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Abstract: We show that the Complex Step approxima-
tion to the Fréchet derivative of real matrix functions
is applicable to the matrix sign, square root and polar
mapping using iterative schemes. While this property
was already discovered for the matrix sign using New-
ton’s method, we extend the research to the family of Padé
iterations, that allows us to introduce iterative schemes
for finding function and derivative values while approxi-
mately preserving automorphism group structure.
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1 Introduction

Matrix functions f: C"™" — C""" are of increasing inter-
est for many practical applications arising in mechanics,
electrodynamics, statistics, pyhsics and mathematics
[22, Sec. 2]. While a few matrix problems have scalar
or vector-valued equivalents with well-studied solution
techniques, that can be used for matrices with minor
adjustments as well, there are also a lot of issues that are
unique to matrix problems. These include eigenvalue
or singular value problems, the non-commutativity of
matrix multiplication or additional properties such as
orthogonality or sparsity of desired solutions.

In this paper, we will focus on the matrix square root,
sign and polar function that are widely used for solving
subproblems arising from the applications mentioned
before, including nonlinear matrix equations, Ricatti-
and Sylvester equations and eigenvalue problems [22,
Sec. 2]. For these functions, we present a variety of di-
rect and iterative methods for evaluating them at a given
point.

As in some of the applications mentioned above the
problem formulation provides a special type of auto-
morphism structure, we address the question whether
or not our direct and iterative methods are able to pre-
serve that given structure. In our case, it turns out that
the iterative methods have to be chosen carefully since
some methods are able to preserve the structure while
others are not.

The third topic we discuss is how to compute the Fréchet
derivative L ¢ (A, E) of a matrixfunction f at a given ma-
trix A in direction of a given matrix E. The (Fréchet)
derivative of a function is of interest in pratical applica-
tions as it enables a way to compute or estimate the func-
tions condition number, which is a key parameter for
sensitivity analysis. In case of data-based applications,
the condition number of f indicates, how sensitive the
mathematical model is to inaccuracy of the input data
and therefore expose, how accurat the input data has to
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be measured to obtain useful results from the solution.
To compute the Fréchet derivatives of our three main
functions, we present a direct approach and two pos-
sibilities for modifying the existing iterative methods
in a way that allows us to compute f(A) and L f(A, E)
simultaneously.
The main task in this paper is to present a way for com-
puting f(A) and L;(A, E) using a single complex iter-
ation while also preserving automorphism structure
throughout the iteration. The presented class of iter-
ative schemes uses the so-called Complex Step approxi-
mation

Ly(AE)~Im (—f(A;lhE))

to L f(A, E), where h is areal scalar, A and E are real ma-
trices and f is a matrix function, in combination with
our iterative methods introduced before.

The following chapters are organized as follows: First,
we recall some results and definitions we need for our
later discussions. Those include the definition of the
sign, square root and polar function, some properties of
the Fréchet derivative of matrix functions and the matrix
valued Newton iteration.

In the third chapter, we present some earlier results
concerning iterative methods for computing the three
functions. We will first have a look at standard New-
ton methods and then move over to the family of Padé
iterations, which will provide us a tool for preserving au-
tomorphism structure in our iteration. To conclude the
section, we compare a direct and an iterative approach
for computing the Fréchet derivative of any of the func-
tions.

In the fourth chapter, we introduce the Complex Step
(CS) approach for scalar and matrix functions as a way
for approximating the Fréchet derivative. We apply the
CS to the Newton methods discussed in the third chap-
ter and show that this allows us to iteratively compute
the Fréchet derivative of any of the functions.

Our main result is about the combination of the CS and
the family of Padé iterations and will be stated in Theo-
rem 6 in the fifth chapter. We will show that combining
the CS and the Padé schemes introduced before, we are
able to compute f(A) and L¢(A, E) simultaneously in
a single iteration by extracting the real and imaginary
parts of the iterates while also preserving automorphism
structure in the real part of the iterates.

To conclude our work, we present a few numerical tests
emphasizing our theoretical results from before. The
results are then analyzed and discussed and possible
starting points for further research are mentioned.

GAMMAS 2022

2 Preliminaries, notation and
definitions

2.1 Preliminaries and notation

Throughout this paper, we will use the following nota-
tion. We denote the set of real or complex m x n matrices
by R""" or C"™"", respectively, and by R™ the set of real
non-positive scalars (—oo,0]. In the case of complex val-
ues x, we use Re(x) and Im(x) for the real and imaginary
part, respectively and apply the notation equally to ma-
trices. We denote matrices in capital letters, where for a

given matrix X = (xij) e the expressions XT, xH = YT,
X! and X* stand for the transpose, conjugate trans-
pose, inverse and Moore-Penrose inverse of X, respec-
tively. The identity matrix is denoted I or I, if the size
is not clear from the context. Additionaly, we use O,,(R)
or 0,(C) for the set of orthogonal n x n matrices (i.e.
X"X =1,) over R or C and U,,(C) for the set of unitary
matrices (i.e. X Hy I,). The spectrum o(X) stands

for the set of eigenvalues of X and || X||p = (Zi,j x‘;-zj)

is the Frobenius-Norm, which we will mostly use for
convergence analysis. To characterize convergence and
approximation properties, we use the Landau- or O-
Notation in the following way: we say that f = 0(g) or
felb(g),if

limsup

f(x)‘

That is, we have f = 0(g) if there exists a constant C >0
such that |f(x)| = Clg(x)| for x — a. We will mostly
need the case x — 0 for our application. For matrix
functions f and g, we use the Frobenius-Norm for f
and g. Furthermore, we say that f = o(g) or f € o(g), if
[

g(x)

limsup =0.

X—a

Concerning matrix decompositions, we will need the
singular value decomposition A = U v for complex
rectangular matrices and the Jordan canonical form A =
ZJZ ! for complex square matrices.

2.2 The square root, sign and polar function
2.2.1 The Square Root Function

Given a square matrix A € C™", any matrix X € C™"
that satisfies X* = A is a square root of A. While, in
the scalar case, this definition secures uniqueness of
the square root (up to its sign), there can exist infinitely
many square roots of A in the matrix case, if no further
restrictions are impsoed on A or X. A common example
is the family of nilpotent matrices of degree two, that are

@)y |



GAMMAS 2022

all roots of the matrix 0,, ,, of all zeros.

However, if A has no eigenvalues on R, it can be shown
that there is only one solution X to A = X % with eigenval-
ues entirely in the open right half-plane (that is, Re(1) >
0, for every A € o(X)). This solution is called the princi-
pal square root of A and is denoted X = A2 The prin-
cipal square root satisfies the following properties[22,
Thm. 1.13,1.18 + 1.29]:

1. AeR"" = A2 e ™"
2. (AT)”2 - (A”ZJT and (AH)”2 - (A”Z)H
3 (A—1)”2 _ (Auz)‘l _p-12

Additionally, the principal square root function is ana-
lytic, hence continuous, on the set of matrices with no
eigenvalues on R [1].

