all spanning trees
of G rooted at r .

The computation tree that represents the recursion
structure of Algorithm 1 can be seen in Figure 6. Sim-
ilarly to the last example, one can follow the different
paths in the tree to retrace the construction of subtrees T
by addition and deletion of edges e.

Note that even though F is initialized with all three
edges outgoing from F4, the algorithm already termi-
nates after the first iteration where all spanning trees
containing the subtree with ET = {(F4,F1)} are comput-
ed. This is due to the fact that after deleting (F4,F1)
from G , there is no edge leading to F1 anymore, and
hence it is not possible to construct another spanning
tree. The following eight spanning trees are returned:

S = {(
{F4,F1,F2,F3}, {(F4,F1), (F1,F2), (F2,F3)}

)
,(

{F4,F1,F2,F3}, {(F4,F1), (F1,F2), (F1,F3)}
)

,(
{F4,F1,F2,F3}, {(F4,F1), (F1,F2), (F4,F3)}

)
,(

{F4,F1,F3,F2}, {(F4,F1), (F1,F3), (F3,F2)}
)

,(
{F4,F1,F3,F2}, {(F4,F1), (F1,F3), (F4,F2)}

)
,

(
{F4,F1,F2,F3}, {(F4,F1), (F4,F2), (F2,F3)}

)
,(

{F4,F1,F2,F3}, {(F4,F1), (F4,F2), (F4,F3)}
)

,(
{F4,F1,F3,F2}, {(F4,F1), (F4,F3), (F3,F2)}

)}
.

After converting them into connections with respect to
the matching M , one finally obtains

P = {{
(F4, {x1, ẋ1},F1), (F1, {x2, ẋ2},F2), (F2, {x3, ẋ3},F3)

}
,{

(F4, {x1, ẋ1},F1), (F1, {x2, ẋ2},F2), (F1, {x3, ẋ3},F3)
}

,{
(F4, {x1, ẋ1},F1), (F1, {x2, ẋ2},F2), (F4, {x3, ẋ3},F3)

}
,{

(F4, {x1, ẋ1},F1), (F1, {x3, ẋ3},F3), (F3, {x2, ẋ2},F2)
}

,{
(F4, {x1, ẋ1},F1), (F1, {x3, ẋ3},F3), (F4, {x2, ẋ2},F2)

}
,{

(F4, {x1, ẋ1},F1), (F4, {x2, ẋ2},F2), (F2, {x3, ẋ3},F3)
}

,{
(F4, {x1, ẋ1},F1), (F4, {x2, ẋ2},F2), (F4, {x3, ẋ3},F3)

}
,{

(F4, {x1, ẋ1},F1), (F4, {x3, ẋ3},F3), (F3, {x2, ẋ2},F2)
}}

.

Indeed, all possible connections for F4 with respect
to M have been found.

6 Numerical demonstration
The developed algorithm presented in this paper has
been implemented to empirically demonstrate its ef-
fectiveness. Also, a naive depth-first method is used to
compute connections in order to estimate the efficiency

GAMMAS 2022 D. Collin 47

of the new algorithm in terms of computational com-
plexity. The depth-first method works as described in
[13, p.19]. However, it does not stop once a spanning
tree is found but stores it and continues searching for
other spanning trees by trying all possible combinations
of edges. All computations are performed using MAT-
LAB R2021a on a laptop with the processor Intel CORE
i5-6267U CPU @2.90GHz (4 CPUs), ∼2.8GHz.

For simplicity, a shifting graph GS = (V S
E ∪̇V S

V ,E S) is as-
sumed to be given where only the variable nodes vk ∈V S

V
of highest shift exist for k = 1, ...,n −1 (i.e., all other vari-
able nodes have already been deleted) and each Fi ∈V S

E
is matched to vi , for i = 1, ...,n −1. Thus, Fn is exposed
with respect to the matching

M = {
{F1, v1}, ..., {Fn−1, vn−1}

}
.

Three different scenarios are tested. To illustrate the
edge structures E S of the corresponding shifting graphs,
let A ∈Rn×(n−1) be a matrix with entries

ai j =
{

1, if {Fi , v j } ∈ E S ,

0, else.

First, a shifting graph is constructed such that

A =

1 1

1
. . .

. . .
. . .

. . . 1
1 1

1 · · · · · · 1

 , (7)

i.e., each equation node Fi , for i = 1, ...,n − 1, is con-
nected to at most three variable nodes and Fn is con-
nected to each vk , for k = 1, ...,n − 1. The computa-
tion times for shifting graphs of this structure for dif-
ferent n ∈N can be seen in Table 1. In all tables, "DFS" is
the abbreviation for "depth-first search" and N denotes
the number of possible connections. Some computa-
tions have been stopped after 10 minutes of computing
time, which is indicated by "> 600". In these cases, com-
putations for even higher n have not been executed.
This is marked as "-" in the tables.

