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Abstract: Resonance tracking is an approach to mea-
suring concentrations, forces or viscosities. Such vibration-
based measurements appear to be particularly well suited
for applications at the micro- or even nano-scale. In or-
der to monitor more than one parameter or parameter
ratio simultaneously, a new kind of resonance tracking is
developed with methods from adaptive control. It com-
bines parameter estimation methods and state observers
to adopt the resonant excitation to vibrating systems with
time-varying parameters. At the same time, these pa-
rameters are measured. This approach is exemplified at
two single-input single-output (SISO) systems: a linear
spring-mass-damper oscillator and a weakly nonlinear
oscillator of Duffing-type.

Keywords: vibration-based measurement, resonance
tracking, adaptive control, parameter estimation

1 Introduction

If we consider a guitar string that is stretched, we know
its pitch will be higher than in the unstretched condi-
tion. Therefore we should be able to conclude the tone
of the string from its stretch. Varying system parameters,
such as mass, damping, stiffness or functional expres-
sions of them influence the vibrations and therefore
enable vibration-based measurements. Typical applica-

tions for this principle are fault detection [13], oscillat-
ing rheometers [5] or tissue differentiation [9]. Micro-
electromechanic systems (MEMS) are an emerging field
where this principle is applied to gyroscopes [15], con-
centration measurements [8], identification of biomark-
ers [22] and as an enabler for quantum dot microscopy
[23]. In most of these measurement systems, the natural
frequencies are either identified via frequency sweeps
and subsequent spectrum analysis or via resonance
tracking, whereas the latter is faster and enables con-
tinuous measurements. The progress in electronics ad-
vances the application of new concepts for resonance
tracking in vibration-based measurements. By adaptive
control, we mean to measure the system parameters
via estimation algorithms and to reconstruct all the sys-
tem states with an observer in order to adaptively tune
the controller to track resonance. The measurement
itself does not necessarily depend on resonant excita-
tion, however near resonance high amplitudes provide
reasonable sensor signals regarding the signal-to-noise
ratio. This new measurement concept for resonant vi-
brations differs from conventional ones, such as autores-
onance [2] and phase control [6, 7, 18]. The latter track
the resonance by its characteristic phase shift or mag-
nitude peak, from which the measured parameters can
be derived. The new approach, employing adaptive
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Figure 1 – The control system consists of a plant (states
x, time-varying parameters p), a tunable con-
troller, and a compound of parameter estima-
tor and state observer

control, appears to be more robust and provides addi-
tional information at the expense of computational cost.
Due to advances in the processing power of current mi-
croprocessors, the implementation of more complex
algorithms in hand-held measurement systems is now
possible. In that regard, field programmable gate ar-
rays (FPGA) offer fast computation for industrial use at
a moderate price. The primary application field of reso-
nance tracking is vibration-based measurements, which
will serve as motivation in this paper, though this princi-
ple is not only limited to measuring. Resonance tracking
is also relevant for running actuators at high amplitudes,
e.g., ultrasonic generation in machine tools [21]. Besides
tuning the excitation to the system, it is also relevant to
tune the system properties to the excitation frequency,
e.g. in energy harvesting [12].

We begin in Section 2 by the definition of the control
task. Its solution follows in Section 3 and Section 4 for
a linear oscillator and a weakly nonlinear oscillator of
Duffing type, respectively. Some naturally arising ques-
tions about limitations of this approach, as well as gen-
eralizations to nonlinear and multiple-input multiple-
output (MIMO) systems are addressed in Section 5.

2 Control Task

As a preliminary, the notions of measure and sense in
this paper are defined as follows. Measurement means
the estimation of system parameters influencing the
vibration. This is the output of the control system and
ultimately its purpose. Whereas sensing refers to the
operation of the sensor inside the control loop, meaning
the signal path from the system output to the compound
of parameter estimator and state estimator.

The control structure is depicted in Figure 1. The in-
put signal u is the excitation. The excitation frequency
is controlled to match one of the plants eigenfrequen-
cies, which change over time. The goal of the controller
is the adjustment of the plant input u in order to keep
the system oscillating near resonance or at some spe-

cific frequency ratio, while the system parameters are
time-varying and thus the eigenfrequencies too. The cal-
culation of the matching excitation frequency is feasible,
once the system parameters and its states are known.
Consequently, it is reasonable to combine a parame-
ter estimation algorithm, a state observer, and a tun-
able controller. The parameter estimator receives the
input signal u and the output signal y, of which esti-
mations of specific system parameters are calculated.
Both signals u, y are also received by the state observer,
which processes them together with the plant model,
incorporating the parameter updates from the estima-
tor. Following the concept of explicit adaptive control
[10], the estimated parameters p̃ and the observed state
vector x̃ are then fed into the controller that calculates
the matching excitation.