The square root is frequently used for solving definite
generalized eigenvalue problems and for computing so-
lutions to quadratic matrix equations, such as algebraic
Riccati equations [1, 13, 22, Sec. 2]

2.2.2 The Sign Function

In the scalar case, the sign function maps a complex
value to the sign of its real part. That is, for x € C with
Re(x) # 0, the sign of x is given by

. 1, Re(x)>0.
sign(x) = (1)
-1 Re(x)<0.
In the matrix case, given a Jordan form A= ZJZ ' of A
with J = diag(J;, J,), the sign of A is defined as

sign(A) = sign (Z []1 0 ] Zl) =7 0
0 J

—1 1
OP I Z
2)
where J; € CP'? contains the Jordan blocks for eigenval-
ues of A with negative real parts and J, € cn-p,n=p
contains the blocks for eigenvalues with positive real
parts. In case of a diagonalizable A, sign(A) can be seen
as computing the scalar sign of every eigenvalue of A
seperately. Notice that, in analogy to the scalar defini-
tion, purely imaginary eigenvalues of A are not feasible
for this definition.
The matrix sign function is used in control theory as a
tool for solving a particular type of Lyapunov and Ric-
cati equations arising from discretization or for counting
eigenvalues in designated areas of the complex plain [22,
Sec. 2].

n-p

2.2.3 The Polar Function

Given a rectangular matrix A € C"™" with m > n, A can
be decomposed as

A=QP, QeC™" pecC™", 3)
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where P is Hermitian positive semidefinite and Q has or-
thonormal columns. A decomposition as in (3) is called
polar decomposition of A, with Q being called the uni-
tary polar factor and P the Hermitian polar factor. It can
be shown that P is unique in any polar decomposition
of A and explicitly given by P = (A" A)Uz. Moreover,
if A has full rank (rank(A) = n), P is positive definite
and Q is unique as well. A polar decomposition can be
computed taking the left and right singular vectors of
an economy sized SVD A = U >V of A and defining
Q=UV and P=vzV" 22, Sec. 8]. In the following,
we use the notation Q = 22(A) for the unitary polar fac-
tor. The polar decomposition is of special interest in
approximation applications, as the unitary and Hermi-
tian factors lead to the closest unitary and Hermitian
semidefinite approximations to A [22, Sec. 8.1].

2.2.4 Connections between the square root, sign
and polar function

The three functions introduced in Section 2.2 are con-
nected to each other by the following formulae: Given
a method for evaluating the principal square root for a
given matrix, one can compute the sign and polar factor
of that matrix by the identities

)—1/2 @

sign(A):A(Az)_“z and 2(4) = A(A" A

using only elementary matrix operations and the princi-
pal square root (see [21, Sec. 2]).

Remark 1. Note that A having no eigenvalues on the
imaginary axis, which is required for the existence of
sign(A), is equivalent to A? having no eigenvalues on R,
which is required for AY'? to exist. Similarly, if Ae C™"

has full rank, A" A is Hermitian positive definite and, as
such, does not have eigenvalues on R~ , making (4) well
defined.

Additionally, we can see that the sign and polar mapping
are continuous on the set of matrices with no imaginary
eigenvalues and matrices of full rank, respectively, since
they are compositions of continuous functions on these
sets [13].

On the other hand, if one has access to an algorithm for
computing the sign of a given matrix, Higham[22, Sec.
5] has shown that, given A, B € C"" with AB having no

eigenvalueson R,
0 A\ [0 C -
B o)) |c' o

holds, where C = A(BA)_UZ. Using (5) and choosing
B = I leads to the expression

Lol

sign (

0 A1/2

_ , 6
A2 (6)

sign (
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for the principal square root and inverse square root,
whereas choosing B = A yields the formula

):

for the unitary polar factor. These relations are impor-
tant and should be kept in mind when designing effi-
cient algorithms for evaluating any of the three func-
tions.

A

0 0 PA
AP o

P 0 (7

sign (

2.3 Fréchet derivatives

As the set of real or complex matrices is a Banach space,
differentiation of matrix functions is usually done in
the sense of Fréchet derivatives. That is, given a matrix
function f: C"™" — C™", its Fréchet derivative L /(X)
at a given point X € C"™" is a linear mapping L(X) :
C"™" —C™", E~ Lp(X)(E) = L¢(X, E) that satisfies

FX+E) - f(X)—Lg(X,E) = o(|EID, 8)

for every E € C"™". The Fréchet derivative, if it exists,
can be shown to be unique([22, Sec. 3.1].

More generally, the k-th Fréchet derivative of f at a
given point X is the multilinear mapping

L}k](X)'q:m'n x...xq:mrﬂ_,([:m,n,
(B Bp) — L}’C](X;El,...,Ek),

that satisfies the recurrency

L;k_“ (X+EgEy..., Be_y) _L}k_l](X;Elw-"Ek—l)
_L;’C] (XGEy,...,Ep) = o(|ExID, (9)

for every Ej,...,E; € C"™", where L[fl](X) = Lp(X) de-
notes the first Fréchet derivative obtained from (8)[19,
Sec. 2].

For composite matrix functions, the following rules of
differentiation apply:

1. For g and h being Fréchet differentiable at A €
C™"and f = ag + Bh, we have

Le(AE)=aLg(AE)+ BL,(AE). (sumrule)

2. For g and h being Fréchet differentiable at A €
C™"and f = g- h, we have

L¢(AE)=g(A)L,(AE) + Lg(A,E)h(A).
(product rule)
3. For h being Fréchet differentiable at Ae C"™", g
being Fréchet differentiable at #(A) and f =goh,
we have

L¢(AE) = Lg(h(A), L, (A E)). (chain rule)
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4. If fand f ~! both exist and are continuous in a
neighbourhood of A€ C™" and f(A), respectively,
and L 7 exists and is nonsingular at A, we have

Lf-1 (f(A),E) = L}l (A E). (inverse rule)

The Fréchet derivative is a strong tool when working

with matrix functions as it allows to perform sensitivity

analysis and enables a wide class of iterative methods

for solving nonlinear matrix equations, such as Newton’s
or Halley’s method [3, 12, 27].

2.4 Newton lterations

The most common approach for evaluating matrix func-
tions iteratively is to use variants of Newton’s method
applied to a properly chosen target function. Taking
the matrix square root as an example, it is immediate
to see that any root X* € C™" of the quadratic func-
tion f(X) = X* — A is a square root of the given matrix
AeC™",

Recall that, for a vector valued function g : C" — C", the
iterates {xy}4—o 1, in Newton's method [5, Sec. 2.11] are
computed using the update rule

X1 = X +di, where dj solves [, (x)d = - f(xp),
(10)
assuming nonsingularity of the Jacobian J (x;) for every
iterate x;.. Under some mild assumptions, the iterative
scheme (10) converges quadratically to a root x* € C"
of g(x), given an initial guess x, € C" that is sufficiently
close to x* [5, Sec. 2.11].
For Fréchet differentiable matrix functions G : C"™" —
C"™", the update from (10) can be directly transferred
to the matrix setting by replacing the linear system of
equations Jg (x;)dy = —g(x;) with the matrix equation
L; (X, Dy) = —G(X}). The resulting Newton update

Xpy1=Xp+ Dy, XpeC™7, (11
where D solves the matrix correction equation
Le(Xy, D) = -G(Xy), (12)

is again locally quadratically convergent under mild as-
sumptions [18].

