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In addition, building on existing results, schemes with
an expected order of convergence of three and four are
established and numerically tested on parabolic prob-
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1 Introduction

The modeling of physical processes often leads to time-
dependent partial differential equations (PDEs). For the
numerical solution of such problems, usually weak for-
mulations are derived. This allows the establishment
of solution theories and, eventually, the application of
discretization methods, leading to the computation of
approximate solutions. As the description of the tempo-
ral behavior is of particular interest, we will consider the
behavior in time and space separately. We will make use
of the possibility to express PDEs in a weak form as ordi-
nary differential equations with values in Banach spaces
(abstract ODEs). Related solutions are abstract func-
tions and map from a finite time interval to a Banach
space, which itself contains functions describing the
spatial behavior. When modeling PDEs, which underlie

additional constraints, one obtains partial differential-
algebraic equations (PDAEs), which are also called ab-
stract differential-algebraic equations (abstract DAEs).
The subject of this article are PDAEs of the form

u̇(t )+A u(t )+B∗λ(t ) = f (t ,u(t )) in V ∗, (1a)

Bu(t ) = g (t ) in Q∗ (1b)

with a nonlinear right-hand side f . They are called semi-
linear parabolic problems, as the constraints given in
eq. (1b) are linear, while eq. (1a) contains a nonlinear-
ity. In the PDAE (1), B is called the constraint oper-
ator, which couples eq. (1a) and (1b) with the help of
the Lagrange multiplier λ. This article focuses on the
derivation of time integration schemes by so-called ex-
ponential integrators building on the recent article [2].
These schemes provide a useful tool for the time dis-
cretization, as they allow large time steps since they are
not restricted by CFL conditions. This means no fixed
relations between the spatial and temporal mesh sizes
have to be met in order to obtain stable solutions. The
main contribution of this article is the establishment of
schemes with an expected order of convergence of three
and four.

This article is structured as follows. In Section 2, we
provide further insights into the PDAE (1) and men-
tion the assumptions required for meaningful solutions
while providing material for further studies. Then, a
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model example is introduced, which is used for the nu-
merical simulations of this paper. In Section 3, the idea
behind the application of exponential integrators is ex-
plained. As this does not yield straightforward methods,
a practical algorithm is derived in Section 3.1. Build-
ing on this, schemes of higher order are introduced in
Section 3.2, while providing the tools for the derivation
of further algorithms. The results of numerical simula-
tions of the introduced exponential integrators are then
presented in Section 4. Finally, a summary and a short
outlook are given in Section 5.

2 Preliminaries

First, we want to give more insight into the PDAE (1) and
state the assumptions required to obtain meaningful
solutions. We will provide the necessary definitions for
the scope of this article and give references for further
studies. Then, we will state an example of a PDE that
can be weakly formulated as a PDAE of the form (1) and
will serve as a model for our numerical simulations in
Section 4.

The PDAE (1) is considered on a finite time interval
[0,T ], T > 0. Therefore, we are looking for functions
u : [0,T ] → V and λ : [0,T ] → Q, such that the PDAE
(1) holds true with initial condition u(0) = u0. Further-
more, V and Q denote Hilbert spaces with their dual
spaces V ∗ and Q∗, respectively. As it allows more gen-
eral right-hand sides, the space V is part of an evolution
triple V ,H ,V ∗, which is also known as a Gelfand triple.
Figuratively speaking, this is a triple of nested spaces
and for an introduction of this concept we want to re-
fer to [9, Ch. 23.4]. As a consequence, H is the natural
space for the initial data. Following [2], we will make
the slightly stronger assumption u(0) = u0 ∈ V and re-
quire the consistency condition Bu0 = g (0). The oper-
ator A ∈L (V ,V ∗) is assumed to be linear, continuous
and satisfies a Gårding inequality on Vker := kerB ⊆ V ,
cf. [9, Ch. 23.7]. The linear and continuous operator
B ∈L (V ,Q∗) has to satisfy an inf-sup condition, which
implies that B has a linear, continuous right-inverse
denoted by B− : Q∗ → V . For an introduction to inf-
sup stability, see, for example, [3, Ch. III.4]. Finally,
the right-hand sides are assumed f ∈ L2(0,T ;V ∗) and
g ∈ H 1(0,T ;Q∗) with some additional assumptions on
the nonlinear part, namely the classical Carathéodory
condition and a boundedness condition, cf. [2], leading
to the existence of a unique solution. By definition of
the above spaces, f and g take values in V ∗ and Q∗,
respectively, almost everywhere in [0,T ] and a formal
introduction is given in [9, Ch. 23].