Table 1 – Computation times in [s] for scenario (7).

n 5 6 7 8 9 10
N 21 55 144 377 987 2584

DFS 0.01 0.11 8.3 >600 - -
Alg. 3 0.02 0.04 0.06 0.16 0.43 1.32

In a second test, a scenario is created such that

A =

1 · · · 1

. . .
...
1

1 · · · 1

 , (8)

i.e., each equation node Fi , for i = 1, ...,n − 1, is con-
nected to n−i variable nodes and Fn is again connected
to each vk , for k = 1, ...,n−1. The computation times for
shifting graphs of this structure can be seen in Table 2.

Table 2 – Computation times in [s] for scenario (8).

n 5 6 7 8 9 10
N 24 120 720 5040 40320 362880

DFS 0.01 0.22 31 >600 - -
Alg. 3 0.04 0.09 0.39 2.2 14 126

For the third scenario, a complete graph is assumed,
where each equation node is connected to all variable
nodes, i.e.,

A =

1 · · · 1
...

...
1 · · · 1

 . (9)

The computation times are listed in Table 3.

Table 3 – Computation times in [s] for scenario (9).

n 5 6 7 8 9
N 125 1296 16807 262144 4782969

DFS 0.03 0.41 318 >600 -
Alg. 3 0.05 0.48 6.3 88 2462

The results clearly show the advantage of Algorithm 3
as it is strongly superior in terms of computation time.
For all scenarios, the depth-first search algorithm is
only competitive for very small system sizes n, before
its computation time suddenly explodes. This has a
simple reason: by naively testing all possible combi-
nations of edges, an extreme amount of possibilities
arises. Even more, the majority of connections com-
puted by the depth-first search algorithm are duplicates,
meaning that they possess the same alternating paths
in different order. All of these have to be identified and
deleted after the algorithm terminates. Algorithm 3,
however, does not have this problem, as only unique
spanning trees (and thus, connections) are computed.
Therefore, it scales well with the number of possible
connections N and has a huge advantage in terms of
computational complexity. Nevertheless, one can also
see that the problem itself is very demanding, because N

48 D. Collin GAMMAS 2022

increases rapidly with the system size n and already for
relatively small n, one cannot compute all connections
in a reasonable time anymore. There are just too many
in the case of dense graphs.

7 Conclusion
In this work, the problem of finding all connections in
the shifting step of the Pantelides algorithm for DDAEs
from [1] has been discussed. A new method, based on
on the reformulation of the problem into the problem of
enumerating all spanning trees (or arborescences) in a
directed graph, has been developed. This directed graph
is constructed with the alternating paths of the shifting
graph and is called connection graph. The equivalence
of the solutions to these two problems has been proven
in Theorem 12. That led to the possibility to exploit the
fact that there already exist efficient methods to solve
the enumeration problem. By introducing and imple-
menting the method from [6], Algorithm 3 has been
introduced to compute all connections in the shifting
graph. Its effectiveness for the problem at hand has
been shown by giving theoretical examples and its effi-
ciency has been demonstrated by an implementation
and numerical tests.

However, it was evident that the presented method is
limited to small scale problems. There are several rea-
sons for that. First, the enumeration algorithm uses a
rather expensive system to add, delete and restore edges
as well as to manage the different stacks of edges. The
development of more efficient enumeration algorithms
could improve the method in terms of computational
complexity. Second, the problem of finding all connec-
tions itself scales really badly to larger system sizes as
the pure number of existing connections grows expo-
nentially with n for densely connected shifting graphs.
Thus, if one restricts the DDAE to certain classes where
each equation only has a limited number of variables in
it, meaning that each node in the shifting graph has a
limited number of edges, one could also limit the growth
of the number of connections N and therefore extend
the usage of the algorithm to larger system sizes. The
effects of such restrictions could be further researched.

In summary, the lack of a satisfactory solution to the
problem of finding all connections in the shifting step of
the Pantelides algorithm for DDAEs has been overcome
by this work for small problems. The new method now
provides an efficient algorithm for its solution.

Code Availability: The MATLAB source code of the
implementation used to compute the presented results
is available as supplementary material and can be ob-
tained under

DOI:10.14464/gammas.v4i1.503.

Acknowledgements: The author thanks his super-
visors Ines Ahrens, Benjamin Unger and Volker Mehr-
mann for their help, valuable tips and the encourage-
ment to publish this paper. His work is supported by
the DFG Collaborative Research Center 910 Control of
self-organizing nonlinear systems: Theoretical methods
and concepts of application, project number 163436311.

References
[1] I. Ahrens and B. Unger. The Pantelides algorithm for delay

differential-algebraic equations. Trans. Math. Appl., 4(1):1–36,
2020.