To be able to use Newton’s method to its full effect, one
has to be able to solve (12) efficiently in every Newton
step. This task can be challenging if L;(X,) is not known
explicitly or hard to evaluate. However, we will see in
the following section, that the update D, can be given
in closed form for the three functions from Section 2.2.
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3 lterative approaches for evaluating
the square root, sign and polar
function

3.1 Quadratic Newton lterations

As we have seen before, defining f(X) = X 2_ A, any root
of f is a square root of the given matrix A € C"*". In
particular, assuming that A has no eigenvalues on R™
and choosing the initial value for Newton’s method to
be X, = A, the Newton square root sequence
1 -1

Xp =35 (xe+X:'4), xo=4 (13)
can be shown to converge to the principal square root
A2 of A quadratically [22, Thm. 6.9].
For the matrix sign, we can use the fact that S = sign(A)
is involutary (i.e. S~ = S) for a matrix A € C™" with no
imaginary eigenvalues [22, Thm. 5.1]. Thus, defining
gX)= X*-1 ,,» the matrix S satisfies g(S) = 0. Applying
Newton’s method to g and initializing the sequence with
X, = A, one obtains the Newton sign iteration

1 -1

Xk+1:§(Xk+Xk ), X=4 (14)
which is again known to be quadratically convergent to
S =sign(A)[22, Thm. 5.6]. In addition, by (5), we have
that (14) converges to the limit

0 1/2

A—I/Z

A

S= I, ol

(15)

if we choose X, =

The resulting Newton update can be performed exclu-
sively on the (1,2)- and (2,1)-block of the 2n-by-2n-
matrices X, which leads to the well-known Denman-
Beavers-iteration (DB)

Ve =3(%+ %), %=4

1 -1 (16)
kw1 = z(Zk+Yk )» Zy=1I,
that yields iterates Y} and Z;. that converge to A" and
ATV2) respectively [11, 22, Sec. 6.3]. The quadratic con-
vergence speed of (16) is immediate from the derivation
via (14).
For the polar function, let us first consider real matrices
A. In this case, we may use the fact that Q = 22(A) is,
for any matrix A € R™" having full rank rn, the unique
matrix with orthogonal columns that is closest to A [22,
Thm. 8.4]. As a consequnce, Q is the root of h(X) =
x'x-1 ,, that is closest to A. For square nonsingular
matrices A, the typical Newton procedure as introduced
in Section 2.4 leads to the iteration

1 .
Xen =5 (Xe+ X7, Xo=4, (17)

2
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that can be shown to converge quadratically to the or-
thogonal factor Q [22, Thm. 8.12]. For rectangular full
rank A, one has to replace the inverse X ! by the pseu-
doinverse X to obtain the iteration

Xpyp = % (Xe+(x0)") = %Xk (L+ X x07Y), X =4,

(18)
which shares the convergence behaviour of (19)[14].
For the case of complex matrices A, we want to empha-
size that the mapping X — X T X is Fréchet differentiable
(over C"™") with

LA E)=ATE+ET A,

while the mapping X — X H ¥ is not! This is due to the
fact that linearity in

L(A,aE) = AHaE+(@E) A= aA"E+aE" A # aL(A, E)

is lost when conjugating the scaled direction ¢ E. How-
ever, it has been shown that defining h(X) = X Hy 1 n
for complex matrices and performing updates that are
analogous to (17) and (18), one can use the iterative
schemes

1 -H
Xk+1:5(xk+xk ), X=4 (19)

and

1 -
X1 = 5 (Xt D) = S X [+ X071, Xo = 4,
(20)
for computing the unitary factor Q = 22(A) of the polar

decomposition, even if A is complex [22, Thm. 8.4].

DN —

3.2 lterations based on Padé approximations
3.2.1 Automorphism groups

In many applications, the matrices of interest share a
certain underlying structure, whether it is nonnegativity,
sparsity or symmetry. In this work, we are particularly
interested in automorphism group structure associated
with a given bi- or sesquilinear form. That is, we aim to
have a closer look at matrices A€ C™" that satisfy
AYMA=M and/or A"MA=M, 1)
for a given symmetric and nonsingular matrix M, which
is equivalent to A being an automorphism concerning
the bi- or sesquilinear form (:,-);, induced by M. (i.e.
(Ax, Ay) = (x,y)pp forall x, y e C™).
Note that the simplest case M = I yields the standard
euclidean scalar product, which leads to the group of
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orthogonal/unitary matrices. In our case, we are inter-
ested in the choices

for M which lead to the sets of symplectic, pseudo-
orthogonal and perplectic matrices, respectively, that
play an important role in engineering and physics ap-
plications, such as Hamiltonian mechanics and optimal
control problems [7]. Since the particular choice of M
is not important for our purpose, we denote A€ Gif A
satisfies (21) for M € { /., %, ) Ru

An important additional property of the square root,
sign and polar we did not discuss in Section 2.2.4 is
the fact, that the application of any of the three func-
tions to an automorphism A € G does preserve auto-
morphism group structure [20]. That is, for an automor-
phism A € G, we have

sign(A)eG, P(A)eG and A2, A7V%eG, (22)

given that they are well defined for A. Thus, if we de-
velop an iterative scheme X, ; = g(X}) for evaluating
any of the given functions at an automorphism A € G,
we know that it converges to a limit X =lim;_, X; that
shares the automorphism structure of A. However, this
asymptotic behaviour does in general not guarantee
convergence inside the automorphism group. That is,
we generally have

A=X,€6, lim X;=F(X)€G, but X, ¢G,
—00

as long as X, is not sufficiently close to the limit. In Sec-
tion 3.2.2, we establish a class of iterative schemes that
is able to preserve the automorphism structure through-
out the iteration for every iterate and any of the func-
tions. That is, given an automorphism A € G, we have
X} €G, for every k = 0. One can see that this property is
not satisfied for the quadratic schemes (13)-(16) by tak-
ing a unitary matrix A € U,,(C) and computing its square
root using (13). The first Newton iterate then reads

1 _ 1 B 1
X, ==(Xg+ X' A) = —(A+ A1 A) = Z(A+ 1),
2 2 2
which is in general not unitary since
H 1 g 1 H
X{ Xy = AT+ LA+ L) = 2 Uy + AT+ A+ I) # .