As a model example fitting into the framework of

the PDAE (1), we consider the following semi-linear
parabolic problem with nonlinear dynamic boundary
condition

u̇ −∇· (κ∇u
)= fΩ(·,u) inΩ, (2a)

u̇ −β∆Γu +∂κ,ηu +αu = fΓ(·,u) on Γdyn, (2b)

u = 0 on ΓD, (2c)

on the finite time interval [0,T ] with the initial condition
u(0) = u0 on a bounded Lipschitz domainΩwith bound-
ary Γ= Γdyn∪̇ΓD. Therein, ∂κ,ηu := η · (κ∇u) denotes the
normal derivative and∆Γ the Laplace-Beltrami operator,
cf. [4, Ch. 16.1], which is figuratively speaking an analo-
gon of the Laplace operator for the surface of a domain.
Arising from the requirements to obtain a meaningful
weak formulation, the following assumptions are made
on the parameters: κ ∈ L∞(Ω) with κ(x) ≥ cκ for a con-
stant cκ > 0, α ∈ L∞(Γdyn) and β ≥ 0 is a real constant.
Note, that u and all occurring parameters apart from β

may depend on the spatial variable in (2). We emphasize
that both, eq. (2a) and the dynamic boundary condition
eq. (2b) may include linear or nonlinear reaction terms.
Following [1], the PDE (2) can be formulated weakly as
a PDAE of the form[

u̇
ṗ

]
+

[
K

(β ·K Γ+α)

][
u
p

]
+B∗λ=

[
fΩ
fΓ

]
in V ∗,

B

[
u
p

]
= g in Q∗,

which we require to hold a.e. in [0,T ] with initial condi-
tion [

u(0)
p(0)

]
=

[
u0

p0

]
∈ V .

Therein, the notation of the time dependence was omit-
ted and p denotes an auxiliary variable modelling the
dynamics on the boundary. Clearly, this PDAE is of the
form (1) and therefore fits into our considered frame-
work. In the above, V is defined by the product space
H 1(Ω)×H 1/2(Γdyn) forβ= 0 and by H 1(Ω)×H 1(Γdyn) for

β> 0. The pivot space is given by H := L2(Ω)×L2(Γdyn)

and the space Q by H−1/2(Γdyn). Furthermore, the cou-
pling operator is defined by B

[u
p
]

:= p −u|Γdyn
∈Q∗ for[u

p
] ∈ V . Lastly, the operator A is given by

A :=
[
K

(β ·K Γ+α)

]
,

where 〈K u, v〉 := ∫
Ω(κ∇u) · ∇v dx for all u, v ∈ H 1(Ω)

and, similarly, 〈KΓp, q〉 := ∫
Γ∇Γp ·∇Γq dσ for all p, q ∈

H 1(Γ) denotes the weak form of ∆Γ. We revisit this
model example in the numerical simulations in Sec-
tion 4.
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3 Exponential Integrators
The PDAE (1) allows the application of exponential inte-
grators for semi-linear parabolic problems with linear
constraints, which are introduced in [2]. As it is impor-
tant for the construction of higher-order schemes, we
explain the idea behind it. In the following, we assume
without loss of generality that A is elliptic on Vker, cf. [3,
Ch. III.4]. This is not a restriction, as we can add the term
κu to A and add it to the nonlinearity f accordingly in
eq. (1a). The constant κ ≥ 0 has to be chosen appro-
priate to the Gårding inequality leading to an A that is
elliptic on Vker. The derivation presented in [2] makes
use of the fact that the space V can be decomposed into

V = Vker ⊕Vc with Vker := kerB, Vc := imB−.