3 Linear Oscillator

We illustrate our approach to solve the control task for
the classical linear oscillator with one degree-of-freedom

m(t )ẍ(t )+d(t )ẋ(t )+ c(t )x(t ) = u(t ), (1)

which contains three physical parameters: m,d , and c.
Regarding mechanics, these parameters correspond to
mass, damping, and stiffness, whereas x denotes dis-
placement and u the applied excitation force. Concern-
ing electric circuits, the parameters correspond to in-
ductance, resistance, and the inverse capacity in a se-
ries resonance circuit, whereas x(t) stands for electric
charge and u(t ) for the input voltage. Some or all of the
three parameters may vary with time, and we measure
them by sensing only some states. In our examples we
assume the position/charge x(t ) known and the veloci-
ty/current ẋ(t ) unknown.

3.1 Resonant Excitation

The sensitivity of a sensor or the efficiency of an actuator
can be increased in many applications by an increase of
the oscillation amplitudes. To ensure this, the controller
calculates the matching, typically resonant excitation
from the current states, while it adapts to changing pa-
rameters. The output of the controller is a harmonic
excitation, here formulated as real part of the complex-
valued exponential function

u(t ) =Re
{

f̂ e j (Ωt+ϕ f )
}

,

with imaginary unit j 2 = −1, force amplitude f̂ ∈ R+,
radian frequency Ω ∈ R+ and phase shift ϕ f ∈ R and
0 ≤ϕ f < 2π. These parameters are determined so that
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the system oscillates without transience in a steady-
state. Generally, the response consists of a solution of
the homogeneous equation and a particular solution

x(t ) = xh(t )+xp (t ).

The transient effect is described by the solution of the
homogeneous equation, while the particular solution
describes a harmonic oscillation with the angular fre-
quency identical to the excitation frequency

xp (t ) =Re
{

x̂e j (Ωt+ϕx )
}

,

with amplitude x̂ ∈ R+ and phase shift ϕx ∈ R. For an
oscillation in steady-state without transient (xh = 0), the
particular solution has to satisfy the initial conditions

x(t0) = xp (t0) = x0,

ẋ(t0) = ẋp (t0) = v0.

For general resonance tracking a certain frequency ratio
η= Ω

ω0
is desired. Hereby,ω0 denotes the eigenfrequency

of the system. In this paper we consider exact resonant
excitation, i.e. η= 1, implying

Ω=ω0 =
√

c

m
.

The amplitude and phase are related with the initial
conditions

x̂ =
√√√√x2

0 +
v2

0

ω2
0

, (2a)

ϕx = arctan

( −v0

ω0x0

)
(2b)

and determined at the beginning or update time t0. A
state observer is required here since typically either po-
sition or velocity is sensed. Thus, the observer is used to
reconstruct the missing state. The matching excitation
follows directly from inserting xp into equation (1)

u(t ) =Re
{(

c −mω2
0 + j dω0

)
x̂e j (ω0t+ϕx )

}
.

This procedure keeps both, excitation u and response x
harmonic and monofrequent. In summary, the obtained
control law gives the matching excitation, provided that
the system parameters and the initial state are known,
which will be explained hereafter.

3.2 Parameter Estimation

The parameter estimator should provide good approxi-
mations for the parameters m, d , and c of the oscillating
system after each time step. Throughout this section,

we assume that the parameter functions m, d , and c
are piecewise constant. Therefore we can represent the
equation of the linear oscillator either in the time do-
main or in the frequency domain with constant parame-
ters

ẍ(t )+2δẋ(t )+ω2
0x(t ) = 1

m
u(t ), (3a)

X (s)s2 +2δX (s)s +ω2
0X (s) = 1

m
U (s), (3b)

with 2δ= d
m and ω2

0 = c
m . Otherwise, we would have to

calculate the Laplace-transform of the yet unknown pa-
rameter functions. This assumption limits the validity of
the measurements to either slow or infrequent parame-
ter changes in comparison to the measurement time, i.e.,
the time points which are evaluated to obtain a parame-
ter estimation. Further, we assume that the position is
sensed with a constant sampling rate 1

∆t . Consequently,
the parameters of the time-continuous representation,
equation (3b), cannot be obtained directly, but only in a
discrete sense from the difference equation on the time
grid tk = k∆t

x(tk−2)+a1x(tk−1)+a0x(tk )

= b2u(tk−2)+b1u(tk−1),
(4a)

X (z)z−2 +a1X (z)z−1 +a0X (z)

= b2U (z)z−2 +b1U (z)z−1,
(4b)

where (4b) is the Z-transform of (4a). We also assume
that the initial condition for the Laplace transform of the
system is zero. We further assume a standard model for
analog-to-digital conversion (ADC), which holds each
sample value constant for the sample interval. With this
zero-order hold, the following correspondence is found
from a table of Laplace- and Z-transform pairs [19]

a1 =−2EC , (5a)

a0 = E 2, (5b)

b2 =
E

mω2
0

(
δS −ωdC +E−1

)
, (5c)

b1 =
E

mω2
0

(
E − δ

ωd
S −C

)
, (5d)

whereωd =
√

w2
0 −δ2 denotes the damped radian eigen-

frequency, and parameters E = exp(δ∆t ), C = cos(ωd∆t ),
and S = sin(ωd∆t). In order to determine the four un-
known parameters a1, a0,b2, and b1, at least four dif-
ference equations (4a), evaluating x(tk−5), . . . , x(tk ) and
u(tk−5), . . . ,u(tk−1), are necessary. As the resulting lin-
ear system of equations may become ill-conditioned,
additional equations with position and excitation val-
ues from previous time points are included. On the one