3.2.2 The family of Padé iterations

A family of iterative schemes that is capable of preserv-
ing the structure is the family of Padé iterations, which
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was first introduced by Kenney and Laub [26] for the
matrix sign. Recall that a rational approximation r,,, =
5’1—((?) to a scalar function f(x) is called an [¢/m] Padé
approximant [22, Sec. 4.4], if p, and g,,, are polynomials

of degree ¢ and m, respectively, g,,(0) =1 and
fxX) =71, (X) =0 (x”””l) .

For the sign, the use of Padé approximants is motivated
by the fact that, in the scalar case, (4) can be rewritten
as

X
(x2)1/2 - (1—(1—x2))1/2 - (1_6)1/2*

sign(x) = (23)

where{=1- % Now, based on an [¢/m] Padé approxi-

mationr,,, (&) = Zjl((?) toh(é) = (1—6)_1/2, let us consider

the iterative scheme

Xei1 = Xl (L= X0) = 5P (L= x0) 4, (L—xp) ™" (24)

for computing the sign of a complex scalar. Kenney
and Laub have given the explicit formulae for p, and
q,, for £,m < 3 and proved convergence rates of (24)
depending on ¢ and m [26, Sec. 3]. They proposed to
extend the iterative scheme (24) directly to matrices [26,
Sec. 5], yielding the Padé sign iteration

Xjs1 = XeTom, — X3,  Xo=A. (25)
Note that the evaluation of r,,,, (I, - X?) does require
evaluating both p,(I,,— X2) and q,,,(I,,— Xz) and solving
the matrix equation

Femy= X qp (I, — X3 = p,I, - X*)  (26)
afterwards. The evaluation of polynomials and rational
functions is a field of research and a variety of algorithms
for this task have been established [22, Sec. 4].

The Padé scheme (25) has three main advantages over
the quadratic iteration (14):

1. For ¢ = mor ¢ = m— 1, the Padé scheme (25) con-
verges with order of convergence [ + m + 1 [26].

2. The Padé approximant r,,,(X}) can be evaluated
efficiently without explicitly computing p,(X})
and q,,(X}) in every step [22, Sec. 4.4].

3. The Padé scheme is structure preserving for £ = m
and m = 1. That is, given A € G, we have X € G,
forall k=0[23].

Using the results from Section 2.2.4, one can obtain a
Padé iteration that is similar to (16) in the sense that its
iterates converge to AY2and A7Y? simultaneously. This
can be done by applying (25) to the special block matrix
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(15). Evaluating the blocks seperately yields the Padé
square root iteration [20, Thm. 4.5]

Y =YiremU =2 Y, Yo=A4, 27
Zin1 =TemUI = 2k Y) 2y, 2o =1,
where Y, — A% and Z— A2 Using X,?Xk instead
of X,% in (25), one obtains the Padé iteration
Xipr = XeTemy = X{X), Xo=A,  (28)
that converges to Q = 22(A) and shares the same proper-
ties concerning convergence speed and structure preser-
vation [23, Thm. 2.2]. Note that (28) is applicable to
both square and rectangular matrices as only X ,? X is
required to be quadratic.
The most important results on the family of Padé itera-
tions are summarized in the following Lemma:

Lemma 2 (Padé iterations). Let A€ C"™" be an automor-
phism, A€ G. Then, for ¢ = m and ¢ = 1, we have:

(i) If A has no purely imaginary eigenvalues, then
lim;._, o, X; = sign(A) in (25) and X; € G, for all
k=0.

(ii) If A has no eigenvalues onR™, then

. Y] 412

k—oo | Z - A_I/2
in(27) and Yy, Z, €G, forall k= 0.

(iii) If Ais nonsingular, thenlim;._ . X;. = 22(A) in (28)
and X €G, forall k = 0.

Furthermore, all iterations converge with order of con-
vergence2l +1.

Proof. See [23, Thm. 2.2] for (i),(iii) and [20, Thm. 4.5]
for (ii). O

3.3 Computing the Fréchet derivative of the
square root, sign and polar function

In some applications, one is not only interested in evalu-
ating a matrix function F at a given point X, but also in
computing the Fréchet derivative L (X, E) at that point
in a given direction. For this purpose, one is in need of
an appropriate procedure for simultaneously comput-
ing F(X) and Ly(X, E) in an efficient way. In this section,
we want to introduce a direct approach based on the
connections between the sign, polar and square root
function that we observed in Section 2.2.4 and an iter-
ative approach that is based on the Newton- and Padé-
schemes introduced in Section 3.1 and Section 3.2.2.
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3.3.1 Direct approaches

For the square root function, it is well known that the
Fréchet derivative at A in direction E can be computed
by solving the Sylvester equation

Ax+xAV2=E (29)

for X [9, 22]. We now try to present a similar direct ap-
proach for computing the Fréchet derivatives of the sign
and polar function using (4) and the common differen-
tiation rules. Note that we use the transpose instead of
the conjugate transpose to derive the direct approach
for the polar function again since the conjugate trans-
pose is not Fréchet differentiable. However, the formula
obtained from our straightforward computations can
be modified to make it applicable to complex matrices
using the conjugate transpose instead of the transpose
in what follows [16, Sec. 5].

Recalling (4) and applying the product rule, one can
see that the Fréchet derivatives of the sign and polar
function have the form

5 (Az)—I/Z

Lsign(A; E) +AL(X2)71/2 (AE),

7 12
Lp(AB)  =E(ATA) " +ALyry (A B).
As a consequence, the main task is to compute the deri-
vative of the composed function f(X) = X%~ for the
sign or g(X) = (X TX)_I/2 for the polar function, which
again leads to solving a Sylvester equation of the type
BA2X + XB(A)* = -C(A, B), (30)

where the functions

(AZ)_I, sign
Bay=4+ )
(A A) .
and
B(A)(AE+ EA)B(A), sign
C(AE) = .
B(A) (A E+E A)B(A), P

can be obtained by applying the chain rule to f(X) and
g(X). This method can be used to derive formulae
for higher derivatives by repeatedly differentiating (4).
However, the amount of Sylvester equations to solve
increases significantly (about 2k-1 equations for the k-
th derivative, if different directions E, ..., E; are used),
making it a costly approach.

3.3.2 Coupled Iterations

Since the direct approach introduced before is fairly ex-
pensive for large matrices and the Fréchet derivative is
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usually not required up to full accuracy in most applica-
tions, we will now discuss an inexact, iterative procedure
for evaluating a matrix function and its Fréchet deriva-
tive simultaneously.

It is due to Gawlik and Leok [16] that we have a compre-
hensive framework that works for all three functions and
every iterative scheme introduced in this article. The
main idea is the following: Suppose we have a Fréchet
differentiable matrix function F : C""" — C""" and an
iterative scheme X, = g(X}) induced by a Fréchet dif-
ferentiable update function g : C™" — C™" which we
can use for evaluating F at a given point A. Then, if the
Fréchet derivative Lg(X , E) is known explicitly, we can
consider the coupled iteration

KXir1 = 8(Xp), Xo=4,

31
By = Lg(Xy, Eg),  Eg=E, e

to obtain iterates X; and E; simultaneously. The cou-
pled scheme (31) can be shown to be convergent to F(A)
and Ly(A, E), respectively, if differentiation and limit
formation do commute for g [16, Sec. 1].