[2] U. Ascher and L. Petzold. The numerical solution of delay-
differential-algebraic equations of retarded and neutral type.
SIAM J. Numer. Anal., 32(5):1635–1657, 1995.

[3] A. Bellen and M. Zennaro. Numerical methods for delay dif-
ferential equations. Numerical Mathematics and Scientific
Computation. The Clarendon Press, Oxford University Press,
New York, 2003.

[4] S. Campbell. Singular linear systems of differential equations
with delays. Appl. Anal., 11(2):129–136, 1980.

[5] S. Campbell. Nonregular 2D descriptor delay systems. IMA J.
Math. Control Inform., 12(1):57–67, 1995.

[6] H. Gabow and E. Myers. Finding all spanning trees of directed
and undirected graphs. SIAM J. Comput., 7(3):280–287, 1978.

[7] P. Ha. Analysis and numerical solutions of delay differential-
algebraic equations. PhD thesis, Technische Universität Berlin.
2015.

[8] P. Ha. Spectral characterizations of solvability and stability for
delay differential-algebraic equations. Acta Math. Vietnam., 43
(4):715–735, 2018.

[9] P. Ha and V. Mehrmann. Analysis and reformulation of lin-
ear delay differential-algebraic equations. Electron. J. Linear
Algebra, 23:703–730, 2012.

[10] P. Ha and V. Mehrmann. Analysis and numerical solution of
linear delay differential-algebraic equations. BIT, 56(2):633–
657, 2016.

[11] P. Ha, V. Mehrmann, and A. Steinbrecher. Analysis of linear
variable coefficient delay differential-algebraic equations. J.
Dynam. Differential Equations, 26(4):889–914, 2014.

[12] S. Hougardy and J. Vygen. Algorithmic Mathematics. Springer
International Publishing, 2016.

[13] D. Kozen and D. Gries. The Design and Analysis of Algorithms.
Monographs in Computer Science. Springer, 1992.

[14] C. Pantelides. The consistent initialization of differential-
algebraic systems. SIAM J. Sci. Statist. Comput., 9(2):213–231,
1988.

[15] S. Trenn and B. Unger. Delay regularity of differential-algebraic
equations. In Proc. 58th IEEE Conf. Decision Control (CDC)
2019, Nice, France, pages 989–994, 2019.

[16] B. Unger. Discontinuity propagation in delay differential-
algebraic equations. Electron. J. Linear Algebra, 34:582–601,
2018.

[17] B. Unger. Delay differential-algebraic equations in real-time
dynamic substructuring. ArXiv e-print 2003.10195, 2020.

[18] B. Unger. Well-Posedness and Realization Theory for Delay
Differential-Algebraic Equations. PhD thesis, Technische Uni-
versität Berlin. 2020.

https://doi.org/10.14464/gammas.v4i1.503
https://doi.org/10.1093/imatrm/tnaa003
https://doi.org/10.1093/imatrm/tnaa003
https://doi.org/10.1137/0732073
https://doi.org/10.1137/0732073
https://doi.org/10.1093/acprof:oso/9780198506546.001.0001
https://doi.org/10.1093/acprof:oso/9780198506546.001.0001
https://doi.org/10.1080/00036818008839326
https://doi.org/10.1080/00036818008839326
https://doi.org/10.1093/imamci/12.1.57
https://doi.org/10.1137/0207024
https://doi.org/10.1137/0207024
https://doi.org/10.14279/depositonce-4385
https://doi.org/10.14279/depositonce-4385
https://doi.org/10.1007/s40306-018-0279-7
https://doi.org/10.1007/s40306-018-0279-7
https://doi.org/10.13001/1081-3810.1552
https://doi.org/10.13001/1081-3810.1552
https://doi.org/10.1007/s10543-015-0577-6
https://doi.org/10.1007/s10543-015-0577-6
https://doi.org/10.1007/s10884-014-9386-x
https://doi.org/10.1007/s10884-014-9386-x
https://doi.org/10.1007/978-3-319-39558-6
https://doi.org/10.1007/978-1-4612-4400-4
https://doi.org/10.1137/0909014
https://doi.org/10.1137/0909014
https://doi.org/10.1109/CDC40024.2019.9030146
https://doi.org/10.1109/CDC40024.2019.9030146
https://doi.org/10.13001/1081-3810.3759
https://doi.org/10.13001/1081-3810.3759
https://arxiv.org/abs/2003.10195
https://arxiv.org/abs/2003.10195
https://doi.org/10.14279/depositonce-10707
https://doi.org/10.14279/depositonce-10707

	Introduction
	Problem description
	Reformulation of problem
	Enumeration of spanning trees
	Algorithm for computation of connections
	Numerical demonstration
	Conclusion