GAMMAS 2019 M. Gierig, L. Flessing 9

hand, if the parameters change, then including differ-
ence equations (4a) that correspond to old parameter
values impact the correct estimation of the parameters,
and thus we expect a good approximation of new pa-
rameters only after a sufficient number of time steps.
On the other hand, the measurement is stabilized by in-
cluding more equations. A good compromise was found
by fading memory, where previous values are weighted
less than newer ones. In detail, the nth equation is mul-
tiplied by a scalar weighting factor r n , where 0 < r < 1.
For a given tolerance τ > 0, let N ∈ N be the smallest
number such that r N < τ and N > 4. Then we solve the
overdetermined system

r n(
x(tk−2−n)+a1x(tk−1−n)+a0x(tk−n)

)
= r n(

b2u(tk−2−n)+b1u(tk−1−n)
)

n = 0, . . . , N

with the method of least squares for a1, a0, b2, b1 and
convert them to the desired parameter estimates m̃, d̃ ,
and c̃. For generality and ease of implementation, we
do not rely on analytical expressions, such as (5), but
use an approximation instead. Following Tustin [17],
the conversion between discrete-time and continuous-
time model is approximated by insertion of the bilinear
transformation

z = 2+ s∆t

2− s∆t
, s = 2

∆t

z −1

z +1

into equation (4b) or (3b), respectively. Here is assumed
that the sampling frequency 1

∆t is much faster than
the sensed vibrations, otherwise, prewarping would im-
prove the approximative conversion.

Note, that old values still enter the estimations, so a
parameter change cannot be measured immediately.

3.3 State Observer

The objective of the observer is to reconstruct unsensed
states of the system. In the present case the position
is sensed and the velocity needs to be estimated. Both
states enter equation (2) whereof the input for the con-
troller is calculated. A powerful observer of simple struc-
ture is the one by Luenberger [11]. This observer suites
the goal better than a Kalman filter, as it ensures a deter-
mined convergence of the states as well as a very easy
implementation. In principle, the Luenberger observer
uses a feedback of the difference between the sensed
state x and its observed value x̃

˙̃x(t ) = ṽ(t )+ s1

(
x(t )− x̃(t )

)
,

˙̃v(t ) = u(t )

m̃
− d̃

m̃
ṽ(t )− c̃

m̃
x̃(t )+ s2

(
x(t )− x̃(t )

)
to reconstruct the hidden state, the velocity. The dynam-
ics of the Luenberger observer are adjusted by its free

oscillator
 

position sensor

state observer

parameter
estimator

controller

Figure 2 – Control structure for resonance tracking of
the linear oscillator

parameters s1 and s2. A reasonable choice is the place-
ment of the observer poles at the aperiodic limit with a
time constant greater, i.e. faster, than that of the plant.

3.4 Example

The concepts specified in the previous sections are ap-
plied to a virtual rheometer, which is simplified to a
spring-mass-damper system. Its parameters are sum-
marized in Table 1.

According to the specific control structure in Figure 2,
the oscillator receives its input from the controller, and
a position sensor samples its output. While the param-
eters of the oscillator are estimated, its velocity is ap-
proximated using the state observer. Note, that the state
observer depends on the parameter estimator but not
vice versa. In the previous sections, each component
was analyzed separately assuming ideal or isolated in-
and outputs. Since the complete control loop with all
interactions is challenging to analyze rigorously, numer-
ical simulations are performed in order to assess the
stability and dynamics of the measurements. As a worst
case scenario, simulations with step changes of the pa-
rameters m, d , and c at quarter, half and three-quarter
of the simulation time are conducted. The results de-
picted in Figure 3 show that the parameter estimator
overshoots shortly after a parameter change. This effect
occurs not only in the changing parameter itself but also
in the others since the previous measurements still have
a remarkable impact on the calculation. After 0.2 ms
(less than an oscillation period) the estimated parame-
ters match the actual ones with a relative error less than
1 %. This settling time coincides with the measurement
time, i.e., the time points evaluated for the parameter
estimation. In terms of fading memory (r 0 = 1, r 1 = 0.8,
. . . , r 49 ≈1.8×10−5) the oldest points entering the mea-
surement seem to have no impact, however, they are
still active and prevent an ill-conditioning of the system
of equations. Although the parameter estimation is fast,
it has to be ensured that the peaks, occurring after the
parameter change, do not destabilize the control loop.
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Table 1 – Model and simulation parameters of the linear oscillator

variable description variable value variable description variable value

initial position x0 0.02 m simulation time tsim 3.6×10−3 s

initial velocity ẋ0 0 m/s time step ∆t 3.6×10−6 s

mass m (80-120)×10−9 kg fading memory factor r 0.8
spring stiffness c (25-35) N/m time points per measurement M 50

viscous damping d (1.91-4.04)×10−5 Ns/m total time steps N 1000

undamped radian eigenfrequency ω0 (1.44-2.09)×104 rad/s excitation update interval Nexc 50
frequency ratio η 1 observer dynamics δobs 10δ
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Figure 3 – Real (solid red lines) and estimated (dashed
blue lines) parameters of the linear oscillator