For the quadratic iterations (13), (14), (19) and (20), this
property is fulfilled and one can obtain the iteration

Xeor = 3 (Xe+ X5, X, = A,

1 R (32)
Ek+1=§(Ek—Xk Ep X ) Ey=E,

for the matrix sign [22, Thm. 5.6] and similar schemes
for the square root iterations (13), (16) and the real polar
iterations (17), (18). We point out that A has to be con-
sidered as X, and differentiated in direction E = E; in
(13) to obtain a suitable iteration for A''? and L x12(A, E).
The complex polar iterations (19) and (20) again have to
be considered seperately, which will be briefly discussed
at the end of this section.

Looking again at the Padé family of iterations, one can
verify that for a Padé approximant h(X) =r,,,(I - Xz) =
peI— Xz)qm(l - X*)71, h can be differentiated using
the chain and product rule to obtain

LyX,B) = L, (I-X*~(XE+EX) (33)

Ly, (1= X*,~(XE+ EX)) g, (1 - X5
~remI-XL, (1 ~ X% —(XE+ EX))
g, (I-XH71

Using this result, the coupled Padé-iteration

KXi+1 = Xph(Xp), Xo = A4,

34
Ep1 = Exh(Xi) + Xi Ly (X, Ex), Eg =E, (34)

converges to sign(A) and Lgg, (4, E), respectively. Simi-
larly, using E(X) =1, - XTX) instead of h and form-
ing the derivative in (33) accordingly yields coupled it-
erations for the polar mapping 22(A) of a real matrix A
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and its derivative[16, Thm. 1]. Furthermore, using (34),
there is again a coupled iteration for the square root and
inverse square root as well as their derivatives that is
based on (27).

Now recall the iterations involving the conjugate trans-
pose (19), (20) and (28) for the computation of 22(A) for
complex matrices A. As mentioned before, the mapping
X — X is not Fréchet differentiable, thus making the
update function g not Fréchet differentiable for any of
the three iterative schemes. However, it can be shown
that coupled iterative schemes exist in the case of com-
plex matrices and can be obtained by taking the real
iterations and replacing every transpose by a conjugate
transpose. For the quadratic schemes resulting from
(19) and (20), convergence can be proven for any A hav-
ing full rank, while in the case of the Padé schemes (28),
convergence can be shown under additional assump-
tions [16].

For the remainder of this paper, our further investiga-
tion requires all matrices A and E to be real. As a con-
sequence, it suffices to consider the polar-iterations in-
volving the transpose from now on.

4 The Complex Step

4.1 Motivation and advantages

In most practical applications, the function of interest is
either too difficult to differentiate by hand or there is not
even a closed form representation for f as only its effect
f(A) is given for a sample of points A. In those cases, be-
ing able to approximate the function f at a given point A
and its (Fréchet) derivative f "(A) (L f(A, E), respectively)
efficiently and precisely is a major task in numerical
analysis [4, 10, 25].

The easiest approach is to first evaluate f at the desired
point A€ R™" and then use the finite difference approx-
imation

L+(AE)~ w (forward differences)
e %hfm_hm (central differences)

(35)
to approximate the corresponding Fréchet derivative in
direction of E € R""". The main drawback of this ap-
proach is that (35) suffers from cancellation errors due
to subtraction in the numerator as & tends to zero. As a
consequence, h can usually not be chosen siginificantly
smaller than the square root of the unit roundoff and
the approximation quality is thus limited by the error
that is achieved choosing 4 numerically optimal [6, 17].
A different approach to numerically approximate deriva-
tives, that was first used by Lyness and Moler [28], is to
exploit complex arithmetics for f to avoid cancellation.

@)y |



GAMMAS 2022

The idea of this so-called Complex Step approach (CS) is
to inspect the complex Taylor expansion
. . / hz " i hs " 4
fx+ih) = f(x)+ihf (x)—?f (x)—?f x)+0(hH
(36)
for an analytic function f and observe, that splitting real
and imaginary parts yields the approximations

fx) =Re(f(x+ih)+@(h*),

f(x =Im(@ +0(h?), (37)

that do not suffer from numerical issues. This idea can
now be directly transferred to Fréchet-differentiable ma-
trix functions given a direction matrix E to obtain the
approximation [2]

+0(h°).

L¢(A E) =Im (38)

f(A+ihE)
5
Unlike in (35), h can be chosen as small as needed to
achieve the desired approximation accuracy in (37) and
(38), even making choices like h = 1071 applicable if
needed [8]. Nonetheless, there are three difficulties to
be aware of.
First of all, an arbitrarily small choice of £ is only pos-
sible, if A and E are real, f is real if evaluated at a real
argument and no complex arithmetic is exploited to
evaluate f. Else, the CS behaves similar to other second
order methods, such as the central difference approxi-
mation from (35) in the sense that & can usually not be
chosen smaller than the square root of the unit roundoff
2, Fig. 7.1].
Second, evaluating f at the complex argument A+ ihE
might be computationally expensive compared to eval-
uating f at a real argument twice (f(A+ hE) and f(A)
or f(A— hE)) since complex operations are more costly
than real operations. However, seperating the real and
imaginary parts for the operations, there are possibili-
ties for parallelization [15, 29].
The third point is that the CS approximation, in theory,
requires f to be an analytic function to be able to argue
based on the complex Taylor expansion. However, this
property was shown to be sufficient, but not necessary,
as we will see in subsequent sections [2]. Considering
the three functions introduced in Section 2.2, only the
square root (and its inverse) are analytical and, as such,
compatible with the CS. For the sign and polar func-
tion, we will show in the following chapter that the CS is
applicable as well.

4.2 Combining the CS and Newton’s method

The approach to use the Complex Step in combination
with Newtons method was first proposed by Al-Mohy
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and Higham|[2] for the matrix sign using the quadratic
Newton sign iteration (14). The main idea is to explore
the convergence behaviour of the complex iteration
X1 =8(Xy), Xo=A+ihE, (39)
for evaluating the non-analytic function f at X,, given
an analytic update function g(X) and real matrices A
and E.
Al-Mohy and Higham observed the following result for
the matrix sign function [2, Thm. 5.1]:

Theorem 3 (The CS for the sign function). Let A, E €
R™" with A having no purely imaginary eigenvalues.
Consider the CS-iteration (cf. (14))
N lie o) o _
Xk+1:§(Xk+Xk ) X,=A+ihE.  (40)

Then, for any h being sufficiently small, the iterates X, €
C™" are nonsingular. Moreover, the following hold:

Re(sign(A + ihB)) = lim Re (X;) = sign(4) + 6 (h?)