As the choice of the complement space Vc is not unique
in general and allows a certain freedom in the modeling
process, it is here chosen as

Vc := {u ∈ V | A u ∈ V 0
ker}

= {u ∈ V | 〈A u, w〉 = 0 for all w ∈ Vker}.

Solutions of the PDAE (1) then decompose into u =
uker +uc and the latter part is fully determined by the
constraint (1b), that is by uc(t) = B−g (t) ∈ Vc. The re-
maining part uker is then determined by considering
the restriction of eq. (1a) to the test space V ∗

ker. This is
meaningful, as the restriction of the operator A yields
an operator Aker : Vker → V ∗

ker and the right-hand side
is well-defined as a functional in V ∗

ker by restriction of
test functions to Vker ⊆ V . By the choice of the comple-
ment space Vc, the term A uc vanishes and we therefore
obtain the abstract ODE

u̇ker +Akeruker = f (t ,uker +uc)− u̇c in V ∗
ker. (3)

The solution to (3) can be obtained by applying the vari-
ation of constants formula, which requires to interpret
the right-hand side as an element of H ∗

ker. This means
that the right-hand side is restricted to test functions
in Hker, which is the closure of Vker with respect to the
norm of H . This yields the solution formula

u(t ) = uc(t )+uker(t )

=B−g (t )+e−tAker uker(0)

+
t∫

0

e−(t−s)Aker
(

f
(
s,uker(s)+uc(s)

)− u̇c(s)
)

ds.

For the approximation of the above formula, we intro-
duce a partition of the time interval [0,T ] by

0 = t0 < t1 < . . . < tN = T.

Assuming a uniform partition with step size τ for sim-
plicity, this leads to

u(tn+1) =B−g (tn+1)+e−τAker
(
u(tn)−B−g (tn)

)
+

tn+1∫
tn

e−(tn+1−s)Aker
(

f
(
s,u(s)

)− u̇c(s)
)

ds. (4)

It remains to discretize the integral term of eq. (4) in
a way that yields an explicit scheme. This is achieved
by applying an appropriate quadrature rule, which is
the idea behind exponential integrators. For more in-
formation on exponential integrators, we refer to [7],
but also revisit them in Section 3.2 when constructing
discretization schemes of higher order. The result of
this procedure can be expressed by means of recursively
defined ϕ-functions

ϕ0(z) := ez , ϕ j+1(z) :=
ϕ j (z)−ϕ j (0)

z
, (5)

for j ≥ 0. The values for z = 0 are given by ϕ j (0) = 1/ j !.
The choice z =−τAker, for τ> 0, yields

ϕ0(−τAker) = e−τAker

and we therefore obtain

−τϕ j+1(−τAker)h = (
ϕ j (−τAker)−(1/ j !) · id)

A −1
kerh (6)

for all h ∈H ∗
ker, where id: Vker → Vker denotes the iden-

tity operator, cf. for instance [8, Ch. 11.1]. Note, that
the invertibility of Aker follows from the well-known
Lax-Milgram lemma as A is elliptic on Vker. These ϕ-
functions are beneficial for computational purposes, as
their action on a vector can be computed in an efficient
manner via Krylov subspace methods as explained in [2,
Sec. 5.1].

3.1 The Exponential Euler Scheme

For an illustration of the process of obtaining practi-
cal algorithmic methods by the procedure mentioned
above, we explain this for the exponential Euler scheme
using the abbreviation gn := g (tn) in the following. In
addition, un denotes the approximation of u(tn). Fol-
lowing [2], this method is obtained by simply choosing
the evaluation of f

(
s,u(s)

)− u̇c(s) in eq. (4) at the begin-
ning of the interval as a quadrature rule, which yields
the scheme

un+1 =B−gn+1 +ϕ0(−τAker)(un −B−gn)

+τϕ1(−τAker)
(

f (tn ,un)−B−ġn

)
. (7)

Note that ϕ1(z) = ∫ 1
0 e(1−s)z ds. By using the recursion

formula (6), this can be traced back to a single evaluation
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ofϕ0 and a number of saddle point problems. That is, by
applying eq. (6) for j = 0, the exponential Euler scheme
equivalently reads

un+1 =B−gn+1 +ϕ0(−τAker)(un −B−gn −wn)+wn .