For this reason, additional safety-mechanisms are in-
cluded. First, a Chebyshev low-pass filter [14] is used
to smooth the overshoot of the measured parameters.
Additionally, it is monitored, if the corresponding energy
in the system is consistent. If the fluctuations of energy
are too high, the controller ignores the current estima-
tions and continues the excitation based on previous
values of the system parameters. Altogether, the safety-
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t
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m

ax
,u
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Figure 4 – Position x (solid red line) and excitation u
(dashed blue line) of the linear oscillator

mechanisms allow steady measurements and keep the
system continuously in resonance without causing too
high amplitudes, as depicted in Figure 4. The time scales
of the reaction time and the oscillation are close to each
other. Additionally, the approach is robust under the
limitations of short but large overshoots of the estimated
parameters. The stationary deviation of these parame-
ters is less than 1 %.

4 Modified Duffing Oscillator
A mechanical spring-mass-damper system with a quad-
ratic and a cubic nonlinearity is used as an example in
this section. In addition to the classical Duffing oscilla-
tor, it contains a quadratic term and hence is referred to
as modified Duffing oscillator. Its equation of motion is
given by

ẍ(t )+2Dẋ(t )+x(t )

+ε(a2(t )x2(t )+a3(t )x3(t )
)= u(t ), (6)

where D denotes the damping ratio and 0 < ε¿ 1 en-
sures that the nonlinear term influences the equation
only weakly. This restriction leads to an oscillatory so-
lution that is similar to the solution of the linear system
that is obtained by setting ε= 0. As a consequence, this
allows us to use the state observer introduced in section
Section 3.3 also for the weakly nonlinear system (6). The
parameters a2 and a3 of the nonlinear terms are chosen
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Figure 5 – Control structure for resonance tracking of
the modified Duffing oscillator

Figure 6 – Exemplaric magnitude response of a weakly
nonlinear system

as measurement variables, i.e., they are time-varying
and need to be estimated, while the other parameters
D and ε are known and remain constant. As in the pre-
vious example, only the position x is assumed to be
available as signal and thus the second state variable
v(t) = ẋ(t) needs to be observed. Although the control
loop, shown in Figure 5, shares the same structure with
the loop for the linear case, the implementation of its
elements (controller, parameter estimator and state ob-
server) is different.

4.1 Excitation Near Resonance

Concerning forced oscillations in nonlinear systems, of-
ten the frequency-response relations are distorted in
comparison to the linear ones. An example is shown in
Figure 6, where the magnitude response is depicted. De-
pending on the plant, the magnitude response bends to
lower or higher frequencies. The former is called soften-
ing effect, the latter hardening effect. Near the maximal
amplitude, up to three amplitude values may relate to a
single frequency value. As a consequence, step changes
in the steady-state amplitude may occur, and the max-
imum amplitude may only be reached by a frequency
up or down sweep. To overcome this issue the eigen-
frequency of the linear part, hereΩ=ω0 = 1, is tracked
similarly to linear systems. Again, the simulation time
is subdivided by the update times, thus at each update
time, we speak of an initial state. If the desired motion of
the oscillator (plant output) is harmonic, then its initial

state x0, v0 can be cast into a complex representation of
magnitude x̂ and modulus ϕx by equation (2). Thus the

desired harmonic oscillation x(t ) =Re
{

x̂e j (t+ϕx )
}

is de-

termined by the initial state. This harmonic oscillation
is plugged into the equation of motion (6), of which the
matching excitation

u(t ) =Re
{

2D j x̂e j (t+ϕx ) +εa2x̂2e2 j (t+ϕx )

+εa3x̂3e3 j (t+ϕx )
}

results. Note that the excitation frequency remains con-
stant since the coefficients determining the eigenfre-
quency of the linear system do not change. For stability
reasons, the controller does not update the excitation at
every time step but after certain intervals, analogously
to Section 3. As a consequence, the controller requires
the parameters and the state variables only at these up-
date times. To eliminate the disturbing influence of
overshoots in the parameter estimation, their values are
bounded with a critical rate of change. As long as the
rate of change exceeds the critical rate, the system’s ex-
citation goes on with the latest admissible, estimated
parameters of previous time steps.