Im(sign(A+ ihE))

, X
. = lim Im(f) = Lyjgn (A, E) + O(h)

k—o0

(41)

Theorem 3 and (41) in particular show, that it is not nec-
essary to have an analytic function for the CS to work.
For us, the fact that the CS is applicable to the matrix
sign function if done correctly is of special interest as
well. To state and prove these observations, it suffices
to analyze the asymptotic behaviour of the quadratic
CS-sign-iteration. However, in their proof, Al-Mohy and
Higham show that for the CS-iterates X}, the more gen-
eral result

Re (X)) = X +@(h*) and Im(X,) = hE, + G (k) (42)

holds for every k = 0, where X;. and E, are the iterates
generated by the coupled Newton iteration (32) initial-
ized with X, = A and E; = E. Since this coupled scheme
is known to converge to sign(A) and Lgg, (4, E), respec-
tively, the asymptotic convergence of (39) follows imme-
diately for suitable h [22].

Now taking a closer look at (42), this property in fact
reveals equality of the iterates from the coupled iter-
ation (32) and the corresponding CS iteration (39), if
one seperates the real and imaginary parts (up to or-
der of h?). The benefit of (42) over (41) becomes clear
when we consider iterative schemes with additional fea-
tures, such as structure preservation properties, since
(42) states that this property is approximately inherited
by the CS-iteration (up to order h?). This topic will be
discussed for the family of Padé iterations in Section 5.
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Before we get to the Padé iterations, let us extend the
CS idea to the quadratic polar iteration (18), the square
root iteration (13) and the DB-iteration (16).

Theorem 4 (The CS for the Polar function). Let A, E €
R"™"™ with rank(A) = n = m. Consider the CS-iteration
(cf. (18))

> 1 sT< |71 >
Xk+1=5Xk(In+(XkTXk) ) Xo=A+ihE. (43)

Then, for any h being sufficiently small, the iterates X,. €
C™" have full rank. Moreover, the following hold:

Re(,@(AHhE))—hmRe( ) = PA)+0 () (i)

(?}’(A+zhE))
m

- = lim Im(%):L@(A,E)+ﬁ(h2)

k—o0
(ii)

Proof. The proof works in the same way as Theorem 3,
where (42) is shown for (43) and the coupled Fréchet
iteration

Xer1= 3 Xk (I+ (X{Xk)_l)’

Epr = 3B+ (X[ X0 ™

X (X X)X B+ B X0 (XX, Ep=E,
obtained from (20). Since X, has full rank, / can be cho-
sen small enough to achieve full rank of X, as well. Since
)A(OT X, is then symmetric and positive definite (s.p.d.),
I, + ()A(OT}A(O)_1 is s.p.d. as well and X, has full rank. In-

ductively, X;. can be shown to have full rank as well, for
every k. O

Theorem 5 (The CS for the Square root function). Let
A, E € R™" with A having no eigenvalues onR™.

1. Consider the CS-iteration (cf. (13))
< lis oo S .
Xpp1 = > (Xk + X Xo), Xo=A+ihE. (44)

Then, for any h being sufficiently small, the iterates

X € C™" are nonsingular. Moreover, the following
hold:
lim Re(X,) = A" + @ (h?) @)
k—o0

k—o0

X
lim Im (7’“) =Lyr(AE)+O(HhY) (i)
2. Consider the CS-DB-iteration (cf. (16))

?k+1:%(?k+2k_1)’ ?0:A+ihE,

R SO S, (45)
Zen =32+ %), Zo=1n
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Then, for any h being sufficiently small, the iterates
Y. eC™" and Z;. € C"" are nonsingular. Moreover,

the following hold:

Jim Re(Y,) = AY?+ 0 (h%) @)
—00

lim Re(Z;) = A o) (ii)
—00
, Vi 2

khm Im 7 = Ly12(AE) + 0O (h°) (iii)
—00
: Zi 2

khm Im 7 = Ly-12(A, E) +0(h°) @iv)
—00

Proof. The proof of 1.) again works in the same way as
Theorem 3 and Theorem 4.

For 2.), we use the fact that the DB-iteration can be
0 A
I 0]
Thus, (45) can be obtained from the CS-sign-iteration
using

obtained by using the sign iteration (14) for X, =

] [0 A+zhE] 46)

as the initial value. Since X, is nonsingular by Theo-
rem 3, Y, and Z, have to be nonsingular as the (1,2)-
and (2,1)-block of)A(k. O

Note that the CS works for the square root directly as it is
an analytic function, so the results from Theorem 5 are
to be expected. Nevertheless, it might be beneficial to
use iterative methods over direct methods for comput-
ing the square root if A has some additional properties,
such as sparsity or group structure, which is of particular
interest in the following.

5 The Complex Step for the family of
Padé iterations

In this section, we try to extend the results obtained

in Section 4.2 to the family of Padé iterations. Recall

that for the sign and polar function, the Padé iterative
schemes are induced by the update function

sign

Xp,(I-X*q, (I-X>!
o0 {m( ) (I = X?)

Xp,I-X"X)q,I-X"X)"" @

Xry,(I-X*  sign
XrpI-X"X) o

In particular, g is a rational function in both cases and
thus sufficiently smooth for the CS-approach to be ap-
plicable to g. The following theorem presents our main
result concerning the CS and the family of Padé itera-
tions:

@)y |



GAMMAS 2022

Theorem 6 (The CS for the family of Padé iterations).

Let¢=1,A EcR™",

1. If m = n and A has no purely imaginary eigenval-
ues, consider the CS-Padé-sign-iteration (cf. (25))
Rpr = Xeree (1-XF), Ro=A+ihE. (47)

Then, for any h being sufficiently small, the iterates

X € C™" are nonsingular. Moreover, the following
hold:

Re (X}) = X + @ (h*) — sign(A) + 6 (h?) (i)
Im X = Ep +O(h*) — Lgon (A, B) +O(h*) (i)
h k sign /b 1
Here, X, and E,. are the iterates generated by the
iterative scheme (34) converging to sign(A) and
Lgign (A, E), respectively.
2. If m = n and A has full rank, consider the CS-Padé-
Polar-iteration (cf. (28) using the transpose)

Ry = Xer sy (I—X,f)?k), X,=A+ihE. (48)

Then, for any h being sufficiently small, the iterates
X € C"™" have full rank. Moreover, the following
hold:

Re (X)) = X +O(h*) — P(A) +O(h?) M
Im (%) =E,+0(h*) — Lyp(AE)+O(h%) (i)

Here, X;. and E,. are the iterates generated by the
coupled iterative scheme obtained from (28) (see
(33),(34) for h(X) = TpeI— xTx)) converging to
P(A) and Ly (A, E), respectively.