Therein, the auxiliary variable wn ∈ Vker is given by the
solution of the stationary saddle point problem

A wn +B∗ν= f (tn ,un)−B−ġn in V ∗, (8a)

Bwn = 0 in Q∗. (8b)

The evaluation B−gn can be obtained as the solution of
the stationary saddle point problem

A x +B∗ν= 0 in V ∗, (9a)

Bx = gn in Q∗, (9b)

and similarly for B−gn+1 and B−ġn , guaranteeing

x =B−gn ∈ Vc.

For a complete algorithm, it remains to compute the
action of ϕ0(−τAker) on a vector h = un −B−gn −wn .
The corresponding linear PDAE formulation reads

ż(t )+A z(t )+B∗µ(t ) = 0 in V ∗, (10a)

Bz(t ) = 0 in Q∗ (10b)

in [tn , tn+1] with initial condition z(tn) = h. This finally
leads to the following algorithm, which converges with
order one for sufficiently regular right-hand sides [2].

Algorithm 1 Exponential Euler scheme

Input: step size τ, consistent initial data u0 ∈ V ,
right-hand sides f , g

1: for n = 0 to N −1 do
2: compute B−gn , B−gn+1 and B−ġn by (9)
3: compute wn by (8)
4: compute z as the solution of (10) on [tn , tn+1]

with initial data z(tn) = un −B−gn −wn

5: set un+1 =B−gn+1 + z(tn+1)+wn

6: end for

Remark 1. In each step, Algorithm 1 only requires a
single computation of the action of ϕ0(−τAker) on a
vector h and the solution of four saddle point problems
(three starting from the second step on). As mentioned
earlier, the former can be done efficiently using Krylov
subspace methods, as explained in [2, § 5.1]. The latter
only requires the solution of linear systems such that no
Newton iteration is necessary.

3.2 Higher-Order Schemes

In a similar fashion to the derivation of the exponen-
tial Euler scheme in the previous subsection, approx-
imation schemes with a higher order of convergence
can be obtained by using a better approximation for
the integral term in eq. (4). This leads to the applica-
tion of explicit exponential Runge-Kutta methods for
semi-linear parabolic problems, which are more general
explicit exponential integrators and have to be adjusted
to fit into the constrained framework of the PDAE (1).
The convergence of these methods was already analyzed
up to order four in [5, 6] and, therefore, the usage of the
proposed schemes of these papers suggests resulting
algorithms of a similar order.

In general, these methods for the unconstrained case,
that is for

v̇ +Akerv = f̃ (t , v) in V ∗
ker,

can be described by Butcher tableaus with the help of
the in eq. (5) mentioned ϕ-functions, cf. [5]. For illustra-
tion purposes, we recall the recursion formula resulting
from an explicit s-stage Butcher tableau of the form

0

c2 a2,1
...

...
. . .

cs as,1 · · · as,s−1

b1 · · · bs−1 bs

Therein, the bi are called weights, the ci ∈ [0,1] are
called nodes and c1 = 0 is necessary to obtain an ex-
plicit scheme. Note, that the ai , j and bi will be some
combinations of evaluations of ϕ-functions. For a uni-
form mesh with step size τ, the resulting method then
reads

vn+1 =ϕ0(−τAker)vn +τ
s∑

i=1
bi ki ,

where the ki are given recursively by

k1 = f̃ (tn , vn),

ki = f̃
(
tn + ciτ,ϕ0(−τAker)vn +τ

i−1∑
j=1

ai , j k j

)
.

Notation 2. In the following, we use the notation

ϕ j ,c :=ϕ j (−cτAker)

for c ∈ [0,1], j ≥ 0 and

tn+c := tn + cτ, gn+c := g (tn + cτ)

for n ∈ {0,1, . . . , N −1} and similarly for ġ .
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Remark 3. For the exponential Euler scheme, which was
constructed in Section 3.1, the corresponding Butcher
tableau reads

0

ϕ1,1

In [2], convergence of order one was proven for suffi-
ciently regular right-hand sides. Also, a class of two-
stage methods was transferred to the PDAE case by us-
ing the decomposition of solutions and the recursion
formula (6) similar to the derivation of the exponential
Euler scheme. For a detailed derivation and depiction
of the algorithm, we want to refer to the original source.
The related Butcher tableau reads

0

c2 c2ϕ1,c2

ϕ1,1 − 1
c2
ϕ2,1

1
c2
ϕ2,1

(11)

and convergence of order 3/2 was proven for the choice
c2 = 1, which requires the least amount of saddle point
problems which need to be solved. Furthermore, con-
vergence of order two was proven under stronger regu-
larity assumptions.