4.2 Parameter Estimation

The parameter estimation differs significantly from that
of the linear system since both transforms, Laplace- and
Z-transform, are too involved for nonlinear systems.
One way to obtain estimates for the parameters in the
modified Duffing equation (6) is to estimate ẋ and ẍ via
finite differences. However, this is prone to measure-
ment errors or noise [16]. Instead, we propose to recast
(6) in a variational form. More precisely, we multiply
(6) with a weighting function w and integrate over the
time interval

[
tk−M+1, tk

]
[3], which is called the mea-

surement time tmeas. Hereby, M is the number of time
points per measurement. This yields

tk∫
tk−M+1

w(t )ẍ(t )+w(t )2Dẋ(t )+w(t )x(t )

+w(t )ε
(
a2x2(t )+a3x3(t )

)
dt =

tk∫
tk−M+1

w(t )u(t )dt , (7)

which is referred to as measurement point. The mea-
surement time is an algorithmic parameter and should
be of the same order of magnitude as the period of the
excited vibrations. The weighting function w is assumed
to be sufficiently smooth and to satisfy

w(tk−M+1) = w(tk ) = 0, (8a)

ẇ(tk−M+1) = ẇ(tk ) = 0. (8b)
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Since we assume the position as sensor signal, the time
derivatives of x are shifted into the weighting function
via integration by parts twice, resulting in

tk∫
tk−M+1

ẅ(t )x(t )− ẇ(t )2Dx(t )+w(t )x(t )

+w(t )ε
(
a2x2(t )+a3x3(t )

)
dt =

tk∫
tk−M+1

w(t )u(t )dt ,

where we assumed the sought parameters a2 and a3 to
be constant during the measurement time, as we did in
Section 3.2. For the sake of presentation, we introduce
the quantities

I1 :=
tk∫

tk−M+1

ẅ(t )x(t )dt , I2 :=
tk∫

tk−M+1

ẇ(t )2Dx(t )dt , (9a)

I3 :=
tk∫

tk−M+1

w(t )x(t )dt , I4 :=
tk∫

tk−M+1

w(t )εx2(t )dt , (9b)

I5 :=
tk∫

tk−M+1

w(t )εx3(t )dt , Iu :=
tk∫

tk−M+1

w(t )u(t )dt , (9c)

which can be computed numerically by appropriate
quadrature rules, such that a measurement point (7)
can be written as

a2I4 +a3I5 = Iu − I1 + I2 − I3.

With a single equation only one parameter can be iden-
tified, so we accumulate n measurement points

I1,4 I1,5

I2,4 I2,5
...

...
In,4 In,4


[

ã2

ã3

]
=


I1,u − I1,1 + I1,2 − I1,3

I2,u − I2,1 + I2,2 − I2,3
...

In,u − In,1 + In,2 − In,3

 ,

where the first index i = 1, . . . ,n represents the use of
different, preferably orthogonal, weighting functions wi

or by including more of the time history, i.e., evaluations
at previous time points tk+1−i or a combination of both.
Since it is advantageous to set up more equations than
unknowns, the Moore-Penrose pseudo-inverse is used
to find a solution in the sense of least squares. To weight
the latest measurement points the most, a fading mem-
ory is implemented as discussed in Section 3.2. Fast
fluctuations (overshoots) in the parameter estimations
are smoothed by a low-pass Chebyshev filter [14]. Note
that the parameter estimation algorithm is not limited
to weak nonlinearities, see the forthcoming section Sec-
tion 5.2.2 for more details.

4.3 State Observer

Both velocity and position, have to be known by the con-
troller in order to adapt the excitation to a time-varying
system. The position is sensed, the velocity is not and
needs to be reconstructed. Therefore a high gain state
observer [1] is used. The real system is given by equa-
tion (6), whereas the observer system is described by

˙̃x(t ) = ṽ(t )+ s1

(
x(t )− x̃(t )

)
,

˙̃v(t ) = u(t )−2Dṽ(t )− x̃(t )

−ε(a2x̃2(t )+a3x̃3(t )
)+ s2

(
x(t )− x̃(t )

)
.

For weak nonlinearity the linear terms dominate the dy-
namics of the observer error, thus the observer dynam-
ics are tuned analogously to the Luenberger-Observer
in Section 3.3.

4.4 Example

A rigorous analysis of the control loop for the nonlin-
ear case including all interactions would be even more
involved than in the linear case. Consequently, the per-
formance of the proposed method is again assessed by
numerical simulations. Estimated are the nonlinear pa-
rameters a2 and a3 of the modified Duffing equation (6).

The presented example is taken from tactile tissue
measurements [20], which were adapted for diagnos-
tics of skin. Its model and simulation parameters are
presented in Table 2. As for the linear system in Sec-
tion 3, the controlled system is tested concerning its
dynamic behavior and accuracy of the parameters to be
measured.

The method is tested with the following step changes
in the parameters:

a2(t ) = 2
(
1+ 1

2
· sign

(
t − 1

3
tsim

))
,

a3(t ) = 3
(
1+ 1

2
· sign

(
t − 2

5
tsim

))
.