Additionaly, if Ae R™" isan automorphism (A€ G), the
structure is approximately preserved during both itera-
tions. That is, we have

dist (Re (X}),G) = min|Re (Xe)-Gll=0(h*), (49
eG
foreveryk=0.
Proof. We denote s(X) = X* and #(X) = X X and do

the proof for square A and E only. In the case of a full
rank rectangular A, t(A) is square and nonsingular and
similar arguments hold to perform an analogous proof.
We will show the identity

X=X, +ihE +O (W) +i0(h*), k=0  (50)
by induction, where X, E;. are the iterates generated by
the coupled scheme (34) or the corresponding scheme

T. Werner 59

for (22(A), Ly (A, E)) using E(X) =1, —XTX), respec-
tively. The initial matrix A is assumed to satisfy the con-
ditions stated in 1. and 2. for the desired function. Since
X, and E}. are known to converge [16], showing (50) im-
plies (i) and (ii). The approximate structure preservation
stated in (49) then follows immediately from (50).

For k =0, we set XO = A+1ihE, choose f(X) to be either
s(X) or ¢(X) and compute the first CS-iterate

-~

X, = 5zorw(l—f()?o))

(A+ihE)re (I- f(A+ihE)).

Since f and r,, are Fréchet differentiable, we have
f(A+ihE) = f(A)+ihL;(A,E)+0(h*) +i0(h°) (51)

and

ro¢(I- f(A+ihE))

Erpe (1= F) +ihLpA B + 0 (1) +i0(h))

= ryo (I= f(A) +ihL,,, (1= f(A), Ly (A, B)

+ohA)+ioh®) (52)

using Taylors formula. In consequence, we obtain the
first CS-iterate
(A+ihE)re, (I- f(A+ihE))
(A+1RB) 1o (T- F(A) +0H)
+ihLy, (1= (), Lp(A )| +i0(hY)]
= Arg (1= F)+ih|Ere (1 f(A)
+ ALy, (1= £, LpA B))| + 00 + i0(h*)

C xi+0")+in(B o).

Since X; is obtained from the standard Padé-scheme
(25) or (28), it again satisfies 1. or 2., respectively.
Due to the relation

X, =X, +0(h)

and sign(X) and £2(X) being continuous on the given
subsets (see the thoughts in Remark 1), X; satisfies 1. or
2. as well for h being sufficiently small.

For k = 0, let X, = X, + i hE; + G (h*) + i@ (h®). Then, we
have

Xy 2 f(Xk +ihE, + G (%) + i@’(h3))

= f(Xp) +ihLp(X, EQ) +O(h%) +i0(h°)
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and

ree(I- F(Xp)
=Ty (I—f(Xk) +ihL;(Xy, E) +Oh%) + iﬁ(h3))

B e (1- X)) + by, (I S X, Ly (X Ek))

+0(h*) +i0(h%).
Using these computations, the (k+1)-st CS-iterate reads

Xip1 = Xeree(I-f(Xp)
(50)

2 (Xe+ihE+ 00 + i0(1)

: [rN (I-f(Xp) +0 (%)

iRy, (1= FX, Ly (X, Ep)) +i0(h%)|
= Xere(I- (X)) + ih[EkrN (I-f(Xp)
+ XLy, (1= FOX0, Ly (X )|

+Oh?) +i0oh>)

39 53)

Xpoy +O(RD) +ih (Ek+1 + @’(hz)) ,
concluding the induction.
Taking a closer look at (53), it is immediate to see that

Re (X}) = X +O(h*),Vk=0 (54)
and for every k = 0, we can find a suitable real matrix
B, € R™" such that Re(X;) = X; + h®By. Thus, for A
being an automorphism, the CS-iterates X, satisfy

54

dist (Re(X,),G) min|| X + W B - Gl|
€

< min(||X; -Gl +h*|IB
min (11X~ Gl + 7211 By

© BB,
where (*) follows from X, being an automorphism by
Lemma 2. Now we define || B;|| := C and conclude

dist (Re (X;),G) < Ch* = @ (h?).
O

Due to Theorem 6, we now have an approach for eval-
uating the sign or polar function at a given point and
computing the Fréchet derivative in a given direction
simultaneously, that has a few benefits compared to the
approaches from Section 3.3.2 and Section 4.2: First of
all, it is very easy to implement, as long as one is using a
programming language that is able to handle complex
arithmetics. As opposed to the coupled iterations from
Section 3.3.2, where computing the Fréchet derivative
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Lg(Xk, E,) is necessary in every Newton step, evaluat-
ing the rational function r,,(I — X*) (or r,p(I- X' X),
respectively) at a complex argument efficiently is the
main computational effort required in the CS scenario.
Secondly, the parameter ¢ can, in theory, be chosen
freely to achieve the order of convergence one wants to
accomplish. However, in our experiments, we observed
that choosing ¢ = 3 leads to significant numerical prob-
lems, since forming higher powers of X; can lead to ill-
conditioned matrices p(I — X 2) and, more importantly,
q - X?), that are used for solving

roeI—X*g,(I- X% =p,I-X%

to obtain r,, (I - Xz). Thus, we propose to choose ¢ =
1,2, which still leads to an order of convergence of three
or five, respectively, which is superior to the quadratic
order of convergence of the standard Newton methods
from Section 4.2.

The third benefit is that one does not have to know the
Fréchet derivative Lg (X) explicitly, which, in some appli-
cations, might be difficult due to g being a function that
is demanding to differentiate or not given in a closed
form.

Finally, choosing h as small as necessary to achieve the
structure preservation property of the Padé scheme does
not affect the quality of the CS-approximation, as op-
posed to using finite differences. As a consequence, the
real part of X, will be as close to an automorphism as
one desires.

To conclude with the family of Padé iterations, we now
present the result for the Padé square root iteration. The
proof works in the same way as Theorem 6 or can be
diretly obtained from (47) using XO as in (46):

Theorem 7 (The CS for the Padé Square root iteration).
Let0 =1, A E € R™", with A having no eigenvalues in
R™. Consider the CS-iteration (cf. (27))

?k+1=?kr[[(1—2k?k), ?0=A+l.hE,

e (55)
Zin =TI =2 Y 2y, Zy= 1.

Then, for any h being sufficiently small, the iterates Y} €
C™" and Z,. € C"" are nonsingular. Moreover, the fol-
lowing hold:

Re(Y}) = Y + G (h*) — AV + 0(h%) @)
Re(Z) = Z +O(h*) — A+ 0(h?) (ii)

~

I E _ 2 2
m| =% | =Dp+0(h") = Lye(A E)+O(h") (i)
Im (%) =Fe+0(h*) — Ly-12(AE)+0(h*)  (iv)

Here, D, and F. are the iterates generated by the coupled
iterative scheme obtained from (34) for h(X) = h(Y, Z) =
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ree(I — ZY) converging to LX1/2 (A E) and LX—I/Z (AE),
respectively. Additionaly, if A € G is an automorphism,
the structure is approximately preserved for Y, and Z,..
That is, we have

dist (Re(Y;),6) = 6(h*) and dist(Re(Z;),G) = 6(h?).