For the derivation of a method with expected order of
convergence three, we use the following scheme, which
has order three for semi-linear parabolic problems ac-
cording to [5]:

0

c2 c2ϕ1,c2
2
3

2
3ϕ1, 2

3
− 4

9c2
ϕ2, 2

3

4
9c2
ϕ2, 2

3

ϕ1,1 − 3
2ϕ2,1 0 3

2ϕ2,1

As it leads to the minimal amount of saddle point prob-
lems, c2 = 2/3 is chosen. By repeatedly applying recur-
sion formula (6) for j = 0 and j = 1, the recursively de-
fined ki are then given by

k1 = f
(
tn ,un

)−B−ġn ,

k2 = f
(
tn+ 2

3
,ϕ0, 2

3
(un −B−gn −w1)+w1 +B−gn+ 2

3

)
−B−ġn+ 2

3
,

k3 = f
(
tn+ 2

3
,ϕ0, 2

3
(un −B−gn −w1 −3/2(w ′

1 −w ′
2))

+w2 +3/2(w ′
1 −w ′

2)+B−gn+ 2
3

)−B−ġn+ 2
3

.

For each 1 ≤ i ≤ 3, the auxiliary variable wi ∈ Vker is given
by the solution of the stationary saddle point problem
(8) with right-hand side ki and w ′

i is given by the solu-
tion of the stationary saddle point problem

A w ′
i +B∗ν= 1

τ
wi in V ∗, (12a)

Bw ′
i = 0 in Q∗. (12b)

Inserting the above, the related formula reads

un+1 =B−gn+1 +ϕ0,1

(
un −B−gn −w1 −3/2(w ′

1 −w ′
3)

)
−1/2w1 +3/2w3 +3/2(w ′

1 −w ′
3).

The resulting algorithm for this three-stage exponential
integrator scheme is shown in Algorithm 2.

Algorithm 2 A three-stage exponential integrator

Input: step size τ, consistent initial data u0 ∈ V ,
right-hand sides f , g

1: for n = 0 to N −1 do
Step 0

2: compute B−gn , B−gn+ 2
3

, B−gn+1, B−ġn and
B−ġn+ 2

3
by (9)

Step 1 (k1)
3: compute w1 by (8) and w ′

1 by (12) with rhs 1
τk1

Step 2 (k2)
4: compute z as solution of (10) on [tn , tn+ 2

3
] with

initial condition z(tn) = un −B−gn −w1

5: set k2 = f
(
tn+ 2

3
, z(tn+ 2

3
)+w1 +B−gn+ 2

3

)
−B−ġn+ 2

3

6: compute w2 by (8) with rhs k2 and w ′
2 by (12)

with rhs 1
τk2

Step 3 (k3)
7: compute z as solution of (10) on [tn , tn+ 2

3
] with

initial condition
z(tn) = un −B−gn −w1 − 3

2 (w ′
1 −w ′

2)
8: set k3 = f

(
tn+ 2

3
, z(tn+ 2

3
)+w2 +3/2(w ′

1 −w ′
2)

+B−gn+ 2
3

)−B−ġn+ 2
3

9: compute w3 by (8) with rhs k3 and w ′
3 by (12)

with rhs 1
τk3

Step 4 (update un)
10: set un+1 =B−gn+1 + z(tn+1)+ 1

2 w1 + 3
2 w ′

1

+3
2 w3 + 3

2 w ′
3

11: end for

A method with expected convergence order four can
be constructed similarly. Note that an explicit exponen-
tial integrator of at least five stages is required to obtain
convergence order four for semi-linear parabolic prob-
lems, as pointed out in [5]. Therein, the Butcher scheme