At first the parameter a2 is constant at 1.0 and changes
at t = 1

3 tsim to the constant value of 3.0. The parame-
ter a3 is constant at 1.5 until t = 2

3 tsim, where it takes
the constant value 4.5. Such sudden parameter changes
are usually a challenging problem for estimation algo-
rithms.

As the integration is done in the limits
[
tk−M+1, tk

]
,

with the sampling time of ∆t we obtain the measure-
ment time tmeas = M∆t . We, therefore, choose the weight-
ing function to be

w1(t ) = cos
(
2π

t − tk

M∆t

)−1,

w2(t ) = cos
(
4π

t − tk

M∆t

)−1.
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Table 2 – Model (nondimensional) and simulation parameters of the modified Duffing oscillator

variable description variable value variable description variable value

initial position x0 1 simulation time tsim 100.5
initial velocity ẋ0 0 time step ∆t 0.042
undamped radian eigenfrequency ω0 1 fading memory factor r 0.8
damping ratio D 0.1 time points per measurement M 200
frequency ratio η 1 total time steps N 2400
small parameter ε 1/100 previous measurements included Nrts 2
quadratic coefficient a2 1.0-3.0 excitation update interval Nexc 100
cubic coefficient a3 1.5-4.5 observer dynamics δobs 10Dω0

Strictly speaking depend these functions on two variable
arguments t and tk and should be denoted wi (t , tk ), for
brevity of notation however, we omit the dependency
on the current time point tk . It is easy to see that the
weighting functions w1 and w2 satisfy the conditions
in (8). The results in Figure 7 and Figure 8 show how
close the estimated parameters follow the actual ones.
At the beginning of the simulation, the estimated pa-
rameters are initialized with zero. The need for an initial
phase is caused by the necessity to collect enough mea-
surement points. The change of a2 at t = 1

3 tsim (of a3

at t = 2
3 tsim, respectively) follows a smooth shift of the

estimated parameter ã2 (ã3 respectively). During the
transition time, until most sensed data belong to dy-
namics with the new parameter values, the parameter
estimations overshoot and approach close to the actual
values. The smooth transition without large spikes is
attributed to the overdetermined system of equations,
using four equations (two weighting functions w1 and
w2, over two time intervals [tk−M , tk−1] and [tk−M+1, tk ])
than unknowns — namely the parameters a2 and a3 —
and the low-pass filtering. After less than a measure-
ment time tmeas, i.e., when still time points belonging
to the old parameter value enter the calculation, the es-
timated parameters come close to the real values. The
persistent deviation after the change is less than 1 % for
the parameter a2 and less than 3 % for the parameter a3.
There are cross-couplings between a2 and a3 resulting
in temporary deviations of about 20 %, meaning that
changes in one parameter also affect the estimation of
the other.

Furthermore, a very close adaption of the velocity can
be obtained (cf. Figure 9) with the presented state ob-
server.

The low-pass filtered parameter estimations lead to
a stable and smooth excitation. As presented in Fig-
ure 10, the system response is harmonic as desired and
has large, well detectable amplitudes. There are slight
fluctuations in the excitation since it is based on the
observed state and the estimated parameters. Also, the
excitation u deviates qualitatively from the response x

0 20 40 60 80 100
0

1

2

3

t
a

2

Figure 7 – Real (solid red line) and estimated (dashed
blue line) system parameter a2

0 20 40 60 80 100
0

2

4

t

a
3

Figure 8 – Real (solid red line) and estimated (dashed
blue line) system parameter a3

when the estimated parameters a2 and a3 increase, as
the nonlinear terms gain a higher impact.

A popular alternative for estimating parameters is the
extended Kalman filter. We prefer our method over the
Kalman filter, because the Kalman filter is related to con-
vergence issues, whereas our method returns parame-
ter estimations in a single step. After the initial phase,
there are enough data to calculate new parameter es-
timates algebraically. Furthermore, the computational
cost is lower, since only the weighting functions and
their derivatives have to be provided which can readily
be precalculated and stored. Consequently, the typi-
cal drawbacks of iterative methods like the convergence
speed or radius as well as the recalculation of the weight-
ing matrices are avoided.
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Figure 9 – Real (solid red line) and observed (dashed
blue line) velocity of the modified Duffing os-
cillator
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Figure 10 – Position x (solid red line) and excitation u
(dashed blue line) of the modified Duffing
oscillator

5 Discussion

The proposed approach proved to measure continu-
ously three parameters of a linear oscillator and two
parameters of a weakly nonlinear oscillator. Naturally,
there arise questions for the estimation of more parame-
ters at a time or the extensions to further system classes.
We address some of these questions in the following
subsections.