5.1 A note on higher derivatives

We want to note, that the CS can be used in combination
with the coupled iterations discussed in Section 3.3.2 to
obtain iterative CS-schemes for higher derivatives. For
the second derivative, assume that g is at least twice
differentiable and compatible with the CS and consider
the coupled scheme

X =8X0,  Xo=4,

56
B = Lg(Xy, E),  Eg=E, 0

for computing f(A) and L f(A, E). Then, given a sec-
ond direction matrix D, the recursive definition (9) of
the Fréchet derivative enables the computation of the
second Fréchet derivative L}Z] (A E, D) by

Lf(A+ihD,E)

21 4. —
Lf (A,E,D)—Im( 7

) +0(h*), (57
assuming that f is analytical. Additionaly, the order of
the directions E and D is not important and we have
L?] (A4 E, D) = L?] (4; D, E)[19]. However, establishing
(57) for the sign and polar mapping can be done using
(56) if done correctly. To be more precise, one can show
that the coupled CS-iteration

Xir1 = 8(X}), Xo=A+ihD, 58)
Ejp1 = Lg(Xy, Ey), Ep=E,
converges as follows:
Re (X;) — f(A) +E (h%) 6
Re (Ej) — Lf(A,E) + O (h) (ii)
X
Im(ﬁ) — L;(A,D)+0(h?) (i)
E
Im (7") — L2(A;D, By + 01 (iv)

In theory, this procedure can be used for third or higher
order derivatives as well: Given that one has access to an
iterative scheme for computing the first k derivatives of
a function, the CS can be used for the iterate converging
to f(A) to obtain an iterative scheme for the (k + 1)-st
derivative and any of the first k derivatives exchanging
any direction Ej,..., E; with the new direction matrix
E, .. If one chooses g to be of the Padé type, automor-
phism structure can be preserved for X}, in any case.
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In some cases, it might be beneficial to consider this ap-
proach as opposed to the state of the art block-method
established by Higham [19, Alg. 3.6] if one has access to
sufficiently high derivatives of g and can evaluate them
efficiently.

6 Numerical experiments

For our experiments, we have tested the quadratic New-
ton iterations introduced in Section 3.1 and the cubic
and quintic Padé iteration. For the matrix sign, the poly-
nomials p,(I - X2) and g,(I - Xz) read

d—x? o 30 x* =1(cubic) o
pe ~|51+10X%+X* ¢=2 (quintic)
and
doxy o 3Xx° ¢ =1 (cubic) 60)
e | 1+10x%+5x* ¢=2(quintic)’

We have tested higher order methods (I = 3,4) as well,
but we observed numerical instabilities for / > 2 since
the higher powers of X lead to ill-conditioned systems
of equations when trying to solve (26) for r,,(I - X 2 ) if
the condition number of X exceeds the range of 10% to
10°.

We use the direct approach from Section 3.3.1 for com-
puting F(A) and Ly(A, E) up to high accuracy and stop
our iteration, whenever the relative errors

_ X = F(A)lp

_Eg—Le(A B)lg
k IF(A)|

T ILR(A Bl

(61)

in X; and E;, (Re(X ) and Im (%), respectively) satisfy

Ry <7 and Si<r, 7=10"%

To create a random automorphism of desired size and
condition number, we use software designed by Higham
and Jagger. Higham’s algorithm for pseudo-orthogonal
matrices is available through the gallery-command
in MATLAB 2021a, the algorithms for symplectic and
perplectic matrices that we use can be obtained from
[24]. The direction matrix E is chosen randomly using
MATLAB’s rand () -command.

The results displayed in Figure 1 show the convergence
behaviour of the quadratic CS-sign iteration (40) and the
corresponding CS-Padé iterations (47) for £ = m =1 (cu-
bic) and ¢ = m = 2 (quintic). The matrix A is arandom
symplectic 400-by-400 matrix with relative condition
number cond (A)=80, the CS-stepsize & is chosen to be
of order of machine precision (= 107'%). One can see
that the relative error decreases with the same order in
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Relative residual of Frechet derivative
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Figure 1 — Convergence of function- and Fréchet-iterates for matrix sign
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Figure 2 — Distance to Symplectic group and difference between coupled and CS-iterates for matrix sign

the function iterates and the Fréchet iterates in every
step and that the Padé iterations converge significantly
faster than the standard quadratic iterations, which is
due to them having a higher order of convergence. The
tolerance of 7 = 1072 is achieved after six steps by the
quintic iteration, while the quadratic iteration requires
twelve steps for convergence. The cubic iteration con-
verges after eight steps.

In Figure 2, the absolute error in the automorphism con-
dition IIXkT M X, — M||r and the relative error between
the CS-iterates and the coupled iterates are displayed.
The benefit of the Padé iteration becomes clear in the
left plot, where one can observe that the quadratic it-
eration converges into the symplectic group when the
iterates converge, while the iterates generated by the
two Padé-schemes are symplectic up to an absolute er-
ror of 102 in every step. On the right hand side, we plot

the relative error

|

between the CS-iterates and the coupled iterates. Note
that Theorem 6 states an error of order hz, which should
be around 10~? for h being approximately machine pre-
cision. For numerical reasons, the error is not as small
as expected, nonetheless, the two approaches appear
to generate the same iterates up to our desired conver-
gence accuracy of 7 = 107% in the case of the quintic
iteration and up to even higher accuracy in the cubic
and quadratic case.

For all the iterative schemes discussed in this paper,
we tested the scaling techniques presented by Higham
[22] but did not investigate any significant convergence
speed or stability improvements justifying the computa-
tional effort required for computing the scaling parame-
ters.

|1~ Re (X [+ || B~ 1m ()
ko IF(A)lg+1Lp(A, BE)ll g

@)y |



GAMMAS 2022

7 Conclusion and further research

In this paper, we discussed the sign, square root and
polar function and compared a variety of direct and it-
erative methods for evaluating them. Our main focus
was on combining the iterative schemes with the CS
to obtain iterative procedures for evaluating the func-
tions and computing the Fréchet derivative simultane-
ously. We extended the results of Al-Mohy and Higham
concerning Newton’s method for the matrix sign to the
square root and polar function. Using a similar ap-
proach, we were then able to combine the CS and the
family of Padé iterations, which provided us an itera-
tive method for evaluating the functions and Fréchet
derivatives while approximately maintaining automor-
phism group structure in the process. By proving our
main result Theorem 6, we also used and showed that
the CS-iterations are in fact equal to the coupled iter-
ates discussed by Gawlik and Leok (up to @’(hz)). To
conclude with our contribution, we put a quick note
on how the connection between the coupled and CS-
iterations can be used to obtain inexact methods for
higher Fréchet derivatives. We finished off with some
numerical experiments emphasizing our theoretical re-
sults.

The usage of the Complex Step in combination with iter-
ative schemes can be a point of further research, where
some effort can be put into extending our ideas to differ-
ent matrix functions or iterative approaches and have a
closer look on higher derivatives. We will further pursue
the application of the CS to matrix valued problems as
it provides an easy to implement way of solving Fréchet
derivative related problems.

Code Availability: Source Code for the iterations dis-
cussed and tests performed in this paper is available
from

DOI: 10.5281/zenodo.5776027.
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