0
1
2

1
2ϕ1, 1

2
1
2

1
2ϕ1, 1

2
−ϕ2, 1

2
ϕ2, 1

2

1 ϕ1,1 −2ϕ2,1 ϕ2,1 ϕ2,1
1
2

1
2ϕ1, 1

2
− 1

4ϕ2, 1
2
−a5,2 a5,2 a5,2

1
4ϕ2, 1

2
−a5,2

ϕ1,1 −3ϕ2,1 +4ϕ3,1 0 0 −ϕ2,1 +4ϕ3,1 4ϕ2,1 −8ϕ3,1

(13)

with

a5,2 =
1

2
ϕ2, 1

2
−ϕ3,1 +

1

4
ϕ2,1 −

1

2
ϕ3, 1

2
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Figure 1 – Convergence history for the energy error in x = [u; p] measured in the (discrete) A -norm with spatial mesh
size h = 1/32. The dashed lines show convergence rates one to four.

was proposed for a method of order four and is, there-
fore, after being translated to the constrained PDAE case
of this paper, used as a method with an expected order
four in the following numerical simulations. As the re-
sulting algorithms become more and more technical
with an increasing number of steps, its detailed descrip-
tion is omitted here. The derivation is similar to the just
presented three-stage scheme and can be taken from the
code used for the numerical simulations in Section 4.

4 Numerical Simulation
For the numerical simulation using exponential integra-
tors, we want to revisit the example of dynamic bound-
ary conditions, which was presented in Section 2. There-
fore, we choose the same setting as in [2], since it satis-
fies the assumptions needed for the convergence results
proven in [2] and extend it by the higher-order meth-
ods presented in Section 3. We choose the time interval
[0,T ] = [0,0.7], the unit square Ω = (0,1)2 as a domain
and Γdyn = (0,1)× {0} implying ΓD = ∂Ω\Γdyn. Further-
more, α = 1, β = 0 and κ = 0.02. The right-hand sides
are chosen g = 0, fΩ = 0 and

fΓ(t , p)(x) =−3cos(2πt )sin(2πx)−p3(x).

The initial condition is set to

u(0) = u0 = sin(πx)cos(5πy/2)

and p0 is chosen in a consistent manner, that is

p(0) = p0 = u0|Γdyn
.

For the spatial discretization, bilinear finite elements
on a uniform mesh are chosen with spatial mesh size

h = 1/32. Figure 1 shows the convergence history of the
discrete energy error, which is the (discrete) A -norm
of the approximate solution, for the exponential Euler
scheme (Algorithm 1), the second-order scheme result-
ing from the Butcher tableau (11) for c2 = 1, the three-
stage scheme of Section 3.2 (Algorithm 2) and the five-
stage scheme resulting from tableau (13). It can be seen,
that all schemes seem to meet the expected order of con-
vergence. Due to computational errors of the five-stage
scheme, its order of convergence is slightly reduced for
small time steps. Since this scheme is used to compute
the reference solution, it is most likely responsible for
the asymptotical behavior for the errors around 1×10−7.
Note, that those errors occur for all of the shown meth-
ods, but the error size decreases for smaller stages of the
corresponding Butcher tableau (about 1×10−10 for the
three-stage and 1×10−13 for the two-stage scheme), and
therefore this behavior only results from the five-stage
scheme in Figure 1.

5 Summary and Outlook

Exponential integrators were introduced, and the idea
how to obtain higher-order schemes was explained and
shown for schemes up to order four. Numerical sim-
ulations of a model problem with dynamic boundary
conditions fortify the conjectured convergence orders. It
remains to prove the convergence of the depicted meth-
ods of supposed order three and four, which is likely to
be possible in a similar manner to the proofs given in
[2]. Furthermore, an optimization of the shown algo-
rithms might be possible to reduce the errors for small
step sizes τ, which depend on the number of stages of
the related schemes. Another point of interest could be



20 J. Wiedemann GAMMAS 2020

the investigation of the in practice possible step sizes of
exponential integrators, as they still have a dependency
on the nonlinearity according to [2].

Code Availability: The Matlab source code of the im-
plementations used to compute the presented results
can be obtained under the

doi: 10.14464/gammas.v2i1.421.
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