5.1 Limitations

Both approaches, for linear systems via Z-transform as
well as for nonlinear systems via weighting functions,
may lead to ill-conditioned systems of equations and
thus result in corrupted parameter estimates. The un-
derlying problems are similar for both approaches. In
the following, we discuss the details for the weighting
function approach. If the excitation is a harmonic func-
tion, the corresponding steady-state response may cause
linearly dependent columns in the linear system of equa-
tions for the parameters. A simple example can explain
this. For a damped oscillator, the solution of the homo-
geneous equation decays, while the stationary response

to a harmonic excitation reads

xp (t ) = x̂ cos(Ωt +ϕx ), ẍp (t ) =−x̂Ω2 cos(Ωt +ϕx ).

The crucial point is the second derivative ẍp and possi-

bly higher derivatives x(2k)
p of even parity. Similarly, the

first derivative ẋp and possibly higher derivatives x(2k+1)
p

of odd parity may cause that problem as well. These
terms differ only by a constant factor. More precisely
let us index the measurement points with i = 1,2, . . . ,n
with i = 1 denoting the newest and i = n the oldest mea-
surement point. For example, we have

Ii ,3 =
tk+1−i∫

tk+1−i−M

w(t )x(t )dt for i = 1,2, . . . ,n,

and similarly for the remaining integrals in equation (9).
Then the linear system we have to solve is of the form

−Ω2I1,3 I1,2 I1,3

−Ω2I2,3 I2,2 I2,3
...

...
...

−Ω2In,3 In,2 In,3


m̃

d̃
c̃

=


I1,u

I2,u
...

In,u

 .

The first and third columns of the coefficient matrix are
linearly dependent in stationary state. The reason is
evident when looking at these coefficients before inte-
gration by parts. The first column contains integrals∫

ẍ(t)w(t)dt and the third column
∫

x(t)w(t)dt . As a
consequence, the coefficient matrix becomes rank defi-
cient after a certain time, and the number of parameters
that remains identifiable is only two, either m and d , or
d and c . This observation is in agreement with a general
condition for parameter convergence with persistent ex-
citation [4], stating roughly that two parameters can be
estimated per frequency in the excitation signal. During
transient oscillations, the linear system of equations for
more than two parameters is well-conditioned and gives
accurate estimations. This is due to the transient system
responses changing the values of the derivatives. One
may have expected that parameter estimations improve
as the signal converges to its stationary solution, but
this is not the case.

Similarly, one may not be able to distinguish the zero
solution from potential other solutions, if the right-hand
side vanishes. Since the weighting functions are peri-
odic by condition (8), the product of them with a peri-
odic excitation with vanishing mean value is periodic
or at least quasiperiodic. Consequently, the integral
Iu = F (tk )−F (tk−M+1), with F (t) = ∫ t

0 w(τ)u(τ)dτ, van-
ishes, either due to the measurement time tmeas or due
to the current time. Former happens when the measure-
ment time equals a multiple of the period of F (t ), then
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for all time points F (tk ) = F (tk−M+1) and thus Iu = 0.
A similar effect occurs when the measurement time
is much longer than the period of the excited vibra-
tions. For other measurement times, there is always
a time point of a continuous periodic function for which
F (tk ) = F (tk−M+1), leading to spikes in the parameter
estimation, if additional measurement points do not
overdetermine the system of equations.

A problem in experiments occurs when the sensor sig-
nal has an offset because numerical integration is very
sensitive to offset errors. Sensor noise evens out by the
integration, but a sensor offset grows with time. How-
ever, this can be resolved by introducing an additional
parameter pO. This parameter can be interpreted as the
factor of a constant function xO(t ) = 1. The correspond-
ing integral

∫
pOw(t)xO(t)dt adds a fourth column to

the linear system of equations for the parameter esti-
mates 

I1,1 I1,2 I1,3 I1,4

I2,1 I2,2 I2,3 I2,4
...

...
...

...
In,1 In,2 In,3 In,4




m̃
d̃
c̃

p̃O

=


I1,u

I2,u
...

In,u

 .

As a result, not only the parameters of the system but
also the offset pO is obtained.

5.2 Generalizations

The extension of both approaches to SISO systems of
higher order is straightforward. For linear systems, there
are just more coefficients in the Laplace- and Z-trans-
form, while for weakly nonlinear systems, we need to
formulate further requirements on the weighting func-
tions depending on the number of differentiations or
integrations needed to derive an algebraic equation.

We will outline the generalizations of the parameter
estimation methods to linear MIMO systems and nonlin-
ear SISO systems in the following subsections. Although
the approach is not limited to oscillatory systems, we
restrict ourselves to oscillatory systems, since we believe
this is the most relevant class for technical applications.

5.2.1 Linear MIMO Systems

The introduced control concept can be applied to linear
oscillatory systems with many degrees of freedom. For
this kind of system, it is convenient to switch to state
space form. The state vector x(t ) ∈Rn , the input vector
u(t ) ∈Rm and the output vector y(t ) ∈Rk are related by
the set of linear equations

ẋ(t ) = A(t )x(t )+B(t )u(t ), (10a)

y(t ) = C(t )x(t ). (10b)

with matrices A ∈ Rn×n , B ∈ Rn×m , and C ∈ Rk×n and
t ∈ R the time. Assuming a zero initial condition and
applying the Laplace transform to equation (10) and
rearranging the terms yields the so-called transfer func-
tion

G(s) = C(sI−A)−1B.

The system of equations (10) is called oscillatory if there
exists a complex conjugated pair of poles of G . It is called
asymptotically stable if the maximal real part of all poles
of G is less than zero.

As in the previous sections, we assume that the linear
system (10) is sampled at discrete time points and thus,
we consider the discrete-time counterpart of (10), given
by

x(tk +1) = AZ (tk )x(tk )+BZ (tk )u(tk ),

y(tk ) = CZ (tk )x(tk ).

The challenging part is to express the discrete-time ma-
trices AZ , BZ , and CZ such that all known information
of the continuous-time matrices A, B, and C enter them
and the unknown entries of A, B, and C can be recovered
from as little time points tk , . . . , tk−M as possible.

For multiple inputs it is reasonable to fit them to an
eigenmode, corresponding to the eigenfrequency which
is to be excited.

Note that the simultaneous excitation of several eigen-
frequencies may have beneficial effects, e.g., for the can-
cellation of temperature effects in fluid characterization
[5].

5.2.2 Nonlinear Systems

The approach is limited to combinations of system mod-
els and sensor signals, where all integrals of the mea-
surement points can be integrated by parts analytically.

E.g., this approach still works for measuring the pa-
rameter α of a classical Van-der-Pol oscillator

ẍ(t )−α(
1−x2(t )

)
ẋ(t )+x(t ) = u(t ),

x(t0) = x0,

ẋ(t0) = ẋ0,

when only the time history x(t ) is available, because the
nonlinear term∫

x(t )2ẋ(t )w(t )dt =−
∫

1

3
x(t )3ẇ(t )dt

is easy to integrate. However, for general integrals, e.g.,∫
x(t)2ẋ(t)2dt , it may be difficult to find a representa-

tion without ẋ(t ).
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A nonlinear, time-dependent MIMO system in state-
space form is described by

ẋ(t ) = f
(
x(t ),u(t ),p1(t ), t

)
, x(t0) = x0,

y(t ) = c
(
x(t ),p2(t ), t

)
.

The parameters of the system and the output equation
are collected in the vectors p1(t) ∈ R`1 and p2(t) ∈ R`2 ,
respectively. This system class is too complicated for
uniform treatment. Even the basic property oscillatory,
which is essential for vibration-based measurements,
could be defined only via Poincare maps of the free dy-
namics (u = 0). The requirements are similar to a nonlin-
ear SISO system, i.e., the unsensed states should not ap-
pear in the integrals of the measurement points, but the
multiple inputs and outputs may cause additional non-
linear coupling terms. This makes the generalization to
this system class feasible, but it needs to be decided on
a case-by-case basis.

6 Conclusion and Outlook
The combination of adaptive control with resonance
tracking is a promising approach to measure several pa-
rameters simultaneously and continuously in a vibrat-
ing system. Simultaneous measurement of parameters
would be challenging with conventional methods, such
as autoresonance and phase control. The proposed con-
trol design for resonance tracking allows to track sudden
parameter changes of more than 100% by a settling time
of a few oscillation periods, including cross-coupling
effects, i.e., changes in one parameter affect the estima-
tion of unchanged parameters. The measurement of
slow changes exhibits the same accuracy as for constant
values and can be reduced to arbitrary precision. An
interesting observation is the high measurement perfor-
mance, particularly at transient oscillations.

However, some of the design goals of the closed loop
conflict: it is not possible to obtain high dynamics and
a low steady-state error at the same time. The critical
point is the number of tuning parameters, such as mea-
surement time, controller update time, parameters of
the low-pass filter, fading memory, observer dynamics,
even for a different choice of parameter estimators and
state observers. On the one hand, they may be chosen
to obtain high accuracy and fast dynamics, on the other
hand, they may destabilize the system. Further research
for guiding or ideally automating the adjustment of the
estimator, observer, and controller is necessary.

If instead of an oscillation with one frequency, a mul-
tifrequent oscillation would be acceptable in the appli-
cation at hand, the control loop would dispense with
the state observer. In this case, the input signal may be

constructed as a signal of constant amplitude with time-
varying frequency according to the estimated system
parameters. Moreover, also multifrequent excitation
signals are worth for consideration of further improve-
ments of the measurement system. In a more theoretical
perspective, the limitations of the proposed parameter
estimation should be analyzed in-depth. The param-
eters are estimated at each time point in a single step.
Although this is the strength of this approach, it also
poses a weakness, since the system may become ill-
conditioned, if the excitation and the system response
are periodic. However, in comparison to the Kalman-
filter, the proposed method is indeed a promising ap-
proach, as for the obligatory initialization step the weight-
ing function is calculated once, rather than updating the
Kalman-matrix at each step.

Code Availability: We provide commented MATLAB
files of a demonstration example as supplementary ma-
terial, which can be found under the

DOI: 10.14464/gammas.v1i1.344.
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